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Recall: Multi-Level Feedback Scheduling

• Another method for exploiting past behavior (first use in CTSS)
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing exponentially 

(highest:1ms, next: 2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to 

Low Priority
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Recall: Case Study: Linux O(1) Scheduler

• Priority-based scheduler: 140 priorities
– 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
– Lower priority value  higher priority (for realtime values)
– Highest priority value  Lower priority (for nice values)
– All algorithms O(1)

» Timeslices/priorities/interactivity credits all computed when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level

• Two separate priority queues: “active” and “expired”
– All tasks in the active queue use up their timeslices and get placed on the expired 

queue, after which queues swapped
• Timeslice depends on priority – linearly mapped onto timeslice range

– Like a multi-level queue (one queue per priority) with different timeslice at each level
– Execution split into “Timeslice Granularity” chunks – round robin through priority

Kernel/Realtime Tasks User Tasks

0 100 139
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So, Does the OS Schedule Processes or Threads?
• Many textbooks use the “old model”—one thread per process
• Usually it's really: threads (e.g., in Linux)

• One point to notice: switching threads vs. switching processes incurs 
different costs:

– Switch threads: Save/restore registers
– Switch processes: Change active address space too!

» Expensive
» Disrupts caching

• Recall, However: Simultaneous Multithreading (or “Hyperthreading”)
– Different threads interleaved on a cycle-by-cycle basis and can be in different 

processes (have different address spaces)
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Multi-Core Scheduling
• Algorithmically, not a huge difference from single-core scheduling

• Implementation-wise, helpful to have per-core scheduling data structures
– Cache coherence

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries to 
reschedule it on the same CPU

– Cache reuse
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Recall: Spinlocks for multiprocessing
• Spinlock implementation:

int value = 0; // Free
Acquire() {

while (test&set(&value)) {}; // spin while busy
}
Release() {

value = 0;                  // atomic store
}

• Spinlock doesn’t put the calling thread to sleep—it just busy waits
– When might this be preferable? 

» Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program
» Wait time at barrier would be greatly increased if threads must be woken inside kernel

• Every test&set() is a write, which makes value ping-pong around between core-local caches 
(using lots of memory!)

– So – really want to use test&test&set() !
• As we discussed in Lecture 8, the extra read eliminates the ping-ponging issues:

// Implementation of test&test&set():
Acquire() {

do {
while(value); // wait until might be free

} while (test&set(&value)); // exit if acquire lock
}
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Gang Scheduling and Parallel Applications
• When multiple threads work together on a multi-core system, try to 

schedule them together
– Makes spin-waiting more efficient (inefficient to spin-wait for a thread that’s 

suspended)

• Alternative: OS informs a parallel program how many processors its 
threads are scheduled on (Scheduler Activations)

– Application adapts to number of cores that it has scheduled
– “Space sharing” with other parallel programs can be more efficient, because 

parallel speedup is often sublinear with the number of cores
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Real-Time Scheduling
• Goal: Predictability of Performance!

– We need to predict with confidence worst case response times for systems!
– In RTS, performance guarantees are:

» Task- and/or class centric and often ensured a priori
– In conventional systems, performance is:

» System/throughput oriented with post-processing (… wait and see …)
– Real-time is about enforcing predictability, and does not equal fast computing!!!

• Hard real-time: for time-critical safety-oriented systems
– Meet all deadlines (if at all possible)
– Ideally: determine in advance if this is possible
– Earliest Deadline First (EDF), Least Laxity First (LLF), 

Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)
• Soft real-time: for multimedia

– Attempt to meet deadlines with high probability
– Constant Bandwidth Server (CBS)
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Example: Workload Characteristics
• Tasks are preemptable, independent with arbitrary arrival (=release) times
• Tasks have deadlines (D) and known computation times (C) 
• Example Setup:
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Example: Round-Robin Scheduling Doesn’t Work

Time
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• Tasks periodic with period P and computation C in each period:  (𝑃௜, 𝐶௜) for 
each task 𝑖

• Preemptive priority-based dynamic scheduling:
– Each task is assigned a (current) priority based on how close the absolute 

deadline is (i.e. 𝐷௜௧ାଵ ൌ 𝐷௜௧ ൅ 𝑃௜for each task!)
– The scheduler always schedules the active task with the closest absolute deadline

Earliest Deadline First (EDF)
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EDF Feasibility Testing
• Even EDF won’t work if you have too many tasks
• For 𝑛 tasks with computation time 𝐶 and deadline 𝐷, a feasible schedule 

exists if:
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Administrivia

• Midterm I results:  Mean: 47.3,  StdDev: 16.8, Min: 3.4, Max: 87.7
– Yes, probably was too long!
– Sorry about that!

• Project 1 Extension: 
– Wednesday March 1st

• Homework 3: 
– Due Tuesday 3/7
– Can be done in Rust (if you want)

0 10 3020 5040 60 70 80 90 100
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Ensuring Progress
• Starvation: thread fails to make progress for an indefinite period of time

• Starvation ≠ Deadlock because starvation could resolve under right 
circumstances

– Deadlocks are unresolvable, cyclic requests for resources

• Causes of starvation:
– Scheduling policy never runs a particular thread on the CPU
– Threads wait for each other or are spinning in a way that will never be resolved

• Let’s explore what sorts of problems we might encounter and how to avoid 
them…
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Strawman: Non-Work-Conserving Scheduler
• A work-conserving scheduler is one that does not leave the CPU idle when 

there is work to do

• A non-work-conserving scheduler could trivially lead to starvation

• In this class, we’ll assume that the scheduler is work-conserving (unless 
stated otherwise)
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Strawman: Last-Come, First-Served (LCFS)
• Stack (LIFO) as a scheduling data structure 

– Late arrivals get fast service
– Early ones wait – extremely unfair
– In the worst case – starvation

• When would this occur?
– When arrival rate (offered load) exceeds service rate (delivered load)
– Queue builds up faster than it drains

• Queue can build in FIFO too, but “serviced in the order received”…
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Is FCFS Prone to Starvation?

• If a task never yields (e.g., goes into an infinite loop), then 
other tasks don’t get to run

• Problem with all non-preemptive schedulers…
• And early personal OSes such as original MacOS, Windows 3.1, etc
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Is Round Robin (RR) Prone to Starvation?
• Each of N processes gets ~1/N of CPU (in window)

– With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

– So a process can’t be kept waiting indefinitely

• So RR is fair in terms of waiting time
– Not necessarily in terms of throughput… (if you give up your time slot early, 

you don’t get the time back!)
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Is Priority Scheduling Prone to Starvation?
• Recall: Priority Scheduler always runs the

thread with highest priority
– Low priority thread might never run!
– Starvation…

• But there are more serious problems as well…
– Priority inversion: even high priority threads might become starved

Priority 3
Priority 2
Priority 1
Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4
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Priority Inversion

• At this point, which job does the scheduler choose?
• Job 3 (Highest priority)

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()
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Priority Inversion

• Job 3 attempts to acquire lock held by Job 1

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()
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Priority Inversion

• At this point, which job does the scheduler choose?
• Job 2 (Medium Priority)
• Priority Inversion

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Blocked on Acquire
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Priority Inversion

• Where high priority task is blocked waiting on low priority task
• Low priority one must run for high priority to make progress
• Medium priority task can starve a high priority one

• When else might priority lead to starvation or “live lock”?

lock.acquire(…)
…
lock.release(…)

Low Priority
while (try_lock) {
…
}

High Priority
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One Solution: Priority Donation/Inheritance

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()
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One Solution: Priority Donation/Inheritance

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

Priority 3

Priority 2

Priority 1

Job 1

Job 3

Job 2

Blocked on Acquire

Release()



Lec 12.262/28/2023 Kubiatowicz CS162 © UCB Spring 2023

One Solution: Priority Donation/Inheritance

• Job 1 completes critical section and releases lock
• Job 3 acquires lock, runs again
• How does the scheduler know?

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

Project 2: 
Scheduling
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• July 4, 1997 – Pathfinder lands on Mars
– First US Mars landing since Vikings in 1976; first rover
– Novel delivery mechanism: inside air-filled balloons 

bounced to stop on the surface from orbit!
• And then…a few days into mission…:

– Multiple system resets occur to realtime OS (VxWorks)
– System would reboot randomly, losing valuable time and progress

• Problem? Priority Inversion!
– Low priority task grabs mutex trying to 

communicate with high priority task:
– Realtime watchdog detected lack of forward progress and invoked reset to safe state

» High-priority data distribution task was supposed to complete with regular deadline
• Solution: Turn priority donation back on and upload fixes!
• Original developers turned off priority donation (also called priority inheritance)

– Worried about performance costs of donating priority!

Case Study: Martian Pathfinder Rover

Priority 2
Priority 1
Priority 0 ASI/MET collector: grab lock

Lots of random medium stuff
Data Distribution Task: needs lock
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Are SRTF and MLFQ Prone to Starvation?

• In SRTF, long jobs are starved in favor of short ones
– Same fundamental problem as priority scheduling

• MLFQ is an approximation of SRTF, so it suffers from the same problem

Long-Running Compute
Tasks Demoted to 

Low Priority
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Cause for Starvation: Priorities?
• The policies we’ve studied so far:

– Always prefer to give the CPU to a prioritized job
– Non-prioritized jobs may never get to run

• But priorities were a means, not an end
• Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive 

jobs effectively on common hardware
– Give the I/O bound ones enough CPU to issue their next file operation and 

wait (on those slow discs)
– Give the interactive ones enough CPU to respond to an input and wait (on 

those slow humans)
– Let the CPU bound ones grind away without too much disturbance
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Recall: Changing Landscape…

years
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Per Person
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1:106
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physical 
world
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Changing Landscape of Scheduling
• Priority-based scheduling rooted in “time-sharing”

– Allocating precious, limited resources across a diverse workload
» CPU bound, vs interactive, vs I/O bound

• 80’s brought about personal computers, workstations, and servers on 
networks

– Different machines of different types for different purposes
– Shift to fairness and avoiding extremes (starvation)

• 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer

– Server consolidation, massive clustered services, huge flashcrowds
– It’s about predictability, 95th percentile performance guarantees
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DOES PRIORITIZING SOME JOBS 
NECESSARILY STARVE THOSE THAT 
AREN’T PRIORITIZED?
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Key Idea: Proportional-Share Scheduling
• The policies we’ve studied so far:

– Always prefer to give the CPU to a prioritized job
– Non-prioritized jobs may never get to run

• Instead, we can share the CPU proportionally
– Give each job a share of the CPU according to its priority
– Low-priority jobs get to run less often
– But all jobs can at least make progress (no starvation)
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Recall: Lottery Scheduling

• Given a set of jobs (the mix), provide each with a share of a resource
– e.g., 50% of the CPU for Job A, 30% for Job B, and 20% for Job C

• Idea: Give out tickets according to the proportion each should receive, 
• Every quantum (tick): draw one at random, schedule that job (thread) to run

timeQ i Q i+1
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Lottery Scheduling: Simple Mechanism

• 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 ൌ  ∑Ni

• Pick a number 𝑑 in 1  . .  𝑁𝑡𝑖𝑐𝑘𝑒𝑡 as the 
random “dart”

• Jobs record their Ni of allocated tickets
• Order them by Ni

• Select the first j such that ∑Ni up to j 
exceeds d.

1

10
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Unfairness

• E.g., Given two jobs A and B of same run time 
(# Qs) that are each supposed to receive 50%, 

U = finish time of first / finish time of last
• As a function of run time
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Stride Scheduling
• Achieve proportional share scheduling without resorting to randomness, 

and overcome the “law of small numbers” problem.

• “Stride” of each job is ௕௜௚#ௐ
ே೔ 

– The larger your share of tickets, the smaller your stride
– Ex: W = 10,000,  A=100 tickets, B=50, C=250
– A stride: 100, B: 200, C: 40

• Each job has a “pass” counter 
• Scheduler: pick job with lowest pass, runs it, add its stride to its pass
• Low-stride jobs (lots of tickets) run more often

– Job with twice the tickets gets to run twice as often
• Some messiness of counter wrap-around, new jobs, …
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Linux Completely Fair Scheduler (CFS)
• Goal: Each process gets an equal share of CPU

– N threads “simultaneously” execute on ଵ
ே

of CPU
– The model is somewhat like simultaneous 

multithreading – each thread gets ଵ
ே

of the cycles 

• In general, can’t do this with real hardware
– OS needs to give out full CPU in time slices
– Thus, we must use something to keep the threads 

roughly in sync with one another

Model: “Perfectly” 
subdivided CPU:

C
PU

 Tim
e T1 T2 T3

1
𝑁
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Linux Completely Fair Scheduler (CFS)
• Basic Idea: track CPU time per thread and schedule 

threads to match up average rate of execution
• Scheduling Decision:

– “Repair” illusion of complete fairness
– Choose thread with minimum CPU time
– Closely related to Fair Queueing

• Use a heap-like scheduling queue for this…
– O(log N) to add/remove threads, where N is 

number of threads
• Sleeping threads don’t advance their CPU time, so 

they get a boost when they wake up again…
– Get interactivity automatically!

C
PU

 Tim
e

T1
T2

T3

1
𝑁

CFS: Average rate of 
execution = ଵ

ே
:
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• In addition to fairness, we want low response time and starvation freedom
– Make sure that everyone gets to run at least a bit!

• Constraint 1: Target Latency
– Period of time over which every process gets service
– Quanta = Target_Latency / n

• Target Latency: 20 ms, 4 Processes
– Each process gets 5ms time slice

• Target Latency: 20 ms, 200 Processes
– Each process gets 0.1ms time slice  (!!!)
– Recall Round-Robin: large context switching overhead if slice gets to small

Linux CFS: Responsiveness/Starvation Freedom
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Linux CFS: Throughput
• Goal: Throughput

– Avoid excessive overhead
• Constraint 2: Minimum Granularity

– Minimum length of any time slice

• Target Latency 20 ms, Minimum Granularity 1 ms, 200 processes
– Each process gets 1 ms time slice
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Aside: Priority in Unix – Being Nice
• The industrial operating systems of the 60s and 70’s provided priority to 

enforced desired usage policies.
– When it was being developed at Berkeley, instead it provided ways to “be nice”.

• nice values range from -20 to 19
– Negative values are “not nice”
– If you wanted to let your friends get more time, you would nice up your job

• Scheduler puts higher nice-value tasks (lower priority) to sleep more …
– In O(1) scheduler, this translated fairly directly to priority (and time slice)

• How does this idea translate to CFS?
– Change the rate of CPU cycles given to threads to change relative priority
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Linux CFS: Proportional Shares
• What if we want to give more CPU to some and less to others in CFS 

(proportional share) ?
– Allow different threads to have different rates of execution (cycles/time)

• Use weights! Key Idea: Assign a weight wi to each process I to compute the 
switching quanta Qi

– Basic equal share: 𝑄𝑖 ൌ Target Latency ⋅ ଵ
ே

– Weighted Share:  𝑄௜ ൌ
௪೔

∑ ௪೛೛ൗ ⋅ Target Latency
• Reuse nice value to reflect share, rather than priority,

– Remember that lower nice value  higher priority
– CFS uses nice values to scale weights exponentially: Weight=1024/(1.25)nice

» Two CPU tasks separated by nice value of 5 
Task with lower nice value has 3 times the weight, since (1.25)5  3

• So, we use “Virtual Runtime” instead of CPU time



Lec 12.442/28/2023 Kubiatowicz CS162 © UCB Spring 2023

Example: Linux CFS: Proportional Shares
• Target Latency = 20ms
• Minimum Granularity = 1ms
• Example: Two CPU-Bound Threads

– Thread A has weight 1
– Thread B has weight 4

• Time slice for A? 4 ms
• Time slice for B? 16 ms



Lec 12.452/28/2023 Kubiatowicz CS162 © UCB Spring 2023

Linux CFS: Proportional Shares

• Track a thread's virtual runtime rather than its true physical runtime
– Higher weight: Virtual runtime increases more slowly
– Lower weight: Virtual runtime increases more quickly

• Scheduler’s Decisions are based on Virtual CPU Time
• Use of Red-Black tree to hold all runnable processes as 

sorted on vruntime variable
– O(log N) time to perform insertions/deletions 

» Cache the item at far left (item with earliest vruntime)
– When ready to schedule, grab version with smallest vruntime (which will be item at the far left).

Virtual
CPU Time

B A

Physical
CPU Time B

A

16 (wB=4)

4 (wA=1)
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Choosing the Right Scheduler

I Care About: Then Choose:

CPU Throughput FCFS

Avg. Response Time SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness – Wait Time to 
Get CPU

Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority
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A Final Word On Scheduling
• When do the details of the scheduling policy and fairness really matter?

– When there aren’t enough resources to go around
• When should you simply buy a faster computer?

– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay for itself in improved response time

» Perhaps you’re paying for worse response time in reduced 
productivity, customer angst, etc…

» Might think that you should buy a faster X when X is utilized 100%, 
but usually, response time goes to infinity as utilization100%

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear” portion of 

the load curve, fail otherwise
– Argues for buying a faster X when hit “knee” of curve

Utilization

R
esponse

tim
e 100%
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Deadlock: A Deadly type of Starvation
• Starvation: thread waits indefinitely

– Example, low-priority thread waiting for resources 
constantly in use by high-priority threads

• Deadlock: circular waiting for resources
– Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

• Deadlock  Starvation but not vice versa
– Starvation can end (but doesn’t have to)
– Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By
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Example: Single-Lane Bridge Crossing

CA 140 to Yosemite National Park



Lec 12.502/28/2023 Kubiatowicz CS162 © UCB Spring 2023

Bridge Crossing Example
• Each segment of road can be viewed as a resource

– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves 
– Traffic only in one direction at a time 

• Deadlock: Shown above when two cars in opposite directions meet in middle
– Each acquires one segment and needs next
– Deadlock resolved if one car backs up (preempt resources and rollback)

» Several cars may have to be backed up 
• Starvation (not Deadlock): 

– East-going traffic really fast  no one gets to go west

East
Half

Wait
For

Wait
For

Owned
By

Owned
By

West
Half
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Conclusion
• Multi-Level Feedback Scheduling:

– Multiple queues of different priorities and scheduling algorithms
– Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

• Realtime Schedulers such as EDF
– Guaranteed behavior by meeting deadlines
– Realtime tasks defined by tuple of compute time and period
– Schedulability test: is it possible to meet deadlines with proposed set of processes?

• Lottery Scheduling:
– Give each thread a priority-dependent number of tokens (short tasksmore tokens)

• Linux CFS Scheduler: Fair fraction of CPU
– Approximates an “ideal” multitasking processor
– Practical example of “Fair Queueing”

• Deadlock: circular waiting for resources
– A form of starvation (indefinite stalling) that will never resolve


