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Recall: Multi-Level Feedback Scheduling

Tasks Demoted to
~ Low Priority

quantum = 16

—’f quantum = 8 \% .
Long-Running Compute
N 4%—'/

—’f FCFS

« Another method for exploiting past behavior (first use in CTSS)
— Multiple queues, each with different priority
» Higher priority queues often considered “foreground” tasks
— Each queue has its own scheduling algorithm

» e.g. foreground — RR, background — FCFS

» Sometimes multiple RR priorities with quantum increasing exponentially
(highest:1ms, next: 2ms, next: 4ms, etc)

« Adjust each job’s priority as follows (details vary)
— Job starts in highest priority queue
— If timeout expires, drop one level

— If timeout doesn’t expire, push up one level (or to top)
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Recall: Case Study: Linux O(1) Scheduler

Kernel/Realtime Tasks User Tasks

0] 100 139
 Priority-based scheduler: 140 priorities
— 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
— Lower priority value = higher priority (for realtime values)

— Highest priority value = Lower priority (for nice values)

— All algorithms O(1)
» Timeslices/priorities/interactivity credits all computed when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level

« Two separate priority queues: “active” and “expired”

— All tasks in the active queue use up their timeslices and get placed on the expired
queue, after which queues swapped

« Timeslice depends on priority — linearly mapped onto timeslice range
— Like a multi-level queue (one queue per priority) with different timeslice at each level
— Execution split into “Timeslice Granularity” chunks — round robin through priority
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So, Does the OS Schedule Processes or Threads?

Many textbooks use the “old model™—one thread per process
Usually it's really: threads (e.g., in Linux)

One point to notice: switching threads vs. switching processes incurs
different costs:

— Switch threads: Save/restore registers

— Switch processes: Change active address space too!
» Expensive
» Disrupts caching

Recall, However: Simultaneous Multithreading (or “Hyperthreading”)

— Different threads interleaved on a cycle-by-cycle basis and can be in different
processes (have different address spaces)
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Multi-Core Scheduling

« Algorithmically, not a huge difference from single-core scheduling

« Implementation-wise, helpful to have per-core scheduling data structures
— Cache coherence

 Affinity scheduling: once a thread is scheduled on a CPU, OS tries to
reschedule it on the same CPU

— Cache reuse
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Recall: Spinlocks for multiprocessing

Spinlock implementation:

int value = @; // Free
Acquire() {
while (test&set(&value)) {}; // spin while busy

}
Release() {

value = 0; // atomic store
}

Spinlock doesn’t put the calling thread to sleep—it just busy waits
— When might this be preferable?
» Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program
» Wait time at barrier would be greatly increased if threads must be woken inside kernel

Every test&set () is a write, which makes value ping-pong around between core-local caches
(using lots of memory!)

— So —really want to use test&test&set() !

As we discussed in Lecture 8, the extra read eliminates the ping-ponging issues:

// Implementation of test&test&set():
Acquire() {
do {
while(value); // wait until might be free
} while (test&set(&value)); // exit if acquire lock
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Gang Scheduling and Parallel Applications

« When multiple threads work together on a multi-core system, try to
schedule them together

— Makes spin-waiting more efficient (inefficient to spin-wait for a thread that’s
suspended)

 Alternative: OS informs a parallel program how many processors its
threads are scheduled on (Scheduler Activations)

— Application adapts to number of cores that it has scheduled

— “Space sharing” with other parallel programs can be more efficient, because
parallel speedup is often sublinear with the number of cores
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Real-Time Scheduling

» Goal: Predictability of Performance!
— We need to predict with confidence worst case response times for systems!

— In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

— In conventional systems, performance is:
» System/throughput oriented with post-processing (... wait and see ...)
— Real-time is about enforcing predictability, and does not equal fast computing!!!
» Hard real-time: for time-critical safety-oriented systems
— Meet all deadlines (if at all possible)
— Ideally: determine in advance if this is possible

— Earliest Deadline First (EDF), Least Laxity First (LLF),
Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)

« Soft real-time: for multimedia

— Attempt to meet deadlines with high probability
— Constant Bandwidth Server (CBS)
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« Tasks are preemptable, independent with arbitrary arrival (=release) times
« Tasks have deadlines (D) and known computation times (C)

Example: Workload Characteristics

« Example Setup:
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Example: Round-Robin Scheduling Doesn’t Work
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Earliest Deadline First (EDF)

« Tasks periodic with period P and computation C in each period: (P;, C;) for
each task i

* Preemptive priority-based dynamic scheduling:

— Each task is assigned a (current) priority based on how close the absolute
deadline is (i.e. D!** = D} + P;for each task!)

— The scheduler always schedules the active task with the closest absolute deadline
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2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.11



EDF Feasibility Testing

« Even EDF won’t work if you have too many tasks
* For n tasks with computation time C and deadline D, a feasible schedule

exists if:
n
C;
> () =1
.\ D;
1=1
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Administrivia
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 Midterm | results: Mean: 47.3, StdDev: 16.8, Min: 3.4, Max: 87.7
— Yes, probably was too long!
— Sorry about that!
* Project 1 Extension:
— Wednesday March 1st
« Homework 3:
— Due Tuesday 3/7
— Can be done in Rust (if you want)

100
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Ensuring Progress

Starvation: thread fails to make progress for an indefinite period of time

Starvation # Deadlock because starvation could resolve under right
circumstances

— Deadlocks are unresolvable, cyclic requests for resources

Causes of starvation:
— Scheduling policy never runs a particular thread on the CPU
— Threads wait for each other or are spinning in a way that will never be resolved

Let’s explore what sorts of problems we might encounter and how to avoid
them...
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Strawman: Non-Work-Conserving Scheduler

» A work-conserving scheduler is one that does not leave the CPU idle when
there is work to do

* A non-work-conserving scheduler could trivially lead to starvation

* In this class, we’ll assume that the scheduler is work-conserving (unless
stated otherwise)

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.15



Strawman: Last-Come, First-Served (LCFS)

« Stack (LIFO) as a scheduling data structure
— Late arrivals get fast service
— Early ones wait — extremely unfair
— In the worst case — starvation
« When would this occur?
— When arrival rate (offered load) exceeds service rate (delivered load)
— Queue builds up faster than it drains

* Queue can build in FIFO too, but “serviced in the order received”...
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Is FCFS Prone to Starvation?
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« If a task never yields (e.g., goes into an infinite loop), then
other tasks don'’t get to run

* Problem with all non-preemptive schedulers...
« And early personal OSes such as original MacOS, Windows 3.1, etc
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Is Round Robin (RR) Prone to Starvation?

« Each of N processes gets ~1/N of CPU (in window)

— With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

— S0 a process can't be kept waiting indefinitely

« So RRis fair in terms of waiting time

— Not necessarily in terms of throughput... (if you give up your time slot early,
you don’t get the time back!)
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Is Priority Scheduling Prone to Starvation?

* Recall: Priority Scheduler always runs the | Priority 3 F={Job 1 |=»{Job2 }={Job 3
thread with highest priority Priority 2 = Job 4
— Low priority thread might never run! Priority 1
— Starvation... Priority 0 [==»|Job5 t=»{Job 6 = Job 7

» But there are more serious problems as well...
— Priority inversion: even high priority threads might become starved
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Priority Inversion

Priority 3

Priority 2

Priority 1

« At this point, which job does the scheduler choose?
« Job 3 (Highest priority)

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.20



Priority Inversion

Priority 3 -._ Acquire()

Priority 2

™
“
=~

Priority 1

« Job 3 attempts to acquire lock held by Job 1
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Priority Inversion

Priority 3

Priority 2

Priority 1

« At this point, which job does the scheduler choose?
« Job 2 (Medium Periority)
* Priority Inversion
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Priority Inversion

Where high priority task is blocked waiting on low priority task
Low priority one must run for high priority to make progress
Medium priority task can starve a high priority one

When else might priority lead to starvation or “live lock™?

High Priority Low Priority

c while (try_lock) { lock.acquire(..) |

} lock.release(..)
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One Solution: Priority Donation/Inheritance

Priority 3

Priority 2

Priority 1

« Job 3 temporarily grants Job 1 its “high priority” to run on its behalf
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One Solution: Priority Donation/Inheritance

Priority 3 - Release()

Priority 2 \‘\\
Priority 1 B

« Job 3 temporarily grants Job 1 its “high priority” to run on its behalf
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One Solution: Priority Donation/Inheritance

Priority 3 k. Acquire()

-—y
o

Priority 2 Job2 | U
Priority 1 Job 1

« Job 1 completes critical section and releases lock
« Job 3 acquires lock, runs again Project 2:
« How does the scheduler know? Scheduling
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Case Study: Martian Pathflnder Rover

July 4, 1997 — Pathfinder lands on Mars
— First US Mars landing since Vikings in 1976; first rover

— Novel delivery mechanism: inside air-filled balloons
bounced to stop on the surface from orbit!

And then...a few days into mission...:
— Multiple system resets occur to realtime OS (VxWorks)
— System would reboot randomly, losing valuable time and progress

« Problem? Periority Inversion! Priority 2 =/ Data Distribution Task: needs lock |
— Low priority task grabs mutex trying to Priority 1_[={ Lots of random medium stuff
communicate with high priority task: Priority O [==p{ ASUMET collector: grab lock

— Realtime watchdog detected lack of forward progress and invoked reset to safe state
» High-priority data distribution task was supposed to complete with regular deadline

Solution: Turn priority donation back on and upload fixes!

Original developers turned off priority donation (also called priority inheritance)

— Worried about performance costs of donating priority!
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Are SRTF and MLFQ Prone to Starvation?

—
quantum = 8 -
—L\Long-Running Compute
Tasks Demoted to

_»r _?/ Low Priority
quantum = 16 —
—Vr FCFS

* In SRTF, long jobs are starved in favor of short ones
— Same fundamental problem as priority scheduling
 MLFQ is an approximation of SRTF, so it suffers from the same problem
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Cause for Starvation: Priorities?

* The policies we’ve studied so far:
— Always prefer to give the CPU to a prioritized job
— Non-prioritized jobs may never get to run

» But priorities were a means, not an end

« Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive
jobs effectively on common hardware

— Give the 1/0O bound ones enough CPU to issue their next file operation and
wait (on those slow discs)

— Give the interactive ones enough CPU to respond to an input and wait (on
those slow humans)

— Let the CPU bound ones grind away without too much disturbance
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Recall: Changing Landscape...

Computers
1 crunching,
1:106 Data Storage,
Massive Inet
Services,
Bell’s Law: New ML, ...
computer class 1:103
Productivity,

every 10 years

 Interactive

1:1
Streaming
from/to the
103:1 physical
world
years Mote
! The Internet
of Things!
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Changing Landscape of Scheduling

 Priority-based scheduling rooted in “time-sharing”
— Allocating precious, limited resources across a diverse workload
» CPU bound, vs interactive, vs |/0O bound

« 80’s brought about personal computers, workstations, and servers on
networks

— Different machines of different types for different purposes
— Shift to fairness and avoiding extremes (starvation)

« 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer

— Server consolidation, massive clustered services, huge flashcrowds
— It's about predictability, 95t percentile performance guarantees
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DOES PRIORITIZING SOME JOBS
NECESSARILY STARVE THOSE THAT
AREN’T PRIORITIZED?
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Key Idea: Proportional-Share Scheduling

* The policies we’ve studied so far:
— Always prefer to give the CPU to a prioritized job
— Non-prioritized jobs may never get to run

 Instead, we can share the CPU proportionally
— Give each job a share of the CPU according to its priority
— Low-priority jobs get to run less often
— But all jobs can at least make progress (no starvation)
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Recall: Lottery Scheduling

Q[0 > time
L}

« Given a set of jobs (the mix), provide each with a share of a resource
—e.g., 50% of the CPU for Job A, 30% for , and 20% for Job C

 |dea: Give out tickets according to the proportion each should receive,
« Every quantum (tick): draw one at random, schedule that job (thread) to run
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Lottery Scheduling: Simple Mechanism

10 ° tlcket Z N

 Pickanumberdinl1 .. N,,, asthe
random “dart”

 Jobs record their N, of allocated tickets
* Order them by N,

Select the first j such that )}, N. up to j
exceeds d.
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Unfairness

L « E.g., Given two jobs A and B of same run time

s (# Qs) that are each supposed to receive 50%,
2 e U = finish time of first / finish time of last
%j » As a function of run time
5 04

0.2 -

0.0 T T 1

1 10 100 1000

Job Length
Figure 9.2: Lottery Fairness Study
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Stride Scheduling

« Achieve proportional share scheduling without resorting to randomness,
and overcome the “law of small numbers” problem.

. “Stride” of each job is 2V

l

— The larger your share of tickets, the smaller your stride
— Ex: W =10,000, A=100 tickets, B=50, C=250
— A stride: 100, B: 200, C: 40
« Each job has a “pass” counter
« Scheduler: pick job with lowest pass, runs it, add its stride to its pass
« Low-stride jobs (lots of tickets) run more often
— Job with twice the tickets gets to run twice as often
« Some messiness of counter wrap-around, new jobs, ...
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Linux Completely Fair Scheduler (CFS)

» Goal: Each process gets an equal share of CPU Model: “Perfectly”
— N threads “simultaneously” execute on % of CPU . subdivided CPU:
— The model is somewhat like simultaneous 1

multithreading — each thread gets % of the cycles

swll NdO

* In general, can’t do this with real hardware
— OS needs to give out full CPU in time slices

— Thus, we must use something to keep the threads
roughly in sync with one another
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Linux Completely Fair Scheduler (CFS)

Basic Idea: track CPU time per thread and schedule CFS: Average rate of
threads to match up average rate of execution

Scheduling Decision:
—“Repair” illusion of complete fairness
— Choose thread with minimum CPU time
— Closely related to Fair Queueing

Use a heap-like scheduling queue for this...

—O(log N) to add/remove threads, where N is
number of threads

Sleeping threads don'’t advance their CPU time, so
they get a boost when they wake up again...

— Get interactivity automatically!

. 1
execution = N:

.
>

swll NdO
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Linux CFS: Responsiveness/Starvation Freedom

In addition to fairness, we want low response time and starvation freedom
— Make sure that everyone gets to run at least a bit!
Constraint 1: Target Latency

— Period of time over which every process gets service
— Quanta = Target_Latency / n

Target Latency: 20 ms, 4 Processes
— Each process gets 5ms time slice

Target Latency: 20 ms, 200 Processes
— Each process gets 0.1ms time slice (I!!)
— Recall Round-Robin: large context switching overhead if slice gets to small
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Linux CFS: Throughput

* Goal: Throughput
— Avoid excessive overhead

« Constraint 2: Minimum Granularity
— Minimum length of any time slice

« Target Latency 20 ms, Minimum Granularity 1 ms, 200 processes
— Each process gets 1 ms time slice
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Aside: Priority in Unix — Being Nice

« The industrial operating systems of the 60s and 70’s provided priority to
enforced desired usage policies.

— When it was being developed at Berkeley, instead it provided ways to “be nice”.
e nice values range from -20 to 19

— Negative values are “not nice”

— If you wanted to let your friends get more time, you would nice up your job
« Scheduler puts higher nice-value tasks (lower priority) to sleep more ...

— In O(1) scheduler, this translated fairly directly to priority (and time slice)
 How does this idea translate to CFS?

— Change the rate of CPU cycles given to threads to change relative priority
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Linux CFS: Proportional Shares

What if we want to give more CPU to some and less to others in CFS
(proportional share) ?

— Allow different threads to have different rates of execution (cycles/time)

Use weights! Key Idea: Assign a weight w;to each process / to compute the
switching quanta @,

— Basic equal share: Q, = Target Latency %

— Weighted Share: Q; = (W"/Zp Wp) - Target Latency

Reuse nice value to reflect share, rather than priority,
— Remember that lower nice value = higher priority

— CFS uses nice values to scale weights exponentially: Weight=1024/(1.25)"ice

» Two CPU tasks separated by nice value of 5 =
Task with lower nice value has 3 times the weight, since (1.25)°~ 3

So, we use “Virtual Runtime” instead of CPU time
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Example: Linux CFS: Proportional Shares

Target Latency = 20ms
Minimum Granularity = 1ms

Example: Two CPU-Bound Threads
— Thread A has weight 1
— Thread B has weight 4

Time slice for A? 4 ms
Time slice for B? 16 ms
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Linux CFS: Proportional Shares

A A

16 (wg=4)

Physical Virtual
CPU Time CPU Time

4 (wy=1)

» Track a thread's virtual runtime rather than its true physical runtime
— Higher weight: Virtual runtime increases more slowly
— Lower weight: Virtual runtime increases more quickly

» Scheduler’s Decisions are based on Virtual CPU Time

» Use of Red-Black tree to hold all runnable processes as
sorted on vruntime variable

— O(log N) time to perform insertions/deletions
» Cache the item at far left (item with earliest vruntime)

— When ready to schedule, grab version with smallest vruntime (which will be item at the far left).
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Choosing the Right Scheduler

| Care About: Then Choose:

CPU Throughput FCFS
Avg. Response Time SRTF Approximation
|/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS
Fairness — Wait Time to Round Robin
Get CPU
Meeting Deadlines EDF
Favoring Important Tasks Priority
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A Final Word On Scheduling

* When do the details of the scheduling policy and fairness really matter?
— When there aren’t enough resources to go around

* When should you simply buy a faster computer?
— (Or network link, or expanded highway, or ...)

— One approach: Buy it when it will pay for itself in improved response time

» Perhaps you're paying for worse response time in reduced
productivity, customer angst, etc...

» Might think that you should buy a faster X when X is utilized 100%,
but usually, response time goes to infinity as utilization=100%

« An interesting implication of this curve:

— Most scheduling algorithms work fine in the “linear” portion of
the load curve, fail otherwise

— Argues for buying a faster X when hit “knee” of curve

|swi
asuodso

%001

Utilization
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Deadlock: A Deadly type of Starvation

« Starvation: thread waits indefinitely

— Example, low-priority thread waiting for resources
constantly in use by high-priority threads Thread Wait
Owned A j For

« Deadlock: circular waiting for resources By
— Thread A owns Res 1 and is waiting for Res 2 Res 1 Res 2
Thread B owns Res 2 and is waiting for Res 1
Wait Owned
al Thread By
For B

 Deadlock = Starvation but not vice versa
— Starvation can end (but doesn’t have to)
— Deadlock can’t end without external intervention
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Example: Single-Lane Bridge Crossing

[

FYAN

CA 140 to Yosemite National Park
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Bridge Crossing Example

Each segment of road can be viewed as a resource
— Car must own the segment under them
— Must acquire segment that they are moving into  owned
For bridge: must acquire both halves By
— Traffic only in one direction at a time

Deadlock: Shown above when two cars in opposite directions meet in middle
— Each acquires one segment and needs next

— Deadlock resolved if one car backs up (preempt resources and rollback)
» Several cars may have to be backed up

Starvation (not Deadlock):
— East-going traffic really fast = no one gets to go west
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Conclusion

Multi-Level Feedback Scheduling:
— Multiple queues of different priorities and scheduling algorithms
— Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

Realtime Schedulers such as EDF
— Guaranteed behavior by meeting deadlines
— Realtime tasks defined by tuple of compute time and period

— Schedulability test: is it possible to meet deadlines with proposed set of processes?
Lottery Scheduling:

— Give each thread a priority-dependent number of tokens (short tasks=more tokens)
Linux CFS Scheduler: Fair fraction of CPU

— Approximates an “ideal” multitasking processor

— Practical example of “Fair Queueing”
Deadlock: circular waiting for resources

— A form of starvation (indefinite stalling) that will never resolve
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