
CS162
Operating Systems and
Systems Programming

Lecture 13

Scheduling 4: Deadlock (Finished)

March 2nd, 2023
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 13.23/2/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: Linux Completely Fair Scheduler (CFS)
• Basic Idea: track CPU time per thread and schedule

threads to match up average rate of execution
• Scheduling Decision:

– “Repair” illusion of complete fairness
– Choose thread with minimum CPU time
– Closely related to Fair Queueing

• Use a heap-like scheduling queue for this…
– O(log N) to add/remove threads

• Sleeping threads don’t advance their CPU time, so they get a boost when they wake
– Get interactivity automatically!

• Differentiation: Use weights! Key Idea: Assign a weight wi to each process I to
compute the switching quanta Qi

– Basic equal share: 𝑄𝑖 Target Latency ⋅

– Weighted Share: 𝑄 ∑ ⋅ Target Latency

Virtual C
PU

 Tim
e

T1
T2

T3

1
𝑁

CFS: Average rate of
execution = :

Lec 13.33/2/23 Kubiatowicz CS162 © UCB Spring 2023

Deadlock: A Deadly type of Starvation
• Starvation: thread waits indefinitely

– Example, low-priority thread waiting for resources
constantly in use by high-priority threads

• Deadlock: circular waiting for resources
– Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

• Deadlock Starvation but not vice versa
– Starvation can end (but doesn’t have to)
– Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Lec 13.43/2/23 Kubiatowicz CS162 © UCB Spring 2023

Example: Single-Lane Bridge Crossing

CA 140 to Yosemite National Park

Lec 13.53/2/23 Kubiatowicz CS162 © UCB Spring 2023

Bridge Crossing Example
• Each segment of road can be viewed as a resource

– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves
– Traffic only in one direction at a time

• Deadlock: Shown above when two cars in opposite directions meet in middle
– Each acquires one segment and needs next
– Deadlock resolved if one car backs up (preempt resources and rollback)

» Several cars may have to be backed up
• Starvation (not Deadlock):

– East-going traffic really fast no one gets to go west

East
Half

Wait
For

Wait
For

Owned
By

Owned
By

West
Half

Lec 13.63/2/23 Kubiatowicz CS162 © UCB Spring 2023

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Lock yLock x

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Deadlock with Locks

• This lock pattern exhibits non-deterministic deadlock
– Sometimes it happens, sometimes it doesn’t!

• This is really hard to debug!

Lec 13.73/2/23 Kubiatowicz CS162 © UCB Spring 2023

Deadlock with Locks: “Unlucky” Case
Thread A:
x.Acquire();

y.Acquire(); <stalled>
<unreachable>
…
y.Release();
x.Release();

Thread B:

y.Acquire();

x.Acquire(); <stalled>
<unreachable>
…
x.Release();
y.Release(); Lock yLock x

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Neither thread will get to run Deadlock

Lec 13.83/2/23 Kubiatowicz CS162 © UCB Spring 2023

Deadlock with Locks: “Lucky” Case

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();

x.Acquire();
…
x.Release();
y.Release();

Sometimes, schedule won’t trigger deadlock!

Lec 13.93/2/23 Kubiatowicz CS162 © UCB Spring 2023

Other Types of Deadlock
• Threads often block waiting for resources

– Locks
– Terminals
– Printers
– CD drives
– Memory

• Threads often block waiting for other threads
– Pipes
– Sockets

• You can deadlock on any of these!

Lec 13.103/2/23 Kubiatowicz CS162 © UCB Spring 2023

Deadlock with Space

Thread A:
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

If only 2 MB of space, we get same deadlock situation

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Lec 13.113/2/23 Kubiatowicz CS162 © UCB Spring 2023

Dining Lawyers Problem
• Five chopsticks/Five lawyers (really cheap restaurant)

– Free-for all: Lawyer will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let lawyer take last chopstick if no hungry lawyer has two chopsticks afterwards
– Can we formalize this requirement somehow?

Lec 13.123/2/23 Kubiatowicz CS162 © UCB Spring 2023

Four requirements for occurrence of Deadlock
• Mutual exclusion

– Only one thread at a time can use a resource.
• Hold and wait

– Thread holding at least one resource is waiting to acquire additional
resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread holding the

resource, after thread is finished with it
• Circular wait

– There exists a set {T1, …, Tn} of waiting threads
» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1

Lec 13.133/2/23 Kubiatowicz CS162 © UCB Spring 2023

Administrivia
• Welcome to Project 2

– Please get started earlier than last time!
• Midterm 2

– Coming up in < 2 weeks! (3/15)
– Everything up to the midterm is fair game (perhaps deemphasizing the lecture

on the day before….)

Lec 13.143/2/23 Kubiatowicz CS162 © UCB Spring 2023

Symbols

Detecting Deadlock: Resource-Allocation Graph
• System Model

– A set of Threads T1, T2, . . ., Tn

– Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
– Each resource type Ri has Wi instances
– Each thread utilizes a resource as follows:

»Request() / Use() / Release()

• Resource-Allocation Graph:
– V is partitioned into two types:

» T = {T1, T2, …, Tn}, the set threads in the system.
» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge T1 Rj

– assignment edge – directed edge Rj Ti

R1
R2

T1 T2

Lec 13.153/2/23 Kubiatowicz CS162 © UCB Spring 2023

Resource-Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Model:
– request edge – directed edge T1 Rj
– assignment edge – directed edge Rj Ti

Lec 13.163/2/23 Kubiatowicz CS162 © UCB Spring 2023

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
• Let [X] represent an m-ary vector of non-negative integers

(quantities of resources of each type):
[FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X
[AllocX]: Current resources held by thread X

• See if tasks can eventually terminate on their own
[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {

if ([Requestnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

• Nodes left in UNFINISHED deadlocked

Lec 13.173/2/23 Kubiatowicz CS162 © UCB Spring 2023

How should a system deal with deadlock?
• Four different approaches:
1. Deadlock prevention: write your code in a way that it isn’t prone to

deadlock
2. Deadlock recovery: let deadlock happen, and then figure out how to

recover from it
3. Deadlock avoidance: dynamically delay resource requests so deadlock

doesn’t happen
4. Deadlock denial: ignore the possibility of deadlock

• Modern operating systems:
– Make sure the system isn’t involved in any deadlock
– Ignore deadlock in applications

» “Ostrich Algorithm”

Lec 13.183/2/23 Kubiatowicz CS162 © UCB Spring 2023

Techniques for Preventing Deadlock
• Infinite resources

– Include enough resources so that no one ever runs out of resources.
Doesn’t have to be infinite, just large

– Give illusion of infinite resources (e.g. virtual memory)
– Examples:

» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

• No Sharing of resources (totally independent threads)
– Not very realistic

• Don’t allow waiting
– How the phone company avoids deadlock

» Call Mom in Toledo, works way through phone network, but if blocked get busy signal.
– Technique used in Ethernet/some multiprocessor nets

» Everyone speaks at once. On collision, back off and retry
– Inefficient, since have to keep retrying

» Consider: driving to San Francisco; when hit traffic jam, suddenly you’re transported
back home and told to retry!

Lec 13.193/2/23 Kubiatowicz CS162 © UCB Spring 2023

(Virtually) Infinite Resources

• With virtual memory we have “infinite” space so everything will just
succeed, thus above example won’t deadlock

– Of course, it isn’t actually infinite, but certainly larger than 2MB!

Thread A
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Lec 13.203/2/23 Kubiatowicz CS162 © UCB Spring 2023

Techniques for Preventing Deadlock
• Make all threads request everything they’ll need at the beginning.

– Problem: Predicting future is hard, tend to over-estimate resources
– Example:

» If need 2 chopsticks, request both at same time
» Don’t leave home until we know no one is using any intersection between here and where

you want to go; only one car on the Bay Bridge at a time
• Force all threads to request resources in a particular order preventing any cyclic

use of resources
– Thus, preventing deadlock
– Example (x.Acquire(), y.Acquire(), z.Acquire(),…)

» Make tasks request disk, then memory, then…
» Keep from deadlock on freeways around SF by requiring everyone to go clockwise

Lec 13.213/2/23 Kubiatowicz CS162 © UCB Spring 2023

Request Resources Atomically (1)

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Consider instead:
Thread A:
Acquire_both(x, y);
…
y.Release();
x.Release();

Thread B:
Acquire_both(y, x);
…
x.Release();
y.Release();

Rather than:

Lec 13.223/2/23 Kubiatowicz CS162 © UCB Spring 2023

Request Resources Atomically (2)

Thread A
z.Acquire();
x.Acquire();
y.Acquire();
z.Release();
…
y.Release();
x.Release();

Thread B
z.Acquire();
y.Acquire();
x.Acquire();
z.Release();
…
x.Release();
y.Release();

Or consider this:

Lec 13.233/2/23 Kubiatowicz CS162 © UCB Spring 2023

Acquire Resources in Consistent Order

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Consider instead:
Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
x.Acquire();
y.Acquire();
…
x.Release();
y.Release();

Does it matter in
which order the
locks are released?

Rather than:

Lec 13.243/2/23 Kubiatowicz CS162 © UCB Spring 2023

Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right, but is blocked by other trains
• Similar problem to multiprocessor networks

– Wormhole-Routed Network: Messages trail through network like a “worm”
• Fix? Imagine grid extends in all four directions

– Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south

– Called “dimension ordering” (X then Y)

Lec 13.253/2/23 Kubiatowicz CS162 © UCB Spring 2023

Techniques for Recovering from Deadlock
• Terminate thread, force it to give up resources

– In Bridge example, Godzilla picks up a car, hurls it into the river. Deadlock solved!
– Hold dining lawyer in contempt and take away in handcuffs
– But, not always possible – killing a thread holding a mutex leaves world inconsistent

• Preempt resources without killing off thread
– Take away resources from thread temporarily
– Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads
– Hit the rewind button on TiVo, pretend last few minutes never happened
– For bridge example, make one car roll backwards (may require others behind him)
– Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may reenter deadlock once again

• Many operating systems use other options

Lec 13.263/2/23 Kubiatowicz CS162 © UCB Spring 2023

Another view of virtual memory: Pre-empting Resources

• Before: With virtual memory we have “infinite” space so everything will just
succeed, thus above example won’t deadlock

– Of course, it isn’t actually infinite, but certainly larger than 2MB!

• Alternative view: we are “pre-empting” memory when paging out to disk,
and giving it back when paging back in

– This works because thread can’t use memory when paged out

Thread A:
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B:
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Lec 13.273/2/23 Kubiatowicz CS162 © UCB Spring 2023

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Techniques for Deadlock Avoidance
• Idea: When a thread requests a resource, OS checks if it

would result in deadlock
– If not, it grants the resource right away
– If so, it waits for other threads to release resources

• Example:

Wait?
But it’s already too late…

Blocks…

Lec 13.283/2/23 Kubiatowicz CS162 © UCB Spring 2023

Deadlock Avoidance: Three States

• Safe state
– System can delay resource acquisition to prevent deadlock

• Unsafe state
– No deadlock yet…
– But threads can request resources in a pattern that unavoidably leads

to deadlock

• Deadlocked state
– There exists a deadlock in the system
– Also considered “unsafe”

Deadlock avoidance: prevent system
from reaching an unsafe state

Lec 13.293/2/23 Kubiatowicz CS162 © UCB Spring 2023

Deadlock Avoidance
• Idea: When a thread requests a resource, OS checks if

it would result in deadlock an unsafe state
– If not, it grants the resource right away
– If so, it waits for other threads to release resources

• Example:

Wait until
Thread A
releases
mutex X

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Lec 13.303/2/23 Kubiatowicz CS162 © UCB Spring 2023

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free (conservative!)

Lec 13.313/2/23 Kubiatowicz CS162 © UCB Spring 2023

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free (conservative!)

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {

if ([Requestnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

Lec 13.323/2/23 Kubiatowicz CS162 © UCB Spring 2023

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free (conservative!)

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {

if ([Maxnode]‐[Allocnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

Lec 13.333/2/23 Kubiatowicz CS162 © UCB Spring 2023

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free (conservative!)

– Keeps system in a “SAFE” state: there exists a sequence {T1, T2, … Tn} with T1
requesting all remaining resources, finishing, then T2 requesting all remaining
resources, etc..

Lec 13.343/2/23 Kubiatowicz CS162 © UCB Spring 2023

Banker’s Algorithm Example
• Banker’s algorithm with dining lawyers

– “Safe” (won’t cause deadlock) if when try to
grab chopstick either:

» Not last chopstick
» Is last chopstick but someone will have

two afterwards

– What if k-handed lawyers? Don’t allow if:
» It’s the last one, no one would have k
» It’s 2nd to last, and no one would have k-1
» It’s 3rd to last, and no one would have k-2
» …

Lec 13.353/2/23 Kubiatowicz CS162 © UCB Spring 2023

Deadlock Summary
• Four conditions for deadlocks

– Mutual exclusion
– Hold and wait
– No preemption
– Circular wait

• Techniques for addressing Deadlock
– Deadlock prevention:

» write your code in a way that it isn’t prone to deadlock
– Deadlock recovery:

» let deadlock happen, and then figure out how to recover from it
– Deadlock avoidance:

» dynamically delay resource requests so deadlock doesn’t happen
» Banker’s Algorithm provides on algorithmic way to do this

– Deadlock denial:
» ignore the possibility of deadlock

