C3S162
Operating Systems and
Systems Programming

Lecture 12

Scheduling 3:
Case Studies (Con't), Realtime,
Starvation, Deadlock

February 28", 2023
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Multi-Level Feedback Scheduling

Tasks Demoted to
~ Low Priority

quantum = 16

—’f quantum = 8 \% .
Long-Running Compute
N 4%—'/

—’f FCFS

« Another method for exploiting past behavior (first use in CTSS)
— Multiple queues, each with different priority
» Higher priority queues often considered “foreground” tasks
— Each queue has its own scheduling algorithm

» e.g. foreground — RR, background — FCFS

» Sometimes multiple RR priorities with quantum increasing exponentially
(highest:1ms, next: 2ms, next: 4ms, etc)

« Adjust each job’s priority as follows (details vary)
— Job starts in highest priority queue
— If timeout expires, drop one level

— If timeout doesn’t expire, push up one level (or to top)
2/28/2023 Kubiatowicz CS162 © UCB Spring 2023

Lec 12.2

Recall: Case Study: Linux O(1) Scheduler

Kernel/Realtime Tasks User Tasks

0] 100 139
 Priority-based scheduler: 140 priorities
— 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
— Lower priority value = higher priority (for realtime values)

— Highest priority value = Lower priority (for nice values)

— All algorithms O(1)
» Timeslices/priorities/interactivity credits all computed when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level

« Two separate priority queues: “active” and “expired”

— All tasks in the active queue use up their timeslices and get placed on the expired
queue, after which queues swapped

« Timeslice depends on priority — linearly mapped onto timeslice range
— Like a multi-level queue (one queue per priority) with different timeslice at each level
— Execution split into “Timeslice Granularity” chunks — round robin through priority

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.3

So, Does the OS Schedule Processes or Threads?

Many textbooks use the “old model™—one thread per process
Usually it's really: threads (e.g., in Linux)

One point to notice: switching threads vs. switching processes incurs
different costs:

— Switch threads: Save/restore registers

— Switch processes: Change active address space too!
» Expensive
» Disrupts caching

Recall, However: Simultaneous Multithreading (or “Hyperthreading”)

— Different threads interleaved on a cycle-by-cycle basis and can be in different
processes (have different address spaces)

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec12.4

Multi-Core Scheduling

« Algorithmically, not a huge difference from single-core scheduling

« Implementation-wise, helpful to have per-core scheduling data structures
— Cache coherence

 Affinity scheduling: once a thread is scheduled on a CPU, OS tries to
reschedule it on the same CPU

— Cache reuse

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.5

Recall: Spinlocks for multiprocessing

Spinlock implementation:

int value = @; // Free
Acquire() {
while (test&set(&value)) {}; // spin while busy

}
Release() {

value = 0; // atomic store
}

Spinlock doesn’t put the calling thread to sleep—it just busy waits
— When might this be preferable?
» Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program
» Wait time at barrier would be greatly increased if threads must be woken inside kernel

Every test&set () is a write, which makes value ping-pong around between core-local caches
(using lots of memory!)

— So —really want to use test&test&set() !

As we discussed in Lecture 8, the extra read eliminates the ping-ponging issues:

// Implementation of test&test&set():
Acquire() {
do {
while(value); // wait until might be free
} while (test&set(&value)); // exit if acquire lock

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.6

Gang Scheduling and Parallel Applications

« When multiple threads work together on a multi-core system, try to
schedule them together

— Makes spin-waiting more efficient (inefficient to spin-wait for a thread that’s
suspended)

 Alternative: OS informs a parallel program how many processors its
threads are scheduled on (Scheduler Activations)

— Application adapts to number of cores that it has scheduled

— “Space sharing” with other parallel programs can be more efficient, because
parallel speedup is often sublinear with the number of cores

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023

Lec 12.7

Real-Time Scheduling

» Goal: Predictability of Performance!
— We need to predict with confidence worst case response times for systems!

— In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

— In conventional systems, performance is:
» System/throughput oriented with post-processing (... wait and see ...)
— Real-time is about enforcing predictability, and does not equal fast computing!!!
» Hard real-time: for time-critical safety-oriented systems
— Meet all deadlines (if at all possible)
— Ideally: determine in advance if this is possible

— Earliest Deadline First (EDF), Least Laxity First (LLF),
Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)

« Soft real-time: for multimedia

— Attempt to meet deadlines with high probability
— Constant Bandwidth Server (CBS)

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.8

« Tasks are preemptable, independent with arbitrary arrival (=release) times
« Tasks have deadlines (D) and known computation times (C)

Example: Workload Characteristics

« Example Setup:

2/28/2023

Tl
T2
T3

T4

w

w

Kubiatowicz CS162 © UCB Spring 2023

Lec 12.9

Example: Round-Robin Scheduling Doesn’t Work

T4 I |] " l

w

'

L

Time

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.10

Earliest Deadline First (EDF)

« Tasks periodic with period P and computation C in each period: (P;, C;) for
each task i

* Preemptive priority-based dynamic scheduling:

— Each task is assigned a (current) priority based on how close the absolute
deadline is (i.e. D!** = D} + P;for each task!)

— The scheduler always schedules the active task with the closest absolute deadline

=D . — 1 - : . — 1 = 1 =
~cp L ! - .
=(7’2)T — - - -—o—>

0 5 10 15

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.11

EDF Feasibility Testing

« Even EDF won’t work if you have too many tasks
* For n tasks with computation time C and deadline D, a feasible schedule

exists if:
n
C;
> () =1
.\ D;
1=1

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.12

Administrivia

77 76
70
47
35 32
] I 0
0 10 20 30 40 50 60 70 80 90

 Midterm | results: Mean: 47.3, StdDev: 16.8, Min: 3.4, Max: 87.7
— Yes, probably was too long!
— Sorry about that!
* Project 1 Extension:
— Wednesday March 1st
« Homework 3:
— Due Tuesday 3/7
— Can be done in Rust (if you want)

100

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.13

Ensuring Progress

Starvation: thread fails to make progress for an indefinite period of time

Starvation # Deadlock because starvation could resolve under right
circumstances

— Deadlocks are unresolvable, cyclic requests for resources

Causes of starvation:
— Scheduling policy never runs a particular thread on the CPU
— Threads wait for each other or are spinning in a way that will never be resolved

Let’s explore what sorts of problems we might encounter and how to avoid
them...

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.14

Strawman: Non-Work-Conserving Scheduler

» A work-conserving scheduler is one that does not leave the CPU idle when
there is work to do

* A non-work-conserving scheduler could trivially lead to starvation

* In this class, we’ll assume that the scheduler is work-conserving (unless
stated otherwise)

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.15

Strawman: Last-Come, First-Served (LCFS)

« Stack (LIFO) as a scheduling data structure
— Late arrivals get fast service
— Early ones wait — extremely unfair
— In the worst case — starvation
« When would this occur?
— When arrival rate (offered load) exceeds service rate (delivered load)
— Queue builds up faster than it drains

* Queue can build in FIFO too, but “serviced in the order received”...

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.16

2/28/2023

Is FCFS Prone to Starvation?

Scheduled Task (process, thread)

g N 1 1 1 1 1 |

m >
S .
G &T I I N e 1 1 1 | 1 | tlme
o I I EE e 7 7 1 [|

c . Il I Bl e Y e

= arrivals I O N o

= N N I

© []

Q

o

(&)

(7))

« If a task never yields (e.g., goes into an infinite loop), then
other tasks don'’t get to run

* Problem with all non-preemptive schedulers...
« And early personal OSes such as original MacOS, Windows 3.1, etc

Kubiatowicz CS162 © UCB Spring 2023

Lec 12.17

Is Round Robin (RR) Prone to Starvation?

« Each of N processes gets ~1/N of CPU (in window)

— With quantum length Q ms, process waits at most
(N-1)*Q ms to run again

— S0 a process can't be kept waiting indefinitely

« So RRis fair in terms of waiting time

— Not necessarily in terms of throughput... (if you give up your time slot early,
you don’t get the time back!)

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.18

Is Priority Scheduling Prone to Starvation?

* Recall: Priority Scheduler always runs the | Priority 3 F={Job 1 |=»{Job2 }={Job 3
thread with highest priority Priority 2 = Job 4
— Low priority thread might never run! Priority 1
— Starvation... Priority 0 [==»|Job5 t=»{Job 6 = Job 7

» But there are more serious problems as well...
— Priority inversion: even high priority threads might become starved

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.19

Priority Inversion

Priority 3

Priority 2

Priority 1

« At this point, which job does the scheduler choose?
« Job 3 (Highest priority)

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.20

Priority Inversion

Priority 3 -._ Acquire()

Priority 2

™
“
=~

Priority 1

« Job 3 attempts to acquire lock held by Job 1

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.21

Priority Inversion

Priority 3

Priority 2

Priority 1

« At this point, which job does the scheduler choose?
« Job 2 (Medium Periority)
* Priority Inversion

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.22

Priority Inversion

Where high priority task is blocked waiting on low priority task
Low priority one must run for high priority to make progress
Medium priority task can starve a high priority one

When else might priority lead to starvation or “live lock™?

High Priority Low Priority

c while (try_lock) { lock.acquire(..) |

} lock.release(..)

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.23

One Solution: Priority Donation/Inheritance

Priority 3

Priority 2

Priority 1

« Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.24

One Solution: Priority Donation/Inheritance

Priority 3 - Release()

Priority 2 \‘\\
Priority 1 B

« Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.25

One Solution: Priority Donation/Inheritance

Priority 3 k. Acquire()

-—y
o

Priority 2 Job2 | U
Priority 1 Job 1

« Job 1 completes critical section and releases lock
« Job 3 acquires lock, runs again Project 2:
« How does the scheduler know? Scheduling

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.26

Case Study: Martian Pathflnder Rover

July 4, 1997 — Pathfinder lands on Mars
— First US Mars landing since Vikings in 1976; first rover

— Novel delivery mechanism: inside air-filled balloons
bounced to stop on the surface from orbit!

And then...a few days into mission...:
— Multiple system resets occur to realtime OS (VxWorks)
— System would reboot randomly, losing valuable time and progress

« Problem? Periority Inversion! Priority 2 =/ Data Distribution Task: needs lock |
— Low priority task grabs mutex trying to Priority 1_[={ Lots of random medium stuff
communicate with high priority task: Priority O [==p{ ASUMET collector: grab lock

— Realtime watchdog detected lack of forward progress and invoked reset to safe state
» High-priority data distribution task was supposed to complete with regular deadline

Solution: Turn priority donation back on and upload fixes!

Original developers turned off priority donation (also called priority inheritance)

— Worried about performance costs of donating priority!
2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.27

Are SRTF and MLFQ Prone to Starvation?

—
quantum = 8 -
—L\Long-Running Compute
Tasks Demoted to

_»r _?/ Low Priority
quantum = 16 —
—Vr FCFS

* In SRTF, long jobs are starved in favor of short ones
— Same fundamental problem as priority scheduling
 MLFQ is an approximation of SRTF, so it suffers from the same problem

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.28

Cause for Starvation: Priorities?

* The policies we’ve studied so far:
— Always prefer to give the CPU to a prioritized job
— Non-prioritized jobs may never get to run

» But priorities were a means, not an end

« Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive
jobs effectively on common hardware

— Give the 1/0O bound ones enough CPU to issue their next file operation and
wait (on those slow discs)

— Give the interactive ones enough CPU to respond to an input and wait (on
those slow humans)

— Let the CPU bound ones grind away without too much disturbance

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.29

Recall: Changing Landscape...

Computers
1 crunching,
1:106 Data Storage,
Massive Inet
Services,
Bell’s Law: New ML, ...
computer class 1:103
Productivity,

every 10 years

 Interactive

1:1
Streaming
from/to the
103:1 physical
world
years Mote
! The Internet
of Things!

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.30

Changing Landscape of Scheduling

 Priority-based scheduling rooted in “time-sharing”
— Allocating precious, limited resources across a diverse workload
» CPU bound, vs interactive, vs |/0O bound

« 80’s brought about personal computers, workstations, and servers on
networks

— Different machines of different types for different purposes
— Shift to fairness and avoiding extremes (starvation)

« 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer

— Server consolidation, massive clustered services, huge flashcrowds
— It's about predictability, 95t percentile performance guarantees

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.31

DOES PRIORITIZING SOME JOBS
NECESSARILY STARVE THOSE THAT
AREN’T PRIORITIZED?

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.32

Key Idea: Proportional-Share Scheduling

* The policies we’ve studied so far:
— Always prefer to give the CPU to a prioritized job
— Non-prioritized jobs may never get to run

 Instead, we can share the CPU proportionally
— Give each job a share of the CPU according to its priority
— Low-priority jobs get to run less often
— But all jobs can at least make progress (no starvation)

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023

Lec 12.33

Recall: Lottery Scheduling

Q[0 > time
L}

« Given a set of jobs (the mix), provide each with a share of a resource
—e.g., 50% of the CPU for Job A, 30% for , and 20% for Job C

 |dea: Give out tickets according to the proportion each should receive,
« Every quantum (tick): draw one at random, schedule that job (thread) to run

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.34

Lottery Scheduling: Simple Mechanism

10 ° tlcket Z N

 Pickanumberdinl1 .. N,,, asthe
random “dart”

 Jobs record their N, of allocated tickets
* Order them by N,

Select the first j such that)}, N. up to j
exceeds d.

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.35

Unfairness

L « E.g., Given two jobs A and B of same run time

s (# Qs) that are each supposed to receive 50%,
2 e U = finish time of first / finish time of last
%j » As a function of run time
5 04

0.2 -

0.0 T T 1

1 10 100 1000

Job Length
Figure 9.2: Lottery Fairness Study

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.36

Stride Scheduling

« Achieve proportional share scheduling without resorting to randomness,
and overcome the “law of small numbers” problem.

. “Stride” of each job is 2V

l

— The larger your share of tickets, the smaller your stride
— Ex: W =10,000, A=100 tickets, B=50, C=250
— A stride: 100, B: 200, C: 40
« Each job has a “pass” counter
« Scheduler: pick job with lowest pass, runs it, add its stride to its pass
« Low-stride jobs (lots of tickets) run more often
— Job with twice the tickets gets to run twice as often
« Some messiness of counter wrap-around, new jobs, ...

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.37

Linux Completely Fair Scheduler (CFS)

» Goal: Each process gets an equal share of CPU Model: “Perfectly”
— N threads “simultaneously” execute on % of CPU . subdivided CPU:
— The model is somewhat like simultaneous 1

multithreading — each thread gets % of the cycles

swll NdO

* In general, can’t do this with real hardware
— OS needs to give out full CPU in time slices

— Thus, we must use something to keep the threads
roughly in sync with one another

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.38

Linux Completely Fair Scheduler (CFS)

Basic Idea: track CPU time per thread and schedule CFS: Average rate of
threads to match up average rate of execution

Scheduling Decision:
—“Repair” illusion of complete fairness
— Choose thread with minimum CPU time
— Closely related to Fair Queueing

Use a heap-like scheduling queue for this...

—O(log N) to add/remove threads, where N is
number of threads

Sleeping threads don'’t advance their CPU time, so
they get a boost when they wake up again...

— Get interactivity automatically!

. 1
execution = N:

.
>

swll NdO

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.39

Linux CFS: Responsiveness/Starvation Freedom

In addition to fairness, we want low response time and starvation freedom
— Make sure that everyone gets to run at least a bit!
Constraint 1: Target Latency

— Period of time over which every process gets service
— Quanta = Target_Latency / n

Target Latency: 20 ms, 4 Processes
— Each process gets 5ms time slice

Target Latency: 20 ms, 200 Processes
— Each process gets 0.1ms time slice (I!!)
— Recall Round-Robin: large context switching overhead if slice gets to small

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.40

Linux CFS: Throughput

* Goal: Throughput
— Avoid excessive overhead

« Constraint 2: Minimum Granularity
— Minimum length of any time slice

« Target Latency 20 ms, Minimum Granularity 1 ms, 200 processes
— Each process gets 1 ms time slice

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.41

Aside: Priority in Unix — Being Nice

« The industrial operating systems of the 60s and 70’s provided priority to
enforced desired usage policies.

— When it was being developed at Berkeley, instead it provided ways to “be nice”.
e nice values range from -20 to 19

— Negative values are “not nice”

— If you wanted to let your friends get more time, you would nice up your job
« Scheduler puts higher nice-value tasks (lower priority) to sleep more ...

— In O(1) scheduler, this translated fairly directly to priority (and time slice)
 How does this idea translate to CFS?

— Change the rate of CPU cycles given to threads to change relative priority

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.42

Linux CFS: Proportional Shares

What if we want to give more CPU to some and less to others in CFS
(proportional share) ?

— Allow different threads to have different rates of execution (cycles/time)

Use weights! Key Idea: Assign a weight w;to each process / to compute the
switching quanta @,

— Basic equal share: Q, = Target Latency %

— Weighted Share: Q; = (W"/Zp Wp) - Target Latency

Reuse nice value to reflect share, rather than priority,
— Remember that lower nice value = higher priority

— CFS uses nice values to scale weights exponentially: Weight=1024/(1.25)"ice

» Two CPU tasks separated by nice value of 5 =
Task with lower nice value has 3 times the weight, since (1.25)°~ 3

So, we use “Virtual Runtime” instead of CPU time

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.43

Example: Linux CFS: Proportional Shares

Target Latency = 20ms
Minimum Granularity = 1ms

Example: Two CPU-Bound Threads
— Thread A has weight 1
— Thread B has weight 4

Time slice for A? 4 ms
Time slice for B? 16 ms

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.44

Linux CFS: Proportional Shares

A A

16 (wg=4)

Physical Virtual
CPU Time CPU Time

4 (wy=1)

» Track a thread's virtual runtime rather than its true physical runtime
— Higher weight: Virtual runtime increases more slowly
— Lower weight: Virtual runtime increases more quickly

» Scheduler’s Decisions are based on Virtual CPU Time

» Use of Red-Black tree to hold all runnable processes as
sorted on vruntime variable

— O(log N) time to perform insertions/deletions
» Cache the item at far left (item with earliest vruntime)

— When ready to schedule, grab version with smallest vruntime (which will be item at the far left).
2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.45

Choosing the Right Scheduler

| Care About: Then Choose:

CPU Throughput FCFS
Avg. Response Time SRTF Approximation
|/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS
Fairness — Wait Time to Round Robin
Get CPU
Meeting Deadlines EDF
Favoring Important Tasks Priority

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.46

A Final Word On Scheduling

* When do the details of the scheduling policy and fairness really matter?
— When there aren’t enough resources to go around

* When should you simply buy a faster computer?
— (Or network link, or expanded highway, or ...)

— One approach: Buy it when it will pay for itself in improved response time

» Perhaps you're paying for worse response time in reduced
productivity, customer angst, etc...

» Might think that you should buy a faster X when X is utilized 100%,
but usually, response time goes to infinity as utilization=100%

« An interesting implication of this curve:

— Most scheduling algorithms work fine in the “linear” portion of
the load curve, fail otherwise

— Argues for buying a faster X when hit “knee” of curve

|swi
asuodso

%001

Utilization

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.47

Deadlock: A Deadly type of Starvation

« Starvation: thread waits indefinitely

— Example, low-priority thread waiting for resources
constantly in use by high-priority threads Thread Wait
Owned A j For

« Deadlock: circular waiting for resources By
— Thread A owns Res 1 and is waiting for Res 2 Res 1 Res 2
Thread B owns Res 2 and is waiting for Res 1
Wait Owned
al Thread By
For B

 Deadlock = Starvation but not vice versa
— Starvation can end (but doesn’t have to)
— Deadlock can’t end without external intervention

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.48

Example: Single-Lane Bridge Crossing

[

FYAN

CA 140 to Yosemite National Park

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.49

Bridge Crossing Example

Each segment of road can be viewed as a resource
— Car must own the segment under them
— Must acquire segment that they are moving into owned
For bridge: must acquire both halves By
— Traffic only in one direction at a time

Deadlock: Shown above when two cars in opposite directions meet in middle
— Each acquires one segment and needs next

— Deadlock resolved if one car backs up (preempt resources and rollback)
» Several cars may have to be backed up

Starvation (not Deadlock):
— East-going traffic really fast = no one gets to go west

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.50

Conclusion

Multi-Level Feedback Scheduling:
— Multiple queues of different priorities and scheduling algorithms
— Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

Realtime Schedulers such as EDF
— Guaranteed behavior by meeting deadlines
— Realtime tasks defined by tuple of compute time and period

— Schedulability test: is it possible to meet deadlines with proposed set of processes?
Lottery Scheduling:

— Give each thread a priority-dependent number of tokens (short tasks=more tokens)
Linux CFS Scheduler: Fair fraction of CPU

— Approximates an “ideal” multitasking processor

— Practical example of “Fair Queueing”
Deadlock: circular waiting for resources

— A form of starvation (indefinite stalling) that will never resolve

2/28/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 12.51

