
CS162
Operating Systems and
Systems Programming

Lecture 10

Monitors (Finished),
Scheduling 1: Concepts and Classic Policies

February 21st, 2023
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 10.22/21/23 Kubiatowicz CS162 © UCB Spring 2023

Semaphore fullSlots = 0; // Initially, no coke
Semaphore emptySlots = bufSize;

// Initially, num empty slots
Semaphore mutex = 1; // No one using machine

Producer(item) {
semaP(&emptySlots); // Wait until space
semaP(&mutex); // Wait until machine free
Enqueue(item);
semaV(&mutex);
semaV(&fullSlots); // Tell consumers there is

// more coke
}
Consumer() {

semaP(&fullSlots); // Check if there’s a coke
semaP(&mutex); // Wait until machine free
item = Dequeue();
semaV(&mutex);
semaV(&emptySlots); // tell producer need more
return item;

}

fullSlots signals coke

emptySlots
signals space

Recall: Bounded Buffer, 3rd cut (coke machine)

Critical sections
using mutex
protect integrity
of the queue

Lec 10.32/21/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: Monitors and Condition Variables
• Monitor: a lock and zero or more condition variables for managing

concurrent access to shared data
– Use of Monitors is a programming paradigm
– Some languages like Java provide monitors in the language

• Condition Variable: a queue of threads waiting for something inside a critical
section

– Key idea: allow sleeping inside critical section by atomically releasing lock at
time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section
• Operations:

– Wait(&lock): Atomically release lock and go to sleep. Re-acquire lock later,
before returning.

– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!

Lec 10.42/21/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

R
R

R

W

Lec 10.52/21/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: Code for a Reader
Reader() {
// First check self into system
acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!
release(&lock);
// Perform actual read-only access
AccessDatabase(ReadOnly);
// Now, check out of system
acquire(&lock);
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

cond_signal(&okToWrite);// Wake up one writer
release(&lock);

}
Lec 10.62/21/23 Kubiatowicz CS162 © UCB Spring 2023

Writer() {// First check self into systemacquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existcond_wait(&okToWrite,&lock); // Sleep on cond varWW--; // No longer waiting}
AW++; // Now we are active!release(&lock);
// Perform actual read/write accessAccessDatabase(ReadWrite);
// Now, check out of systemacquire(&lock);AW--; // No longer activeif (WW > 0){ // Give priority to writerscond_signal(&okToWrite);// Wake up one writer} else if (WR > 0) { // Otherwise, wake readercond_broadcast(&okToRead); // Wake all readers}release(&lock);

}

Recall: Code for a Writer

Lec 10.72/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution

• Use an example to simulate the solution

• Consider the following sequence of operators:
– R1, R2, W1, R3

• Initially: AR = 0, WR = 0, AW = 0, WW = 0

Lec 10.82/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R1 comes along (no waiting threads)
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {acquire(&lock)
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.92/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R1 comes along (no waiting threads)
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.102/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R1 comes along (no waiting threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.112/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R1 comes along (no waiting threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.122/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R1 accessing dbase (no other threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.132/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R2 comes along (R1 accessing dbase)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.142/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R2 comes along (R1 accessing dbase)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.152/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R2 comes along (R1 accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 0

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.162/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R2 comes along (R1 accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 0

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.172/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R1 and R2 accessing dbase
• AR = 2, WR = 0, AW = 0, WW = 0

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}Assume readers take a while to access database

Situation: Locks released, only AR is non-zero

Lec 10.182/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 0

Writer() {acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existcond_wait(&okToWrite,&lock);// Sleep on cond varWW--; // No longer waiting}
AW++;release(&lock);
AccessDBase(ReadWrite);
acquire(&lock);AW--;if (WW > 0){cond_signal(&okToWrite);} else if (WR > 0) {cond_broadcast(&okToRead);}release(&lock);}

Lec 10.192/21/23 Kubiatowicz CS162 © UCB Spring 2023

Writer() {acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existcond_wait(&okToWrite,&lock);// Sleep on cond varWW--; // No longer waiting}
AW++;release(&lock);
AccessDBase(ReadWrite);
acquire(&lock);AW--;if (WW > 0){cond_signal(&okToWrite);} else if (WR > 0) {cond_broadcast(&okToRead);}release(&lock);}

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 0

Lec 10.202/21/23 Kubiatowicz CS162 © UCB Spring 2023

Writer() {acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existcond_wait(&okToWrite,&lock);// Sleep on cond varWW--; // No longer waiting}
AW++;release(&lock);
AccessDBase(ReadWrite);
acquire(&lock);AW--;if (WW > 0){cond_signal(&okToWrite);} else if (WR > 0) {cond_broadcast(&okToRead);}release(&lock);}

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 1

Lec 10.212/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R3 comes along (R1 and R2 accessing dbase, W1 waiting)
• AR = 2, WR = 0, AW = 0, WW = 1

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.222/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R3 comes along (R1 and R2 accessing dbase, W1 waiting)
• AR = 2, WR = 0, AW = 0, WW = 1

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.232/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R3 comes along (R1 and R2 accessing dbase, W1 waiting)
• AR = 2, WR = 1, AW = 0, WW = 1

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!lock.release();
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite); release(&lock);}

Lec 10.242/21/23 Kubiatowicz CS162 © UCB Spring 2023

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite); release(&lock);}

Simulation of Readers/Writers Solution
• R3 comes along (R1, R2 accessing dbase, W1 waiting)
• AR = 2, WR = 1, AW = 0, WW = 1

Lec 10.252/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R1 and R2 accessing dbase, W1 and R3 waiting
• AR = 2, WR = 1, AW = 0, WW = 1

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}Status:

• R1 and R2 still reading
• W1 and R3 waiting on okToWrite and okToRead, respectively

Lec 10.262/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1 and R3 waiting)
• AR = 2, WR = 1, AW = 0, WW = 1

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.272/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1 and R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.282/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1 and R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.292/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1 and R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.302/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R1 finishes (W1 and R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.312/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R1 finishes (W1, R3 waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.322/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R1 finishes (W1, R3 waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.332/21/23 Kubiatowicz CS162 © UCB Spring 2023

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Simulation of Readers/Writers Solution
• R1 signals a writer (W1 and R3 waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

Lec 10.342/21/23 Kubiatowicz CS162 © UCB Spring 2023

Writer() {acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existcond_wait(&okToWrite,&lock);// Sleep on cond varWW--; // No longer waiting}
AW++;release(&lock);
AccessDBase(ReadWrite);
acquire(&lock);AW--;if (WW > 0){cond_signal(&okToWrite);} else if (WR > 0) {cond_broadcast(&okToRead);}release(&lock);}

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

Lec 10.352/21/23 Kubiatowicz CS162 © UCB Spring 2023

Writer() {acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existcond_wait(&okToWrite,&lock);// Sleep on cond varWW--; // No longer waiting}
AW++;release(&lock);
AccessDBase(ReadWrite);
acquire(&lock);AW--;if (WW > 0){cond_signal(&okToWrite);} else if (WR > 0) {cond_broadcast(&okToRead);}release(&lock);}

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

Lec 10.362/21/23 Kubiatowicz CS162 © UCB Spring 2023

Writer() {acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existcond_wait(&okToWrite,&lock);// Sleep on cond varWW--; // No longer waiting}
AW++;release(&lock);
AccessDBase(ReadWrite);
acquire(&lock);AW--;if (WW > 0){cond_signal(&okToWrite);} else if (WR > 0) {cond_broadcast(&okToRead);}release(&lock);}

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 1, WW = 0

Lec 10.372/21/23 Kubiatowicz CS162 © UCB Spring 2023

Writer() {acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existcond_wait(&okToWrite,&lock);// Sleep on cond varWW--; // No longer waiting}
AW++;release(&lock);
AccessDBase(ReadWrite);
acquire(&lock);AW--;if (WW > 0){cond_signal(&okToWrite);} else if (WR > 0) {cond_broadcast(&okToRead);}release(&lock);}

Simulation of Readers/Writers Solution
• W1 accessing dbase (R3 still waiting)
• AR = 0, WR = 1, AW = 1, WW = 0

Lec 10.382/21/23 Kubiatowicz CS162 © UCB Spring 2023

Writer() {acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existcond_wait(&okToWrite,&lock);// Sleep on cond varWW--; // No longer waiting}
AW++;release(&lock);
AccessDBase(ReadWrite);
acquire(&lock);AW--;if (WW > 0){cond_signal(&okToWrite);} else if (WR > 0) {cond_broadcast(&okToRead);}release(&lock);}

Simulation of Readers/Writers Solution
• W1 finishes (R3 still waiting)
• AR = 0, WR = 1, AW = 1, WW = 0

Lec 10.392/21/23 Kubiatowicz CS162 © UCB Spring 2023

Writer() {acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existcond_wait(&okToWrite,&lock);// Sleep on cond varWW--; // No longer waiting}
AW++;release(&lock);
AccessDBase(ReadWrite);
acquire(&lock);AW--;if (WW > 0){cond_signal(&okToWrite);} else if (WR > 0) {cond_broadcast(&okToRead);}release(&lock);}

Simulation of Readers/Writers Solution
• W1 finishes (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

Lec 10.402/21/23 Kubiatowicz CS162 © UCB Spring 2023

Writer() {acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existcond_wait(&okToWrite,&lock);// Sleep on cond varWW--; // No longer waiting}
AW++;release(&lock);
AccessDBase(ReadWrite);
acquire(&lock);AW--;if (WW > 0){cond_signal(&okToWrite);} else if (WR > 0) {cond_broadcast(&okToRead);}release(&lock);}

Simulation of Readers/Writers Solution
• W1 finishes (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

Lec 10.412/21/23 Kubiatowicz CS162 © UCB Spring 2023

Writer() {acquire(&lock);
while ((AW + AR) > 0) { // Is it safe to write?WW++; // No. Active users existcond_wait(&okToWrite,&lock);// Sleep on cond varWW--; // No longer waiting}
AW++;release(&lock);
AccessDBase(ReadWrite);
acquire(&lock);AW--;if (WW > 0){cond_signal(&okToWrite);} else if (WR > 0) {cond_broadcast(&okToRead);}release(&lock);}

Simulation of Readers/Writers Solution
• W1 signaling readers (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

Lec 10.422/21/23 Kubiatowicz CS162 © UCB Spring 2023

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Simulation of Readers/Writers Solution
• R3 gets signal (no waiting threads)
• AR = 0, WR = 1, AW = 0, WW = 0

Lec 10.432/21/23 Kubiatowicz CS162 © UCB Spring 2023

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Simulation of Readers/Writers Solution
• R3 gets signal (no waiting threads)
• AR = 0, WR = 0, AW = 0, WW = 0

Lec 10.442/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R3 accessing dbase (no waiting threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.452/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R3 finishes (no waiting threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.462/21/23 Kubiatowicz CS162 © UCB Spring 2023

Simulation of Readers/Writers Solution
• R3 finishes (no waiting threads)
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {acquire(&lock);
while ((AW + WW) > 0) { // Is it safe to read?WR++; // No. Writers existcond_wait(&okToRead,&lock);// Sleep on cond varWR--; // No longer waiting}
AR++; // Now we are active!release(&lock);
AccessDBase(ReadOnly);
acquire(&lock);AR--;if (AR == 0 && WW > 0)cond_signal(&okToWrite);release(&lock);}

Lec 10.472/21/23 Kubiatowicz CS162 © UCB Spring 2023

Questions
• Can readers starve? Consider Reader() entry code:

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
cond_wait(&okToRead,&lock);// Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

cond_signal(&okToWrite);// Wake up one writer
• Further, what if we turn the signal() into broadcast()

AR--; // No longer active
cond_broadcast(&okToWrite); // Wake up sleepers

• Finally, what if we use only one condition variable (call it
“okContinue”) instead of two separate ones?

– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()

Lec 10.482/21/23 Kubiatowicz CS162 © UCB Spring 2023

Use of Single CV: okContinue
Reader() {

// check into system
acquire(&lock);
while ((AW + WW) > 0) {

WR++;
cond_wait(&okContinue,&lock);
WR‐‐;

}
AR++;
release(&lock);

// read‐only access
AccessDbase(ReadOnly);

// check out of system
acquire(&lock);
AR‐‐;
if (AR == 0 && WW > 0)

cond_signal(&okContinue);
release(&lock);

}

Writer() {
// check into system
acquire(&lock);
while ((AW + AR) > 0) {

WW++;
cond_wait(&okContinue,&lock);
WW‐‐;

}
AW++;
release(&lock);

// read/write access
AccessDbase(ReadWrite);

// check out of system
acquire(&lock);
AW‐‐;
if (WW > 0){

cond_signal(&okContinue);
} else if (WR > 0) {

cond_broadcast(&okContinue);
}
release(&lock);

}
What if we turn okToWrite and okToRead into okContinue

(i.e. use only one condition variable instead of two)?

Lec 10.492/21/23 Kubiatowicz CS162 © UCB Spring 2023

Use of Single CV: okContinue
Reader() {

// check into system
acquire(&lock);
while ((AW + WW) > 0) {

WR++;
cond_wait(&okContinue,&lock);
WR‐‐;

}
AR++;
release(&lock);

// read‐only access
AccessDbase(ReadOnly);

// check out of system
acquire(&lock);
AR‐‐;
if (AR == 0 && WW > 0)

cond_signal(&okContinue);
release(&lock);

}

Writer() {
// check into system
acquire(&lock);
while ((AW + AR) > 0) {

WW++;
cond_wait(&okContinue,&lock);
WW‐‐;

}
AW++;
release(&lock);

// read/write access
AccessDbase(ReadWrite);

// check out of system
acquire(&lock);
AW‐‐;
if (WW > 0){

cond_signal(&okContinue);
} else if (WR > 0) {

cond_broadcast(&okContinue);
}
release(&lock);

}Consider this scenario:
• R1 arrives
• W1, R2 arrive while R1 still reading W1 and R2 wait for R1 to finish
• Assume R1’s signal is delivered to R2 (not W1) Lec 10.502/21/23 Kubiatowicz CS162 © UCB Spring 2023

Use of Single CV: okContinue
Reader() {

// check into system
acquire(&lock);
while ((AW + WW) > 0) {

WR++;
cond_wait(&okContinue,&lock);

WR‐‐;
}
AR++;
release(&lock);

// read‐only access
AccessDbase(ReadOnly);

// check out of system
acquire(&lock);
AR‐‐;
if (AR == 0 && WW > 0)

cond_broadcast(&okContinue);
release(&lock);

}

Writer() {
// check into system
acquire(&lock);
while ((AW + AR) > 0) {

WW++;
cond_wait(&okContinue,&lock);

WW‐‐;
}
AW++;
release(&lock);

// read/write access
AccessDbase(ReadWrite);

// check out of system
acquire(&lock);
AW‐‐;
if (WW > 0 || WR > 0){

cond_broadcast(&okContinue);
}
release(&lock);

}Need to change to
broadcast()!

Must broadcast()
to sort things out!

Lec 10.512/21/23 Kubiatowicz CS162 © UCB Spring 2023

Can we construct Monitors from Semaphores?
• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

Wait(Semaphore *thesema) { semaP(thesema); }
Signal(Semaphore *thesema) { semaV(thesema); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

Wait(Lock *thelock, Semaphore *thesema) {
release(thelock);
semaP(thesema);
acquire(thelock);

}
Signal(Semaphore *thesema) {
semaV(thesema);

}
– No: Condition vars have no history, semaphores have history:

» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and noone is waiting? Increment
» What if thread later does P? Decrement and continue

Lec 10.522/21/23 Kubiatowicz CS162 © UCB Spring 2023

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter what
order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

Wait(Lock *thelock, Semaphore *thesema) {
release(thelock);
semaP(thesema);
acquire(thelock);

}
Signal(Semaphore *thesema) {

if semaphore queue is not empty
semaV(thesema);

}
– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock

release and before waiter executes semaphore.P()
• It is actually possible to do this correctly

– Complex solution for Hoare scheduling in book
– Can you come up with simpler Mesa-scheduled solution?

Lec 10.532/21/23 Kubiatowicz CS162 © UCB Spring 2023

Administrivia
• Still grading Midterm 1 (Sorry)

– Finishing soon!
– Solutions also will be up soon.

• Homework #2 due Thursday
• Professor Kubi’s office hours changed slightly:

– Monday 2-3 (same), Wednesday 3-4 (different)
– 673 Soda Hall

Lec 10.542/21/23 Kubiatowicz CS162 © UCB Spring 2023

C-Language Support for Synchronization
• C language: Pretty straightforward synchronization

– Just make sure you know all the code paths out of a critical section
int Rtn() {

acquire(&lock);
…
if (exception) {

release(&lock);
return errReturnCode;

}
…
release(&lock);
return OK;

}
– Watch out for setjmp/longjmp!

» Can cause a non-local jump out of procedure
» In example, procedure E calls longjmp, poping stack back to procedure B
» If Procedure C had lock.acquire, problem!

Proc A

Proc B
Calls setjmp

Proc C
acquire(&lock)

Proc D

Proc E
Calls longjmp

Stack growth

Lec 10.552/21/23 Kubiatowicz CS162 © UCB Spring 2023

• Harder with more locks
void Rtn() {
lock1.acquire();
…
if (error) {
lock1.release();
return;

}
…
lock2.acquire();
…
if (error) {
lock2.release()
lock1.release();
return;

}
…
lock2.release();
lock1.release();

}

• Is goto a solution???
void Rtn() {
lock1.acquire();
…
if (error) {
goto release_lock1_and_return;

}
…
lock2.acquire();
…
if (error) {
goto release_both_and_return;

}
…

release_both_and_return:
lock2.release();

release_lock1_and_return:
lock1.release();

}

Concurrency and Synchronization in C

Lec 10.562/21/23 Kubiatowicz CS162 © UCB Spring 2023

C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy to make a
non-local exit without releasing lock)

– Consider:
void Rtn() {

lock.acquire();
…
DoFoo();
…
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}
– Notice that an exception in DoFoo() will exit without releasing the lock!

Lec 10.572/21/23 Kubiatowicz CS162 © UCB Spring 2023

C++ Language Support for Synchronization (con’t)
• Must catch all exceptions in critical sections

– Catch exceptions, release lock, and re-throw exception:
void Rtn() {

lock.acquire();
try {

…
DoFoo();
…

} catch (…) { // catch exception
lock.release(); // release lock
throw; // re‐throw the exception

}
lock.release();

}
void DoFoo() {

…
if (exception) throw errException;
…

}

Lec 10.582/21/23 Kubiatowicz CS162 © UCB Spring 2023

Much better: C++ Lock Guards
#include <mutex>
int global_i = 0;
std::mutex global_mutex;

void safe_increment() {
std::lock_guard<std::mutex> lock(global_mutex);
…
global_i++;
// Mutex released when ‘lock’ goes out of scope

}

Lec 10.592/21/23 Kubiatowicz CS162 © UCB Spring 2023

Python with Keyword
• More versatile than we show here (can be used to close files, database

connections, etc.)

lock = threading.Lock()
…
with lock: # Automatically calls acquire()

some_var += 1
…

release() called however we leave block

Lec 10.602/21/23 Kubiatowicz CS162 © UCB Spring 2023

Java synchronized Keyword
• Every Java object has an associated lock:

– Lock is acquired on entry and released on exit from a synchronized method
– Lock is properly released if exception occurs inside a synchronized method
– Mutex execution of synchronized methods (beware deadlock)

class Account {
private int balance;

// object constructor
public Account (int initialBalance) {

balance = initialBalance;
}
public synchronized int getBalance() {

return balance;
}
public synchronized void deposit(int amount) {

balance += amount;
}

}

Lec 10.612/21/23 Kubiatowicz CS162 © UCB Spring 2023

Java Support for Monitors
• Along with a lock, every object has a single condition variable

associated with it

• To wait inside a synchronized method:
– void wait();
– void wait(long timeout);

• To signal while in a synchronized method:
– void notify();
– void notifyAll();

Lec 10.622/21/23 Kubiatowicz CS162 © UCB Spring 2023

Goal for Today

• Discussion of Scheduling:
– Which thread should run on the CPU next?

• Scheduling goals, policies
• Look at a number of different schedulers

if (readyThreads(TCBs)) {
nextTCB = selectThread(TCBs);
run(nextTCB);

} else {
run_idle_thread();

}

Lec 10.632/21/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: What Do the Stacks Look Like?
• Consider the following

code blocks:
proc A() {

B();

}
proc B() {

while(TRUE) {
yield();

}
}

• Suppose we have 2
threads:

– Threads S and T

Thread S

St
ac
k

gr
ow

th A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch

Thread S's switch returns to
Thread T's (and vice versa)

Lec 10.642/21/23 Kubiatowicz CS162 © UCB Spring 2023

Hardware context switch support in x86
• Syscall/Intr (U  K)

– PL 3  0;
– TSS  EFLAGS, CS:EIP;
– SS:ESP  k-thread stack (TSS PL 0);
– push (old) SS:ESP onto (new) k-stack
– push (old) eflags, cs:eip, <err>
– CS:EIP  <k target handler>

• Then
– Handler saves other regs, etc
– Does all its works, possibly choosing

other threads, changing PTBR (CR3)

– kernel thread has set up user GPRs

• iret (K  U)
– PL 0  3;
– Eflags, CS:EIP  popped off k-stack
– SS:ESP  popped off k-stack

pg 2,942 of 4,922 of x86 reference manual Pintos: tss.c, intr-stubs.S

Lec 10.652/21/23 Kubiatowicz CS162 © UCB Spring 2023

Pintos: Kernel Crossing on Syscall or Interrupt

user
code

user
stack

PTBR

TCB

kernel
code

kernel
thread
stack

PTBR

cs:eip
ss:esp

cs:eip
ss:esp

TCB

sy
sc

al
l/

 i
nt

er
ru

pt
cs:eip
ss:esp

PTBR

TCB

cs:eip
ss:esp

sa
ve

s

PTBR

TCB

cs:eip
ss:esp

cs:eip
ss:esp

ir
et

cs:eip
ss:esp

PTBR

TCBpr
oc

es
si
ng

re
ad

y
to

 r
es

um
e

…

cs:eip
ss:esp

Time

Lec 10.662/21/23 Kubiatowicz CS162 © UCB Spring 2023

Pintos: Context Switch – Scheduling

user
code

user
stack

cs:eip
ss:esp

PTBR

TCB

kernel
code

kernel
thread
stack

PTBR

TCB

cs:eip
ss:esp

cs:eip
ss:esp

sy
sc

al
l/

 i
nt

er
ru

pt

cs:eip
ss:esp

PTBR

TCB

cs:eip
ss:esp

sa
ve

s

ir
et

cs:eip’
ss:esp’

PTBR’

TCBpr
oc

es
si
ng

re
ad

y
to

 r
es

um
e

…

Sc
he

du
le

switch kernel threads

PTBR’

TCB

cs:eip’
ss:esp’

cs:eip’
ss:esp’

user’
stack

Pintos: switch.S

Time

Lec 10.672/21/23 Kubiatowicz CS162 © UCB Spring 2023

• Each user process/thread associated with a kernel thread, described by a
4KB page object containing TCB and kernel stack for the kernel thread

Proc Regs

SP
K SP

IP

PL: #

PC

tid
status
stack

priority
list

magic #

code

data

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

User
stack

code

data

heap

User
stack

code

data

heap ***

Kernel
User

MT Kernel 1T Process ala Pintos/x86

Lec 10.682/21/23 Kubiatowicz CS162 © UCB Spring 2023

tid
status
stack

priority
list

magic #

In User thread, w/ Kernel thread waiting

• x86 CPU holds interrupt SP in register
• During user thread execution, associated kernel thread is “standing by”

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

SP
K SP

IP

PL: 3

Kernel
User

Lec 10.692/21/23 Kubiatowicz CS162 © UCB Spring 2023

In Kernel Thread: No User Component

• Kernel threads execute with small stack in thread structure
• Pure kernel threads have no corresponding user-mode thread

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 0

d
status
stack
priority
list

magic #
magic #

tid
status
stack

priority
list

Kernel
User

Lec 10.702/21/23 Kubiatowicz CS162 © UCB Spring 2023

User → Kernel (exceptions, syscalls)

• Mechanism to resume k-thread goes through interrupt vector

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 0

d
status
stack
priority
list

magic #
magic #

tid
status
stack

priority
list

Kernel
User

Lec 10.712/21/23 Kubiatowicz CS162 © UCB Spring 2023

Kernel → User

• Interrupt return (iret) restores user stack, IP, and PL

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 3

tid
status
stack

priority
list

magic #

tid
status
stack

priority
list

magic #

Kernel
User

Lec 10.722/21/23 Kubiatowicz CS162 © UCB Spring 2023

Pintos Interrupt Processing

0

255
Hardware
interrupt
vector

intrNN_stub()

push 0x20 (int #)
jmp intr_entry
push 0x21 (int #)
jmp intr_entry

intr_entry:
save regs as frame
set up kernel env.
call intr_handler

intr_exit:
restore regs
iret

Wrapper for
generic handler

0x20

stubs.S

Lec 10.732/21/23 Kubiatowicz CS162 © UCB Spring 2023

User → Kernel via interrupt vector

• Interrupt transfers control through the Interrupt Vector (IDT in x86)
• iret restores user stack and priority level (PL)

User
stack

code

data

heap

User
stack

code

data

heap ***

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

0

255
intr vector

tid
status
stack

priority
list

magic #

PL: 3

Kernel
User

Lec 10.742/21/23 Kubiatowicz CS162 © UCB Spring 2023

Switch to Kernel Thread for Process

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 0

d
status
stack
priority
list

magic #
magic #

tid
status
stack

priority
list

Kernel
User

Lec 10.752/21/23 Kubiatowicz CS162 © UCB Spring 2023

Pintos Interrupt Processing

0

255

Hardware
interrupt
vector

intrNN_stub()

push 0x20 (int #)
jmp intr_entry
push 0x21 (int #)
jmp intr_entry

intr_entry:
save regs as frame
set up kernel env.
call intr_handler

intr_exit:
restore regs
iret

Wrapper for
generic handler

Intr_handler(*frame)
- classify
- dispatch
- ack IRQ
- maybe thread yield

0x20

0

Pintos
intr_handlers

0x20

timer_intr(*frame)
tick++
thread_tick()

timer.c

interrupt.c

stubs.S

Lec 10.762/21/23 Kubiatowicz CS162 © UCB Spring 2023

Timer may trigger thread switch
• thread_tick

– Updates thread counters
– If quanta exhausted, sets yield flag

• thread_yield
– On path to rtn from interrupt
– Sets current thread back to READY
– Pushes it back on ready_list
– Calls schedule to select next thread to run upon iret

• Schedule
– Selects next thread to run
– Calls switch_threads to change regs to point to stack for

thread to resume
– Sets its status to RUNNING
– If user thread, activates the process
– Returns back to intr_handler

Lec 10.772/21/23 Kubiatowicz CS162 © UCB Spring 2023

Thread Switch (switch.S)

• switch_threads: save regs on current small stack, change
SP, return from destination threads call to switch_threads

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 0

d
status
stack
priority
list

magic #
magic #

tid
status
stack

priority
list

Kernel
User

Lec 10.782/21/23 Kubiatowicz CS162 © UCB Spring 2023

Pintos Return from Processing

Hardware
interrupt
vector

thread_yield()
- schedule

schedule()
- switch

Resume Some Thread

0

255
Hardware
interrupt
vector

intrNN_stub()

push 0x20 (int #)
jmp intr_entry
push 0x20 (int #)
jmp intr_entry

intr_entry:
save regs as frame
set up kernel env.
call intr_handler

intr_exit:
restore regs
iret

Wrapper for
generic handler

0x20

stubs.S

0

Pintos
intr_handlers

0x20

timer_intr(*frame)
tick++
thread_tick()

timer.c

Intr_handler(*frame)
- classify
- dispatch
- ack IRQ
- maybe thread yield

interrupt.c

Lec 10.792/21/23 Kubiatowicz CS162 © UCB Spring 2023

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

Kernel → Different User Thread

• iret restores user stack and priority level (PL)

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

magic #

tid
status
stack

priority
list

PL: 3

Kernel
User

Lec 10.802/21/23 Kubiatowicz CS162 © UCB Spring 2023

Famous Quote WRT Scheduling: Dennis Richie
Dennis Richie,
Unix V6, slp.c:

“If the new process paused because it was swapped out, set the
stack level to the last call to savu(u_ssav). This means that the
return which is executed immediately after the call to aretu actually
returns from the last routine which did the savu.”

“You are not expected to understand this.”

Source: Dennis Ritchie, Unix V6 slp.c (context-switching code) as
per The Unix Heritage Society(tuhs.org); gif by Eddie Koehler.

Included by Ali R. Butt in CS3204 from Virginia Tech

Lec 10.812/21/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: Scheduling

• Question: How is the OS to decide which of several tasks to take off a queue?
• Scheduling: deciding which threads are given access to resources from

moment to moment
– Often, we think in terms of CPU time, but could also think about access to

resources like network BW or disk access

Lec 10.822/21/23 Kubiatowicz CS162 © UCB Spring 2023

Scheduling: All About Queues

Lec 10.832/21/23 Kubiatowicz CS162 © UCB Spring 2023

Scheduling Assumptions
• CPU scheduling big area of research in early 70’s
• Many implicit assumptions for CPU scheduling:

– One program per user
– One thread per program
– Programs are independent

• Clearly, these are unrealistic but they simplify the problem
so it can be solved

– For instance: is “fair” about fairness among users or
programs?

» If I run one compilation job and you run five, you get five times as
much CPU on many operating systems

• The high-level goal: Dole out CPU time to optimize some
desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time
Lec 10.842/21/23 Kubiatowicz CS162 © UCB Spring 2023

Assumption: CPU Bursts

• Execution model: programs alternate between bursts of CPU and I/O
– Program typically uses the CPU for some period of time, then does I/O,

then uses CPU again
– Each scheduling decision is about which job to give to the CPU for use by

its next CPU burst
– With timeslicing, thread may be forced to give up CPU before finishing

current CPU burst

Weighted toward small bursts

Lec 10.852/21/23 Kubiatowicz CS162 © UCB Spring 2023

Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching than if you only
maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair
Lec 10.862/21/23 Kubiatowicz CS162 © UCB Spring 2023

First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
» In early systems, FCFS meant one program

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks

• Example: Process Burst Time
P1 24
P2 3
P3 3

– Suppose processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time: (0 + 24 + 27)/3 = 17
– Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect: short process stuck behind long process

P1 P2 P3

24 27 300

Lec 10.872/21/23 Kubiatowicz CS162 © UCB Spring 2023

Convoy effect

• With FCFS non-preemptive scheduling, convoys of
small tasks tend to build up when a large one is
running.

time

Sc
he

du
lin

g
qu

eu
e

Scheduled Task (process, thread)

arrivals

Lec 10.882/21/23 Kubiatowicz CS162 © UCB Spring 2023

FCFS Scheduling (Cont.)
• Example continued:

– Suppose that processes arrive in order: P2 , P3 , P1
Now, the Gantt chart for the schedule is:

– Waiting time for P1 = 6; P2 = 0; P3 = 3
– Average waiting time: (6 + 0 + 3)/3 = 3
– Average Completion time: (3 + 6 + 30)/3 = 13

• In second case:
– Average waiting time is much better (before it was 17)
– Average completion time is better (before it was 27)

• FIFO Pros and Cons:
– Simple (+)
– Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of items!
Upside: get to read about Space Aliens!

P1P3P2

63 300

Lec 10.892/21/23 Kubiatowicz CS162 © UCB Spring 2023

• FCFS Scheme: Potentially bad for short jobs!
– Depends on submit order
– If you are first in line at supermarket with milk, you don’t

care who is behind you, on the other hand…
• Round Robin Scheme: Preemption!

– Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q 
» Each process gets 1/n of the CPU time
» In chunks of at most q time units
» No process waits more than (n-1)q time units

Round Robin (RR) Scheduling

Lec 10.902/21/23 Kubiatowicz CS162 © UCB Spring 2023

• Performance
– q large  FCFS
– q small  Interleaved (really small  hyperthreading?)
– q must be large with respect to context switch, otherwise

overhead is too high (all overhead)

RR Scheduling (Cont.)

Lec 10.912/21/23 Kubiatowicz CS162 © UCB Spring 2023

• Example: Process Burst Time
P1 53
P2 8
P3 68
P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼
– Average completion time = (125+28+153+112)/4 = 104½

• Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)
– Context-switching time adds up for long jobs (-)

P1

0 20

P2

28

P3

48

P4

68

P1

88

P3

108

P4 P1 P3 P3

112 125 145 153

Example of RR with Time Quantum = 20

Lec 10.922/21/23 Kubiatowicz CS162 © UCB Spring 2023

How to Implement RR in the Kernel?
• FIFO Queue, as in FCFS
• But preempt job after quantum expires, and send it to the back of the queue

– How? Timer interrupt!
– And, of course, careful synchronization

Project 2:
Scheduling

Lec 10.932/21/23 Kubiatowicz CS162 © UCB Spring 2023

• How do you choose time slice?
– What if too big?

» Response time suffers
– What if infinite ()?

» Get back FIFO
– What if time slice too small?

» Throughput suffers!
• Actual choices of timeslice:

– Initially, UNIX timeslice one second:
» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo each keystroke!

– Need to balance short-job performance and long-job throughput:
» Typical time slice today is between 10ms – 100ms
» Typical context-switching overhead is 0.1ms – 1ms
» Roughly 1% overhead due to context-switching

Round-Robin Discussion

Lec 10.942/21/23 Kubiatowicz CS162 © UCB Spring 2023

Comparisons between FCFS and Round Robin
• Assuming zero-cost context-switching time, is RR always better than FCFS?
• Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average completion time is much worse under RR!

» Bad when all jobs same length
• Also: Cache state must be shared between all jobs with RR but can be

devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999
10 1000 1000

Lec 10.952/21/23 Kubiatowicz CS162 © UCB Spring 2023

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum
P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

Lec 10.962/21/23 Kubiatowicz CS162 © UCB Spring 2023

Conclusion
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads can proceed
– Monitors supported natively in a number of languages

• Readers/Writers Monitor example
– Shows how monitors allow sophisticated controlled entry to protected code

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it executes; cycle between

all ready threads
– Pros: Better for short jobs

• Next Time: Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
– Run whatever job has the least amount of computation to do/least remaining

amount of computation to do
– Pros: Optimal (average response time)
– Cons: Hard to predict future, Unfair

