CS162
Operating Systems and
Systems Programming

Lecture 10

Monitors (Finished),
Scheduling 1: Concepts and Classic Policies

February 21st, 2023

Recall: Bounded Buffer, 3" cut (coke machine)

Semaphore fullSlots = ©; //

Semaphore emptySlots = bufSize;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine

Initially, no coke

Producer(item) {
semaP (&emptySlots); // Wait until space

semaP(&mutex); // Wait until machine free
Enqueue(item);
tex);
semaV(&fullSlots); // Tell consumers there is  Critical sections

// more coke

} fullSlots signals coke
Consumer() {

using mutex
protect integrity

Prof. John Kubiatowicz semaP (&fullSlots); // Check if there’s a coke of the queue
. semaP (&mutex); /7 Wait until machine free
http://cs162.eecs.Berkeley.edu emptySlots item = Dequeue();
1 semaV (&mutex);
signals space semaV(&emptySlots); // tell producer need more
return item;
¥
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.2
Recall: Monitors and Condition Variables Recall: Readers/Writers Problem
Monitor: a lock and zero or more condition variables for managing
concurrent access to shared data
— Use of Monitors is a programming paradigm
— Some languages like Java provide monitors in the language
Condition Variable: a queue of threads waiting for something inside a critical
section
— Key idea: allow sleeping inside critical section by atomically releasing lock at
time we go to sleep
— Contrast to semaphores: Can’t wait inside critical section « Motivation: Consider a shared database
Operations: — Two classes of users:
_ Yngiot;e( ieltﬁrcnki%: Atomically release lock and go to sleep. Re-acquire lock later, » Readers — never modify database
—Signal(): Wa?ke up one waiter, if any » Writers — read and modify database
Broadeast () : Wake up all waiters — Is using a single lock on the whole database sufficient?
Rule: Must hold lock when doing condition variable ops! » Like to have many readers at the same time
» Only one writer at a time
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.3 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.4




2/21/23

Recall: Code for a Reader

Reader () {
// First check self into system
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond_wait (&okToRead, &lock) ;// Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

release (&lock) ;

// Perform actual read-only access
AccessDatabase (ReadOnly) ;

// Now, check out of system

acquire (&lock) ;

AR--; // No longer active

if (AR == 0 && WW > 0) // No other active readers
cond_signal (&okToWrite) ;// Wake up one writer

release (&lock) ;

Recall: Code for a Writer

Writer() {
// First check self into system
acquire (&lock) ;

while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond wait (&okToWrite,&lock); // Sleep on cond var
WW--7 // No longer waiting

}

AW++; // Now we are active!

release (&lock) ;

// Perform actual read/write access
AccessDatabase (ReadWrite) ;

// Now, check out of system

acquire (&lock) ;

AW--; // No longer active

if (WW > 0){ // Give priority to writers
cond _signal (&okToWrite) ;// Wake up one writer

} else if (WR > 0) { // Otherwise, wake reader
cond_broadcast (&okToRead); // Wake all readers

release (&lock) ;

Kubiatowicz CS162 © UCB Spring 2023 Lec 10.5 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.6
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
_ . R1 comes along (no waiting threads)
Use an example to simulate the solution « AR=0,WR=0, AW =0, WW =0
. . Reader
+ Consider the following sequence of operators:
hil £ )
~R1,R2, W1, R3 WhElS (AW ¥ W) > 0) (/) Is it safe to read:
cond wait (&okToRead, &lock) ; // Sleep on cond var
WR--7 // No longer waiting
Initially: AR=0, WR =0, AW =0, WW =0 } .

AR++ // Now we are active!

release(&lock)

AccessDBase (ReadOnly) ;

acquire (&lock) ;

AR--;

if (AR == 0 && WW > 0)
cond_51fna1(&okToWr1te)

} releasé(&lock
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.7 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.8




Simulation of Readers/Writers Solution

* R1 comes along (no waiting threads)
* AR=0,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
{ // Is it safe to read?
No. Writers exist

//
cond walt(&okToRead &lock) ;// Sleep on cond var
WR- // No longer waiting
}

AR++ // Now we are active!
release(&lock)

B

AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

Simulation of Readers/Writers Solution

* R1 comes along (no waiting threads)
* AR=1,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond | wait (&okToRead, &lock) ; // Sleep on cond var
WR- // No longer waiting

B

}

// Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.9 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.10
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R1 comes along (no waiting threads) * R1 accessing dbase (no other threads)
* AR=1,WR=0,AW=0, WW=0 * AR=1,WR=0,AW=0, WW=0
Reader () { Reader () {
acquire (&lock) ; acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read? while ((AW + WW) > 0) { // Is it safe to read?
WR: No. Writers exist WR No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var cond wait (&okToRead, &lock) ; // Sleep on cond var
N WR--7 // No longer waiting N WR--7 // No longer waiting
AR++ // Now we are active! AR++ // Now we are active!
[release (&lock); | release (slock) ;
AccessDBase (ReadOnly) ; [EccessDEase (ReadonTyT ]
acquire (&lock) ; acquire (&lock) ;
AR--; AR--;
if (AR == 0 && WW > 0) if (AR == 0 && WW > 0)
cond si fnal(&okToerte) cond 51fna1(&okToWr1te)
) releasé(&lock } releasé(&lock
Lec 10.12

2/21/23 Kubiatowicz CS162 © UCB Spring 2023

Lec 10.11

2/21/23

Kubiatowicz CS162 © UCB Spring 2023




Simulation of Readers/Writers Solution

* R2 comes along (R1 accessing dbase)
* AR=1,WR=0,AW=0,WW=0

Reader

while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond | wait (&okToRead, &lock);// Sleep on cond var
WR- // No longer waiting
}

AR++ // Now we are active!
release(&lock)

B

AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

Simulation of Readers/Writers Solution

* R2 comes along (R1 accessing dbase)
* AR=1,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
{ // Is it safe to read?
// No. Writers exist
cond walt(&okToRead &lock) ; // Sleep on cond var
WR- // No longer waiting

B

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.13 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.14
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R2 comes along (R1 accessing dbase) * R2 comes along (R1 accessing dbase)
* AR=2, WR=0,AW=0,WW=0 * AR=2, WR=0,AW=0,WW=0
Reader () { Reader () {
acquire (&lock) ; acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read? while ((AW + WW) > 0) { // Is it safe to read?
WR: No. Writers exist WR No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var cond wait (&okToRead, &lock) ; // Sleep on cond var
N WR--7 // No longer waiting N WR--7 // No longer waiting
m // Now we are active! AR++; // Now we are active!
release (&lock) ; [release(slock); |
AccessDBase (ReadOnly) ; AccessDBase (ReadOnly) ;
acquire (&lock) ; acquire (&lock) ;
AR--; AR--;
if (AR == 0 && WW > 0) if (AR == 0 && WW > 0)
cond si fnal(&okToerte) cond 51fna1(&okToWr1te)
) releasé(&lock } releasé(&lock
Lec 10.16

2/21/23 Kubiatowicz CS162 © UCB Spring 2023

Lec 10.15

2/21/23 Kubiatowicz CS162 © UCB Spring 2023




Simulation of Readers/Writers Solution

* R1 and R2 accessing dbase
*« AR=2, WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; / No. Writers exist
cond wait (&okToRead, &l??k) ;// Sleep on cond var
WR-

-7 No longer waiting
}
AR++ // Now we are active!
release(&lock)

acquire (&lock) ;
AR--;

Simulation of Readers/Writers Solution

+ W1 comes along (R1 and R2 are still accessing dbase)
*+ AR=2, WR=0,AW=0,WW=0

Wri

while ((AW + AR) > 0) { // Is it safe to write?

{ ctlve users exist
%and wait (&okToWrite, & oc%? i1/ eep on cond var
}

onger waiting
AW++

releése(&lock);

AccessDBase (ReadWrite) ;

gcqu1re(&lock),

W
if (WW > 0){

cond s1gna1(&okToWr1te),
} else—if L

cond broadcast(&c ToRead) ;

release (&lock) ;

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.17 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.18
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* W1 comes along (R1 and R2 are still accessing dbase) * W1 comes along (R1 and R2 are still accessing dbase)
*« AR=2, WR=0,AW=0, WW=0 * AR=2, WR=0,AW =0, WW =1
Writer () Writer ()
acqulre(&lock) acqulre(&lock)
// Is it safe to write? while ((AW + AR) > 0) { // Is it safe to write?
{ ctlve users exist H Active users exist
cond walt(&okToerte & oc%? ;// Sleep on cond var // Sleep on cond var
} WW- o longer waiting } == longer waiting
AW++; AW++;
release (&lock) ; release (&lock) ;
AccessDBase (ReadWrite) ; AccessDBase (ReadWrite) ;
acqulre(&lock), acqulre(&lock),
> 0) ¢ i G > 0) ¢
cond s1gnal(&okToWr1te), cond s1gnal(&okToWr1te),
} else'lf (WR L } else'lf (WR L
cond broadcast(&o ToRead) ; cond broadcast(&o ToRead) ;
} release (&lock) ; } release (&lock) ;
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.19 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.20




Simulation of Readers/Writers Solution

* R3 comes along (R1 and R2 accessing dbase, W1 waiting)
*+ AR=2,WR=0,AW =0, WW =1

Reader

while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond wait (&okToRead, &lock) ;// Sleep on cond var

-=7 // No' longer waiting

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

Simulation of Readers/Writers Solution

* R3 comes along (R1 and R2 accessing dbase, W1 waiting)
*« AR=2, WR=0,AW =0, WW =1

Reader () {
acquire (&lock) ;
{ // Is it safe to read?
// No. Writers exist
cond walt(&okToRead &lock) ; // Sleep on cond var
WR- // No longer waiting

B

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.21 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.22
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R3 comes along (R1 and R2 accessing dbase, W1 waiting) * R3 comes along (R1, R2 accessing dbase, W1 waiting)
* AR=2, WR=1, AW =0, WW =1 * AR=2, WR=1, AW =0, WW =1
Reader () { Reader () {
acquire(&lock); acquire (&lock) ;
{ // Is it safe to read? wh11e ((AW + WW) > 0) { // Is it safe to read?
// No. Writers exist No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var // Sleep on cond var
N WR--7 // No longer waiting ) - o longer waiting
AR++; // Now we are active! AR++ // Now we are active!
lock.release() ; release(&lock)
AccessDBase (ReadOnly) ; AccessDBase (ReadOnly) ;
acquire (&lock) ; acquire (&lock) ;
AR--; AR--;
if (AR == 0 && WW > 0) if (AR == 0 && WW > 0)
cond si fnal(&okToerte) cond 51fna1(&okToWr1te)
) releasé(&lock } releasé(&lock
Lec 10.23 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.24

2/21/23 Kubiatowicz CS162 © UCB Spring 2023




Simulation of Readers/Writers Solution

* R1 and R2 accessing dbase, W1 and R3 waiting
* AR=2,WR=1,AW =0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond | wait (&okToRead, &lock);// Sleep on cond var
// No longer waiting
}

AR++ // Now we are active!
release(&lock),

=7

AccessDBase (ReadOnly) ;

acqulre(&lock),

;

Simulation of Readers/Writers Solution

» R2 finishes (R1 accessing dbase, W1 and R3 waiting)
*+ AR=2,WR=1,AW =0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond wait (&okToRead, &lock) ;// Sleep on cond var
// No longer waiting
}

AR++ // Now we are active!
release(&lock)

B

AccessDBase (ReadOnly) ;

if (AR == 0 && WW > 0)
cond si fnal(&okToerte)
releasé(&lock

2/21/23 Lec 10.25 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.26
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R2 finishes (R1 accessing dbase, W1 and R3 waiting) » R2 finishes (R1 accessing dbase, W1 and R3 waiting)
« AR=1,WR=1, AW=0, WW =1 « AR=1,WR=1, AW=0, WW =1
Reader () { Reader () {
acquire (&lock) ; acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read? while ((AW + WW) > 0) { // Is it safe to read?
WR++; No. Writers exist WR++; No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var cond wait (&okToRead, &lock) ;// Sleep on cond var
N --7 // No longer waiting N --7 // No longer waiting
AR++ // Now we are active! AR++ // Now we are active!
release(&lock) release(&lock)
AccessDBase (ReadOnly) ; AccessDBase (ReadOnly) ;
acquire (&lock) ; acquire (&lock) ;
AR__ .
1
cond si fnal(&okToerte) cond signal (&okToWrite) ;
; releasé(&lock } releasé(&lock) ;
Lec 10.27 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.28

2/21/23

Kubiatowicz CS162 © UCB Spring 2023




Simulation of Readers/Writers Solution

» R2 finishes (R1 accessing dbase, W1 and R3 waiting)
* AR=1,WR=1,,AW =0, WW =1

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond wait (&okToRead, &lock) ;// Sleep on cond var
// N6 longer waiting

B

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

acqulre(&lock),

AR-

if (AR == 0 && WW > 0)

cond siinali&okToWrite);

}

2/21/23 Kubiatowicz CS162 © UCB Spring 2023

Lec 10.29

Simulation of Readers/Writers Solution

* R1 finishes (W1 and R3 waiting)
*« AR=1,WR=1,,AW =0, WW =1

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond wait (&okToRead, &lock) ; // Sleep on cond var
// No longer waiting

B

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

if (AR == 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

2/21/23 Kubiatowicz CS162 © UCB Spring 2023

Lec 10.30

Simulation of Readers/Writers Solution

* R1 finishes (W1, R3 waiting)
*+ AR=0,WR=1,AW =0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
No. Writers exist

WR++;
cond wait (&okToRead, &lock) ;// Sleep on cond var
// No longer waiting
}

AR++ // Now we are active!
release(&lock)

;

AccessDBase (ReadOnly) ;

acquire (&lock) ;

1
cond si fnal(&okToerte)
releasé(&lock

2/21/23 Kubiatowicz CS162 © UCB Spring 2023

Lec 10.31

Simulation of Readers/Writers Solution

* R1 finishes (W1, R3 waiting)
*« AR=0,WR=1,AW =0, WW =1

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
No. Writers exist

WR++;
cond wait (&okToRead, &lock) ; // Sleep on cond var
// No longer waiting
}

AR++ // Now we are active!
release(&lock)

;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;

cond_signa okToWrite) ;
releasé(&lock) ;

2/21/23 Kubiatowicz CS162 © UCB Spring 2023

Lec 10.32




Simulation of Readers/Writers Solution

* R1 signals a writer (W1 and R3 waiting)
*+ AR=0,WR=1,AW =0, WW =1

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; / No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
} WR--7 // No longer waiting

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

acqulre(&lock),
AR

if |AR == 0 _&& WW > OI
release(&lock) ;

Simulation of Readers/Writers Solution

* W1 gets signal (R3 still waiting)
*+ AR=0,WR=1,AW =0, WW =1

Writer ()
cqulre(&lock)
while ((AW + AR) > 0) { // Is it safe to write?
: Active users exist
// Sleep on cond var
==7 longer waiting

}

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

acqulre(&lock),
AW
if (ww>

cond 51ngl(&okToWr1te),
} else—if " (WR L
cond broadcast(&o ToRead) ;

release (&lock) ;

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.33 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.34
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* W1 gets signal (R3 still waiting) * W1 gets signal (R3 still waiting)
* AR=0,WR=1,AW=0, WW=0 * AR=0,WR=1,AW=1, WW=0
Writer () Writer ()
acqulre(&lock) acqulre(&lock)
whlle ((AW + AR) > 0) { // Is it safe to write? while ((AW + AR) > 0) { // Is it safe to write?
{ Active users exist WW++; { Active users exist
& oc%? ;// Sleep on cond var cond walt(&okToerte & oc%? ;// Sleep on cond var
o longer waiting } WW- o longer waiting
AW++;
release (&lock) ; release OCK) ,
AccessDBase (ReadWrite) ; AccessDBase (ReadWrite) ;
acqulre(&lock), acqulre(&lock),
3w > 0) 3w > 0)
cond s1gnal(&okToWr1te), cond s1gnal(&okToWr1te),
} else—lf (WR L } else—lf (WR L
cond broadcast(&o ToRead) ; cond broadcast(&o ToRead) ;
} release (&lock) ; } release (&lock) ;
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.35 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.36




Simulation of Readers/Writers Solution

* W1 accessing dbase (R3 still waiting)
* AR=0,WR=1,AW=1, WW=0

Writer (). {
acquire (&lock) ;

while ((AW + AR) > 0) { // Is it safe to write?
WW++; | . {/ No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var
} WW--7 // No longer waiting

AW++;
release (&lock) ;

acqu%re(&lock);

AW

if (WW > 0){ .
cond signal (&okToWrite) ;

} else—if "(WR > 0) L
cond_broadcast (&okToRead) ;

release (&lock) ;

Simulation of Readers/Writers Solution

* W1 finishes (R3 still waiting)
* AR=0,WR=1,AW=1, WW=0

Writer () {
acquire (&lock) ;
while ((AW + AR) > 0) { // Is it safe to write?
WW++; | . {/ No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var
} WW--7 // No longer waiting

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

if (WW > 0){ .
cond signal (&okToWrite) ;

} else—if "(WR > 0) L
cond_broadcast (&okToRead) ;

release (&lock) ;

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.37 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.38
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* W1 finishes (R3 still waiting) * W1 finishes (R3 still waiting)
* AR=0,WR=1,AW=0,WW=0 * AR=0,WR=1,AW=0,WW=0
Writer (). { Writer (). {
acquire (&lock) ; acquire (&lock) ;
while ((AW + AR) > 0) { // Is it safe to write? while ((AW + AR) > 0) { // Is it safe to write?
WW++; | . {/ No. Active users exist WW++; | . {/ No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var cond wait (&okToWrite, & oc%?;// Sleep on cond var
} WW--7 // No longer waiting ) WW--7 // No longer waiting
AW++; AW++;
release (&lock) ; release (&lock) ;
AccessDBase (ReadWrite) ; AccessDBase (ReadWrite) ;
acqu%re(&lock);
1
cond signal (&okToWrite) ; ; e);
} else—if "(WR > 0) L } else—if "(WR > 0) L
cond_broadcast (&okToRead) ; cond_broadcast (&okToRead) ;
} release (&lock) ; } release (&lock) ;
Lec 10.39 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.40

2/21/23 Kubiatowicz CS162 © UCB Spring 2023




Simulation of Readers/Writers Solution

+ W1 signaling readers (R3 still waiting)
* AR=0,WR=1,AW=0,WW=0

Writer ()
cqulre(&lock)

while ((AW + AR) > 0) { // Is it safe to write?
{ ctlve users exist
ﬁ%nd wait (&okToWrite, & oc%? i1/

}
AW++;
release (&lock) ;

eep on cond var
onger waiting

AccessDBase (ReadWrite) ;
chulre(&lock),

if (WW > 0){
cond 51gnal(&okToWr1te),

Lelease(&lock);

Simulation of Readers/Writers Solution

* R3 gets signal (no waiting threads)
* AR=0,WR=1,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
// Sleep on cond var
} == O longer waiting
AR++ // Now we are active!

release(&lock)
AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond 51fnal(&okToWr1te)
releasé(&lock

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.41 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.42
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R3 gets signal (no waiting threads) * R3 accessing dbase (no waiting threads)
*« AR=0,WR=0,AW=0,WW=0 « AR=1,WR=0,AW=0, WW=0
Reader () { Reader () {
acquire (&lock) ; acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read? while ((AW + WW) > 0) { // Is it safe to read?
++; // No. Writers exist ++; No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var cond wait (&okToRead, &lock) ;// Sleep on cond var
// No longer waiting N WR--7 // No longer waiting
AR++ // Now we are active! AR++ // Now we are active!
release(&lock) release(&lock)
AccessDBase (ReadOnly) ; [AccesshBase (ReadOnlyT ]
acquire (&lock) ; acquire (&lock) ;
AR--; AR--;
if (AR == 0 && WW > 0) if (AR == 0 && WW > 0)
cond si fnal(&okToerte) cond 51fna1(&okToWr1te)
) releasé(&lock } releasé(&lock
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.43 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.44




Simulation of Readers/Writers Solution

* Ra3 finishes (no waiting threads)
*« AR=1,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; / No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
N WR--7 // No longer waiting

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

if (AR == 0 && WW > 0)
cond si fnal(&okToerte)
releasé(&lock

}

Simulation of Readers/Writers Solution

* Ra3 finishes (no waiting threads)
*« AR=0,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
+4+; / No. Writers exist
cond | wait (&okToRead, &lock);// Sleep on cond var
WR--7 // No longer waiting

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

acqulre(&lock),

if (AR = 0 && WW > 0)

cond siinali&okToWrite);

}

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.45 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.46
Questions Use of Single CV: okContinue
? i : Reader() { Writer() {
* Can rgaders starve? Consider Readgr() entry code: 7/ khack into system 7/ theck into system
while ((AW + WW) > 0) { // Is it safe to read? acqulreE&lock) acqu1re$&1ock)
WR++; // No. Writers exist whtﬁs ((AW + WW) > @) { whtﬁf ((AW + AR) > 0) {
i kToRead, &lock) ;// S1 d
;;E?7walt(&o oRead, & 77 &o/{ong::pw:?tfsg var cond_walt(&okContlnue,&lock); cond_walt(&okContlnue,&lock);
} -3 -3
AR++; // Now we are active! ARI+; (81ock) AWI+; (81ock)
. ayn . . release ocC 5 release ocC 5
» What if we erase the condition check in Reader exit? ’ ’
A . // read-only access // read/write access
Cf Gr=v s o7/ st setive e AccessDbase (Readony) Accessbbase (Readrite);
cond_signal (&okToWrite) ; Wake up one writer // check&gutkof system // check&gutkof system
 Further, what if we turn the signal() into broadcast() aﬁ?‘.‘”e( ock); f\ﬁ‘_‘l.’"e( ock);
AR--; // No longer active if (AR == 0 8& WW > 0) if (WW > 0){
s . cond 51gna1(&okCont1nue) cond_signal(&okContinue);
. cond_broaécast(&okToerte), //.Wake uP sleeperf release(&lock) ’ } else if (WR > 2 ’
+ Finally, what if we use only one condition variable (call it } cond_broadcast(&okContinue);
okContinue”) instead of two separate ones? release(&lock);
— Both readers and writers sleep on this variable
— Must use broadcast() instead of signal()
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.47 2/21/23 Lec 10.48




Use of Single CV: okContinue

Reader() {
// check into system
acquire(&lock);
while ((AW + WW) > @) {
WR++;

cond:wait(&okContinue,&lock);

El

AR++;
release(&lock);

// read-only access
AccessDbase(ReadOnly);

// check out of system

acquire(8&lock);

AR--;

if (AR == 0 && WW > 0)
cond_signal(&okContinue);

Writer() {

// check into system
acquire(&lock);
while ((AW + AR) > @) {
WW++;
cond_wait(&okContinue,&lock);

El

AW++;
release(&lock);

// read/write access
AccessDbase(ReadWrite);

// check out of system

acquire(&lock);

AW--;

if (WW > 0){
cond_signal(&okContinue);

Use of Single CV: okContinue

Reader() {
// check into system
acquire(&lock);
while ((AW + WW) > @) {
WR++;
cond_wait(&okContinue,&lock);

El

AR++;
release(&lock);

// read-only access
AccessDbase(ReadOnly);

// check out of system

acquire(&lock);
AR--;
if (AR == © && WW > @)

cond_broadcast(&okContinue);

Writer() {

// check into system
acquire(&lock);
while ((AW + AR) > @) {
WW++;
cond_wait(&okContinue,&lock);

El

AW++;
release(&lock);

// read/write access
AccessDbase(ReadWrite);

// check out of system
acquire(&lock);

AW--;
if (W > @ || WR > 0){
cond_broadcast(&okContinue);

release(&lock); else if (WR > © .
} ¢ ) } cond_brg;dcast &okContinue); } release(&lock); release(&lock);
- n " Need to change to } Must broadcast ()
Consider this scenario: broadcast () ! to sort things out!
* R1 arrives
* W1, R2 arrive while R1 still reading > W1 and R2 wait for R1 to finish
2121123 : Assume R1’s signal is delivered to R2 (not W1) Lec1049 | 212123 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.50
Can we construct Monitors from Semaphores? Construction of Monitors from Semaphores (con’t)
+ Locking aspect is easy: Just use a mutex * Problem with previous try: _
« Can we implement condition variables this way? — P and V are commutative — result is the same no matter what
. * . order they occur
Wait(Semaphore *thesema) —{ semaP(thesema); } — Condition variables are NOT commutative
Signal(Semaphore *thesema) { semaV(thesema); } .
* Does this fix the problem?
« Does this work better? waiﬁé&:giexﬂgigﬁtj _Semaphore *thesema) {
Wait(Lock *thelock, Semaphore *thesema) { semaP (thesema); ’
release(thelock); acquire(thelock);
semaP (thesema) ;
acquire(thelock); Signal(Semaphore *thesema) {
. if semaphore queue is not empty
Signal(Semaphore *thesema) { semaV(thesema);
semaV(thesema);
— Not legal to look at contents of semaphore queue
— There is a race condition — signaler can slip in after lock
release and before waiter executes semaphore.P
* ltis actually possible to do this correctly
— Complex solution for Hoare scheduling in book
— Can you come up with simpler Mesa-scheduled solution?
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.51 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.52




Administrivia C-Language Support for Synchronization

» C language: Pretty straightforward synchronization

« Still grading Midterm 1 (Sorry)
— Just make sure you know all the code paths out of a critical section

— Finishing soon!

B . . int Rtn() {
Solutions also will be up soon. acquire (&lock); e /1 "
* Homework #2 due Thursday - ) g
. ) . if (exception) { Proc B 2R
» Professor Kubi’s office hours changed slightly: release(&lock); Calls setjmp | 9
— Monday 2-3 (same), Wednesday 3-4 (different) return errReturncode; Proc C g
— 673 Soda Hall acquire(&lock)| =
release(&lock);
return OK; Proc D
. ) Proc E
— Watch out for set jmp/longjmp! Calls longjmp

» Can cause a non-local jump out of procedure
» In example, procedure E calls longjmp, poping stack back to procedure B
» If Procedure C had lock.acquire, problem!

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.53 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.54
Concurrency and Synchronization in C C++ Language Support for Synchronization
» Harder with more locks * Is goto a solution??? » Languages with exceptions like C++
void Rtn() {, void Rtn() {, — Languages that support exceptions are problematic (easy to make a
}.OCkl.achD"e(), }OCkl'acq“1re( ) non-local exit without releasing lock)
if_(error if (error — i
léckl.rgléase(); géto reiease_lockl_and_return; Consider:
return; void Rtn() {
. lock.acquire();
- lock2.acquire(); -
lock2.acquire(); . DoFoo();
N if (error) { - .
if (error) { goto release_both_and_return; lock.release();
lock2.release() } } .
lockl.release(); - void DoFoo() {
return; release_both_and_return: if (exception) throw errException;
} lock2.release(); -
- release_lockl_and_return: }
lock2.release(); lockl.release(); — Notice that an exception in DoFoo() will exit without releasing the lock!
} lockl.release();
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.56

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.55




C++ Language Support for Synchronization (con’t)

» Must catch all exceptions in critical sections

— Catch exceptions, release lock, and re-throw exception:
void Rtn() {
lock.acquire();

try {
BoFoo();

} catch (.) { // catch exception
lock.release(); // release lock
throw; // re-throw the exception

lock.release();

3oid DoFoo() {

Much better: C++ Lock Guards

#include <mutex>
int global_i = 0;
std: :mutex global mutex;

void safe_increment() {
std::lock_guard<std: :mutex> lock(global mutex);

global i++;
// Mutex released when ‘lock’ goes out of scope

if (exception) throw errException; }
¥
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.57 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.58
Python with Keyword Java synchronized Keyword

« More versatile than we show here (can be used to close files, database * Every Java object has an associated lock:

connections, etc.) — Lock is acquired on entry and released on exit from a synchronized method

— Lock is properly released if exception occurs inside a synchronized method
. — Mutex execution of synchronized methods (beware deadlock)
lock = threading.Lock()
class Account
. private int balance;
with lock: # Automatically calls acquire() //bcl)bjeﬁt conitr(‘gcgor; ialeal »
- publlic Accoun int 1nltTlalbBalance

some_var += 1 balance = initialBalance;

- public synchronized int getBalance() {
# release() called however we leave block } return balance;

public synchronized void deposit(int amount) {
balance += amount;
}
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.59 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.60




Java Support for Monitors

» Along with a lock, every object has a single condition variable
associated with it

» To wait inside a synchronized method:
-void wait();
- void wait(long timeout);

* To signal while in a synchronized method:
-void notify();
- void notifyAll();

Goal for Today

if ( readyThreads(TCBs) ) {
nextTCB = selectThread(TCBs);
run( nextTCB );

} else {
run_idle_thread();

}

+ Discussion of Scheduling:

— Which thread should run on the CPU next?
» Scheduling goals, policies
» Look at a number of different schedulers

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.61 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.62
Recall: What Do the Stacks Look Like? Hardware context switch support in x86
+ Consider the following « Syscall/lntr (U > K)
code blocks: - PL3>0; [
Thread S Thread T - TSS € EFLAGS, CSEIP; S
proc A() { — SS:ESP € k-thread stack (TSS PL 0);
B(); - A A — push (old) SS:ESP onto (new) k-stack
‘E — push (old) eflags, cs:eip, <err>
} g) B(while) B(wh:i.le) — CS:EIP €« <k target handler> T g
* Then T
proc B() { ﬁ yield yield — Handler saves other regs, etc Figure 7-1. Structure of a Task
while (TRUE) { .S — Does all its works, possibly choosing
X ] other threads, changing PTBR (CR3)
yield();
} — kernel thread has set up user GPRs
} « iret (K> U)
- PLO>3;
* Suppose we have 2 — Eflags, CS:EIP € popped off k-stack
threads: . — SS:ESP < popped off k-stack
Thrends S and T Thread S's switch returns to
- reads o an " :
Thread T S (and Vlce Versa) pg 2,942 of 4,922 of x86 reference manual Piﬂfos: TSS.C, irl‘l'r‘-s‘l‘ubs.S
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.63 2/21/23

Kubiatowicz CS162 © UCB Spring 2023 Lec 10.64




Pintos: Kernel Crossing on Syscall or Interrupt

user
user stack

code

Pintos: Context Switch — Scheduling

user

user stack

— r—

code

user’
stack

Kubiatowicz CS162 © UCB Spring 2023

L — L —
gl £
kernel ] kernel 9
- -
code £ code £
~N : N
kernel ?’ = E
thread o thread g switch kernel threads
stack @ stack @
Pintos: switch.S
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.65 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.66
MT Kernel 1T Process ala Pintos/x86 In User thread, w/ Kernel thread waiting
7 7 7 code
L data
li 1 [magic# | [magic# |
. st TN
N ~ . t
Kernel [ L » T n o o / Kernel e N /
User S ) User S )
code code K
data ‘ data R
heap ‘ *kk heap *kk \\\
IP AR IP
User User SP User User L SP
tack tack K SP tack tack -k SP
stac stac Proc Regs p| - # stac stac Proc Regs p|: 3
- Each user process/thread associated with a kernel thread, described by a + x86 CPU holds interrupt SP in register
4KB page object containing TCB and kernel stack for the kernel thread » During user thread execution, associated kernel thread is “standing by”
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.67 221123

Lec 10.68




In Kernel Thread: No User Component

IRV,
% data
‘7% ‘7 fragic# |
N N N ~. list
S S S oo priority = M} _
Kernel - s » B stack o/ T~ <
status
User tid
code \ cod
data ‘ ‘ da \
heap ‘ . ‘ heap \
IP
User User SP
tack tack K SP
stac stac Proc Regs PL: 0

» Kernel threads execute with small stack in thread structure
* Pure kernel threads have no corresponding user-mode thread

User — Kernel (exceptions, syscalls)

R

% data )i
SN

magic# |
. N list <
. > N N priority b
Kernel - - » stack o/ T~ <
status
User tid
code code
data ‘ ‘ data
\
heap ‘ . ‘ heap \
N\ P
User User Y ﬁPSP
stack stack Proc Regs L0

* Mechanism to resume k-thread goes through interrupt vector

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.69 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.70
Kernel — User Pintos Interrupt Processing
W 7 7 code P ::| intrNN_stub() Wrapper for
L data e generic handler
| o 0 / intr_entry:
1 1 |magic# | push 0x20 (int #) save regs as frame
. . pritlnﬁy\\ o207 jmp intr_entry .| set up kernel env.
Kernel L Sa S Sa | Ssttaatfjl; S —t push 0x21 (int #) call intr handler
User \J tid \\.i jmp intr_entry intr exit:
code code - restore regs
iret
data ‘ ‘ data 255
el : Hardware stubs.S
h h \
eap ‘ ‘ %ap \‘ interrupt
€| = SIFF,’ vector
User User =
tack tack -___IK SP
stac stac ProcRegs p| -3
* Interrupt return (iret) restores user stack, IP, and PL
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.71 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.72




User — Kernel via interrupt vector

’ 0
Kernel
User
code . 255
intr vector
data ‘ ‘
\\
heap ‘ . ‘ heap \\
< \ IP
User User ||  =— = EPSP
stack stack Proc Regs p|- 3

« Interrupt transfers control through the Interrupt Vector (IDT in x86)
« iret restores user stack and priority level (PL)

Switch to Kernel Thread for Process

Kernel
User

. J % . A
§ data )i
\# : \‘7 \ i
. S . R priority b
= “u . » tack o+ T~ <
- status >
tid
code code
data ‘ ‘ data
\
heap ‘ . ‘ heap \
N P
User User Y sP
tack tack K SP
stac stac Proc Regs PL: 0

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.73 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.74
Pintos Interrupt Processing Timer may trigger thread switch
interrupt.c * thread_tick
Intr_handler (*frame) — Updates thread counters
intrNN_stub() Wrapper for - Classify P .
. - generic handler - dispatch — If quanta exhausted, sets yield flag
Jintr entry: - aCk&RQ ) + thread_yield
/P{;h 0x20 (int # lns:;:nr:gs as frame - may thread yield (@] th to rtn fi int t
“ap inte entry e e — On path to rtn from interrup
ox20| o - .
—Housh ox2L (int £ call intr handjer — Sets cur.rent thread back t_° READY
jmp intr entry . . - - — Pushes it back on ready_list
= intr exit: ,‘t:l.mer_:.ntr(*frame) .
- restore regs 0 tick++ — Calls schedule to select next thread to run upon iret
255 iret I, thread tick() . Schedule
Horg 0x20( "4 timer.c — Selects next thread to run
araware . .
interrupt stubs.S — Calls switch_threads to change regs to point to stack for
thread to resume
vector .
— Sets its status to RUNNING
Pintos — If user thread, activates the process
intr_handlers — Returns back to intr_handler
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.75 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.76




Thread Switch (switch.S)

‘/ 7 7%, oode /

rmagic# |
list <
S S N priority = M} _
Kernel - N ~ stack o/ T~ <
status
User tid
code
data data “\
heap ‘ . ‘ heap \\
IP
User User iPSP
stack stack Proc Regs L0

« switch_threads: save regs on current small stack, change
SP, return from destination threads call to switch_threads

Pintos Return from Processing

interrupt.c
Wrabper for Intr handler (*frame)
intrNN_stub() pp - classify
generic handler - dispatch
0 o - ack IRQ
/:"mtr_entry:

; -,maybe read yield
/Pééh 0x20 (’-nty/ save regs as frame »Tay ¥h Y

I jmp intr_entry set up kernel env.
> [push 0x20 (int #) call J.ntr_hﬁk/
jmp intr_entry intr_exit: ,'timer_in r (*frame)
*kk restore regs 0 , tick++
iret 7 thread tick()
2 / :
255 0x20 |_¢ timer.c
Hardware stubs.S
interrupt thread yield()
vector - scheduile
Resume Some Thread
Pintos Nschedule ()
intr_handlers - switch

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.77 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.78
Kernel — Different User Thread Famous Quote WRT Scheduling: Dennis Richie
Dennis Richie, 2 e rou s e i s
/ / / code / Unix V6, slp.c: ¥ cusrred outs col the stack lecel to the last call
* to savulu_ssav). This means that the return
% data l X wnich 15 executed immediatelw after the call to arety
T ¥ actually returns from tre 1ast routine which digd
4 the savu.
e S ol o priority = M4} _ ¢
Kernel o~ Ta | 4 » Stack o' T~s
User 3 tid “If the new process paused because it was swapped out, set the
code code stack level to the last call to savu(u_ssav). This means that the
™S h return which is executed immediately after the call to aretu actually
data ‘ returns from the last routine which did the savu.”
heap ‘ heap . o “You are not expected to understand this.”
User User N SP . o . s
stack stack > KsP Source: Dennis Ritchie, Unix V6 slp.c (context-switching code) as
Proc Regs p|: 3 per The Unix Heritage Society(tuhs.org); gif by Eddie Koehler.
« iret restores user stack and priority level (PL) Included by Ali R. Butt in CS$3204 from Virginia Tech
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.79 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.80




Recall: Scheduling

l[e] 1/0 queue H 1/O request

time slice
expired

interrupt
oceurs

wait for an
interrupt

* Question: How is the OS to decide which of several tasks to take off a queue?
« Scheduling: deciding which threads are given access to resources from
moment to moment

— Often, we think in terms of CPU time, but could also think about access to
resources like network BW or disk access

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.81

Scheduling: All About Queues

2/21/23

Kubiatowicz CS162 © UCB Spring 2023 Lec 10.82
Scheduling Assumptions Assumption: CPU Bursts

» CPU scheduling big area of research in early 70’s
* Many implicit assumptions for CPU scheduling: .

— One program per user o ol Weighted toward small bursts

— One thread per program .

— Programs are independent tril e fpum U‘zz
« Clearly, these are unrealistic but they simplify the problem e [ pos] B0

so it can be solved w0
— For instance: is “fair’ about fairness among users or “I
programs? ’ : } ’ L it S ®
» If | run one compilation job and you run five, you get five times as :
much CPU on many operating systems « Execution model: programs alternate between bursts of CPU and 1/O
* The high-level goal: Dole out CPU time to optimize some — Program typically uses the CPU for some period of time, then does 1/0O,
desired parameters of system then uses CPU again
— Each scheduling decision is about which job to give to the CPU for use by
USER1 USER2 USER3|USER1  USER2 its next CPU burst
. — With timeslicing, thread may be forced to give up CPU before finishing
Time ——————— current CPU burst
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.83 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.84




Scheduling Policy Goals/Criteria

* Minimize Response Time
— Minimize elapsed time to do an operation (or job)
— Response time is what the user sees:
» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World
* Maximize Throughput
— Maximize operations (or jobs) per second
— Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching than if you only
maximized throughput

— Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)
« Fairness
— Share CPU among users in some equitable way
— Fairness is not minimizing average response time:
» Better average response time by making system /ess fair

First-Come, First-Served (FCFS) Scheduling

» First-Come, First-Served (FCFS)
— Also “First In, First Out” (FIFO) or “Run until done”

» In early systems, FCFS meant one program
scheduled until done (including 1/0O)

» Now, means keep CPU until thread blocks

+ Example: Process Burst Time
. 24
P, 3
P, 3

— Suppose processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

P P, Ps

0 24 27 30
— Waiting time for P, =0; P, =24; P,=27
— Average waiting time: (0 + 24 + 27)/3 =17
— Average Completion time: (24 + 27 + 30)/3 = 27
* Convoy effect: short process stuck behind long process

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.85 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.86
Convoy effect FCFS Scheduling (Cont.)
» Example continued:
Scheduled Task (process, thread) — Suppose that processes arrive in order: P2 , P3 , P1
. ---_------- . Now, the Gantt chart for the schedule is:
3 | \ time P P =)
A HEE S e e . 1 1 I | | | 2 3 1
N B S e .
2 ) - O S B .
= arrivals O OEE B ooaeEm 0 3 6 30
3 e — Waiting time for P1=6; P2=0; P3=3
3 — Average waiting time: (6 + 0 + 3)/3 =3
— Average Completion time: (3 + 6 + 30)/3 =13
) . ) * In second case:
+ With FCFS non-preemptlve scheduling, convoys of — Average waiting time is much better (before it was 17)
\r?,::]?‘lilntasks tend to build up when a large one is — Average completion time is better (before it was 27)
9- * FIFO Pros and Cons:
— Simple (+)
— Short jobs get stuck behind long ones (-)
» Safeway: Getting milk, always stuck behind cart full of items!
Upside: get to read about S?ace Aliens!
2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.87 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.88




Round Robin (RR) Scheduling

* FCFS Scheme: Potentially bad for short jobs!
—Depends on submit order

—If you are first in line at supermarket with milk, you don't
care who is behind you, on the other hand...

* Round Robin Scheme: Preemption!

— Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

— After quantum expires, the process is preempted
and added to the end of the ready queue.

—n processes in ready queue and time quantum is g =
» Each process gets 1/n of the CPU time
» In chunks of at most g time units
» No process waits more than (n-1)q time units

RR Scheduling (Cont.)

+ Performance
—qlarge = FCFS
— g small = Interleaved (really small = hyperthreading?)

—q must be large with respect to context switch, otherwise
overhead is too high (all overhead)

— The Gantt chart is:

P, |P, [Py Py [Py [Py Py [Py Py | Py
0 20 28 48

68 88 108 112 125 145 153
— Waiting time for  P,=(68-20)+(112-88)=72
P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=88

— Average waiting time = (72+20+85+88)/4=66"4

— Average completion time = (125+28+153+112)/4 = 104/
* Thus, Round-Robin Pros and Cons:
— Better for short jobs, Fair (+)

— Context-switching time adds up for Io%q)i:obs (-g
2/21/23 Kubiatowitz CS162 B Spring 2023

Lec 10.91

2/21/23

— How? Timer interrupt!
— And, of course, careful synchronization

1/0 queue H 1/O request

time slice
expired

Project 2:

Scheduling

child
executes

interrupt
occurs

wait for an
interrupt

Kubiatowicz CS162 © UCB Spring 2023

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.89 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.90
Example of RR with Time Quantum = 20 How to Implement RR in the Kernel?
+ Example: Process Burst Time .
P, 53 * FIFO Queue, as in FCFS
E; 6% » But preempt job after quantum expires, and send it to the back of the queue
P, 24

Lec 10.92




Round-Robin Discussion

* How do you choose time slice?
—What if too big?
» Response time suffers
—What if infinite (o) ?
» Get back FIFO
—What if time slice too small?
» Throughput suffers!
+ Actual choices of timeslice:
— Initially, UNIX timeslice one second:
» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo each keystroke!
— Need to balance short-job performance and long-job throughput:
» Typical time slice today is between 10ms — 100ms
» Typical context-switching overhead is 0.1ms — 1ms
» Roughly 1% overhead due to context-switching

Comparisons between FCFS and Round Robin

« Assuming zero-cost context-switching time, is RR always better than FCFS?

» Simple example: 10 jobs, each take 100s of CPU time
RR scheduler quantum of 1s
All jobs start at the same time

» Completion Times:

Job # FIFO RR
1 100 991
2 200 992
9 900 999
10 1000 1000

—Both RR and FCFS finish at the same time

— Average completion time is much worse under RR!
» Bad when all jobs same length

+ Also: Cache state must be shared between all jobs with RR but can be
devoted to each job with FIFO

— Total time for RR longer even for zero-cost switch!

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.93 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.94
Earlier Example with Different Time Quantum Conclusion
P, [P, P, P, Monitors represent the logic of the program
Best FCFS:| 18] | [24] [53] [68] — Wait if necessary
0 8 32 85 153 — Signal when change something so any waiting threads can proceed
Quantum P, P, P. P, Average | — Monitors supported natively in a number of languages
Best FCFS |32 0 85 8 31% Readers/Writers Monitor example
Q=1 84 2 Gl 57 62 — Shows how monitors allow sophisticated controlled entry to protected code
. Q=5 82 20 85 58 61 . .

Wait Q=8 30 E e 56 5T Round-Robin Scheduling:

Time Q=10 82 10 85 68 1% - Giive ec?crghthregd a small amount of CPU time when it executes; cycle between
Q=20 72 |20 85 88 66% already threads
Worst FCFS |68 | 145 |0 121 |83% — Pros: Better for short jobs S
Best FCFS | 85 F) 153 32 69% Next Time: Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
Q=1 137 30 153 81 100% — Run whatever job has the least amount of computation to do/least remaining

Complei Q=5 135 28 153 82 99% amount of computation to do

Sl ORY 133 |16 153 80 95% — Pros: Optimal (average response time)
Q=10 135 18 153 92 99% — Cons: Hard to predict future, Unfair
Q=20 125 |28 153 112 104%
Worst FCFS _| 121 153 68 145 121%

2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.95 2/21/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 10.96




