CS162 Operating Systems and Systems Programming Lecture 13

Scheduling 4: Deadlock (Finished)

March 2nd, 2023 Prof. John Kubiatowicz http://cs162.eecs.Berkeley.edu

Recall: Linux Completely Fair Scheduler (CFS)

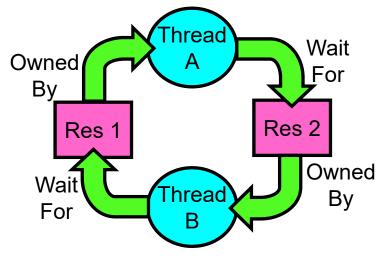
- Basic Idea: track CPU time per thread and schedule threads to match up average rate of execution
- Scheduling Decision:
 - "Repair" illusion of complete fairness
 - Choose thread with minimum CPU time
 - Closely related to Fair Queueing
- Use a heap-like scheduling queue for this...
 - -O(log N) to add/remove threads
- Sleeping threads don't advance their CPU time, so they get a boost when they wake

 Get interactivity automatically!

Kubiatowicz CS162 © UCB Spring 2023

- Differentiation: Use weights! Key Idea: Assign a weight w_i to each process *I* to compute the switching quanta Q_i
 - Basic equal share: Q_i = Target Latency $\cdot \frac{1}{N}$

– Weighted Share:
$$Q_i = {\binom{w_i}{\sum_p w_p}} \cdot \text{Target Latency}$$


3/2/23

CFS: Average rate of execution = $\frac{1}{N}$: T_1 T_2 T_3 $\frac{1}{N}$

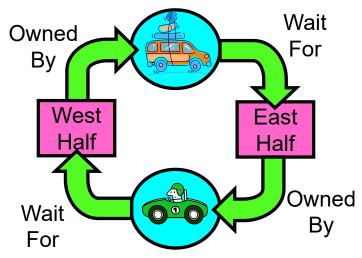
Lec 13.2

Deadlock: A Deadly type of Starvation

- Starvation: thread waits indefinitely
 - Example, low-priority thread waiting for resources constantly in use by high-priority threads
- Deadlock: circular waiting for resources
 - Thread A owns Res 1 and is waiting for Res 2 Thread B owns Res 2 and is waiting for Res 1
- Deadlock \Rightarrow Starvation but not vice versa
 - Starvation can end (but doesn't have to)
 - Deadlock can't end without external intervention

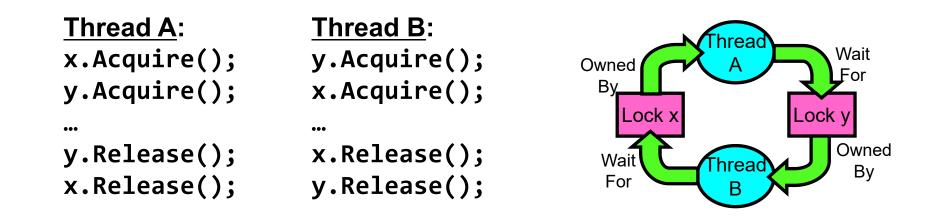
Example: Single-Lane Bridge Crossing

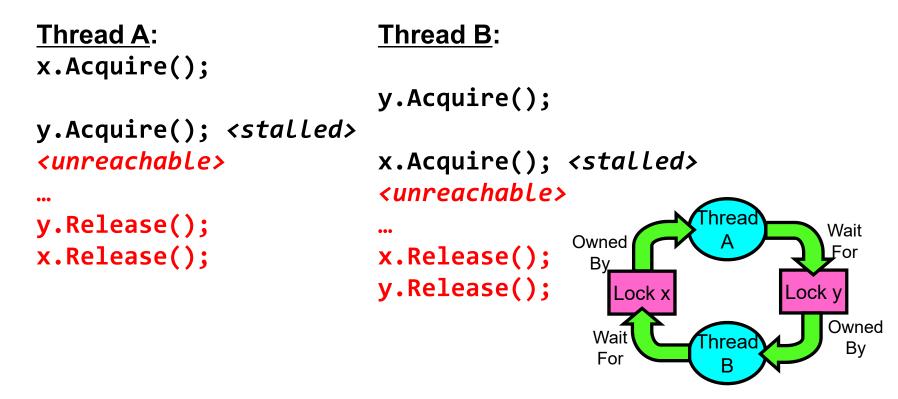



CA 140 to Yosemite National Park

Kubiatowicz CS162 © UCB Spring 2023

Bridge Crossing Example


- Each segment of road can be viewed as a resource
 - Car must own the segment under them
 - Must acquire segment that they are moving into
- For bridge: must acquire both halves
 Traffic only in one direction at a time


- Deadlock: Shown above when two cars in opposite directions meet in middle
 - Each acquires one segment and needs next
 - Deadlock resolved if one car backs up (preempt resources and rollback)
 - » Several cars may have to be backed up
- Starvation (not Deadlock):
 - East-going traffic really fast \Rightarrow no one gets to go west

Deadlock with Locks

- This lock pattern exhibits *non-deterministic deadlock* Sometimes it happens, sometimes it doesn't!
- This is really hard to debug!

Deadlock with Locks: "Unlucky" Case

Neither thread will get to run \Rightarrow Deadlock

Deadlock with Locks: "Lucky" Case

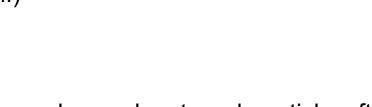
<u>Thread A</u> :	<u>Thread B:</u>
<pre>x.Acquire();</pre>	
y.Acquire();	
•••	y.Acquire();
y.Release();	
<pre>x.Release();</pre>	
	<pre>x.Acquire();</pre>
	•••
	<pre>x.Release();</pre>
	y.Release();

Sometimes, schedule won't trigger deadlock!

Other Types of Deadlock

- Threads often block waiting for resources
 - Locks
 - Terminals
 - Printers
 - CD drives
 - Memory
- Threads often block waiting for other threads
 - Pipes
 - Sockets
- You can deadlock on any of these!

Deadlock with Space


<u>Thread A:</u>	-
AllocateOrWait(1 MB)	
AllocateOrWait(1 MB)	
Free(1 MB)	
Free(1 MB)	

<u>Thread B</u> AllocateOrWait(1 MB) AllocateOrWait(1 MB) Free(1 MB) Free(1 MB)

If only 2 MB of space, we get same deadlock situation

Dining Lawyers Problem

- Five chopsticks/Five lawyers (really cheap restaurant)
 - Free-for all: Lawyer will grab any one they can
 - Need two chopsticks to eat
- What if all grab at same time?
 - Deadlock!
- How to fix deadlock?
 - Make one of them give up a chopstick (Hah!)
 - Eventually everyone will get chance to eat
- How to prevent deadlock?
 - Never let lawyer take last chopstick if no hungry lawyer has two chopsticks afterwards
 - Can we formalize this requirement somehow?

RICE

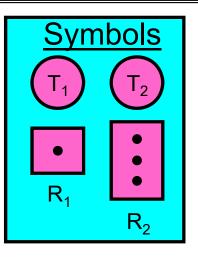
Four requirements for occurrence of Deadlock

- Mutual exclusion
 - Only one thread at a time can use a resource.
- Hold and wait
 - Thread holding at least one resource is waiting to acquire additional resources held by other threads
- No preemption
 - Resources are released only voluntarily by the thread holding the resource, after thread is finished with it
- Circular wait
 - There exists a set $\{T_1, ..., T_n\}$ of waiting threads
 - » T_1 is waiting for a resource that is held by T_2
 - » T_2 is waiting for a resource that is held by T_3

» ...

» T_n is waiting for a resource that is held by T_1

Administrivia


- Welcome to Project 2
 - Please get started earlier than last time!
- Midterm 2
 - Coming up in < 2 weeks! (3/15)
 - Everything up to the midterm is fair game (perhaps deemphasizing the lecture on the day before....)

Detecting Deadlock: Resource-Allocation Graph

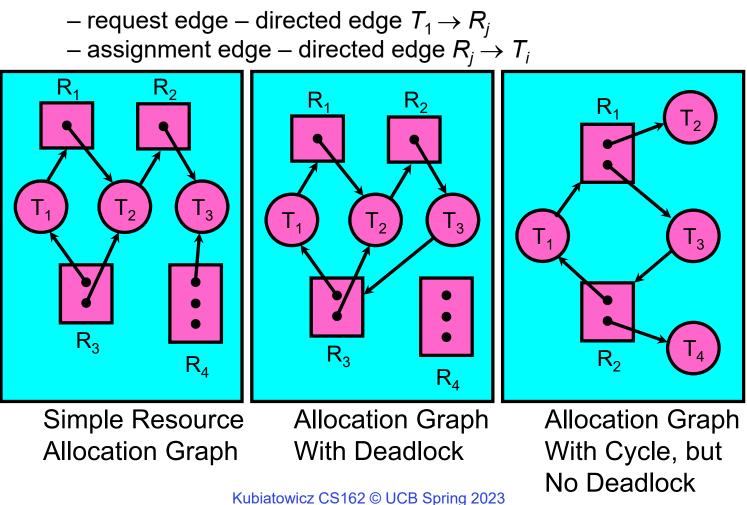
- System Model
 - -A set of Threads T_1, T_2, \ldots, T_n
 - Resource types R_1, R_2, \ldots, R_m

CPU cycles, memory space, I/O devices

- Each resource type R_i has W_i instances

- Resource-Allocation Graph:
 - -V is partitioned into two types:

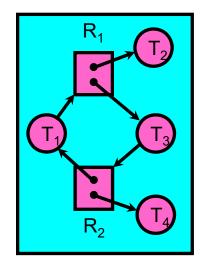
» $T = \{T_1, T_2, \dots, T_n\}$, the set threads in the system.


» $R = \{R_1, R_2, ..., R_m\}$, the set of resource types in system

-request edge - directed edge $T_1 \rightarrow R_i$

-assignment edge - directed edge $R_j \rightarrow T_i$

Resource-Allocation Graph Examples


• Model:

Deadlock Detection Algorithm

- Let [X] represent an m-ary vector of non-negative integers (quantities of resources of each type):
- · See if tasks can eventually terminate on their own

```
[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {
    done = true
    Foreach node in UNFINISHED {
        if ([Request<sub>node</sub>] <= [Avail]) {
            remove node from UNFINISHED
        [Avail] = [Avail] + [Alloc<sub>node</sub>]
        done = false
        }
    }
    } until(done)
```


• Nodes left in UNFINISHED \Rightarrow deadlocked

How should a system deal with deadlock?

- Four different approaches:
- 1. <u>Deadlock prevention</u>: write your code in a way that it isn't prone to deadlock
- 2. <u>Deadlock recovery</u>: let deadlock happen, and then figure out how to recover from it
- 3. <u>Deadlock avoidance</u>: dynamically delay resource requests so deadlock doesn't happen
- 4. <u>Deadlock denial</u>: ignore the possibility of deadlock
- Modern operating systems:
 - Make sure the system isn't involved in any deadlock
 - Ignore deadlock in applications
 - » "Ostrich Algorithm"

Techniques for Preventing Deadlock

- Infinite resources
 - Include enough resources so that no one ever runs out of resources.
 Doesn't have to be infinite, just large
 - Give illusion of infinite resources (e.g. virtual memory)
 - Examples:
 - » Bay bridge with 12,000 lanes. Never wait!
 - » Infinite disk space (not realistic yet?)
- No Sharing of resources (totally independent threads)
 - Not very realistic
- Don't allow waiting
 - How the phone company avoids deadlock
 - » Call Mom in Toledo, works way through phone network, but if blocked get busy signal.
 - Technique used in Ethernet/some multiprocessor nets
 - » Everyone speaks at once. On collision, back off and retry
 - Inefficient, since have to keep retrying
 - » Consider: driving to San Francisco; when hit traffic jam, suddenly you're transported back home and told to retry!

(Virtually) Infinite Resources

<u>Thread A</u>	<u>Thread B</u>
AllocateOrWait(1 MB)	AllocateOrWait(1 MB)
AllocateOrWait(1 MB)	AllocateOrWait(1 MB)
Free(1 MB)	Free(1 MB)
Free(1 MB)	Free(1 MB)

• With virtual memory we have "infinite" space so everything will just succeed, thus above example won't deadlock

- Of course, it isn't actually infinite, but certainly larger than 2MB!

Techniques for Preventing Deadlock

- Make all threads request everything they'll need at the beginning.
 - Problem: Predicting future is hard, tend to over-estimate resources
 - Example:
 - » If need 2 chopsticks, request both at same time
 - » Don't leave home until we know no one is using any intersection between here and where you want to go; only one car on the Bay Bridge at a time
- Force all threads to request resources in a particular order preventing any cyclic use of resources
 - Thus, preventing deadlock
 - Example (x.Acquire(), y.Acquire(), z.Acquire(),...)
 - » Make tasks request disk, then memory, then...
 - » Keep from deadlock on freeways around SF by requiring everyone to go clockwise

Request Resources Atomically (1)

Rather than:

```
Thread A:
x.Acquire();
y.Acquire();
...
y.Release();
x.Release();
```

```
Thread B:
y.Acquire();
x.Acquire();
...
x.Release();
y.Release();
```

Consider instead:

Thread A:
Acquire_both(x, y);

```
...
y.Release();
x.Release();
```

```
Thread B:
Acquire_both(y, x);
```

x.Release();
y.Release();

...

Request Resources Atomically (2)

Or consider this:

```
Thread A Th
z.Acquire(); z.A
x.Acquire(); y.A
y.Acquire(); x.A
z.Release(); z.A
....
y.Release(); x.A
x.Release(); y.A
```

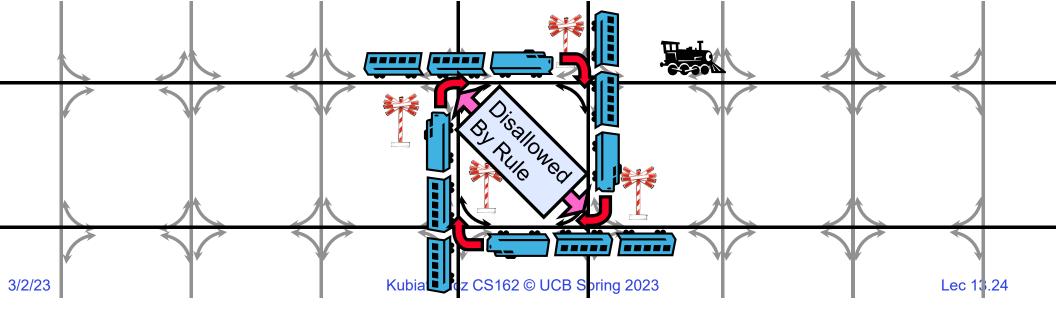
Thread B
z.Acquire();
y.Acquire();
x.Acquire();
z.Release();
...
x.Release();

Acquire Resources in Consistent Order

Rather than:

```
Thread A:Threadx.Acquire();y.Acqy.Acquire();x.Acq......y.Release();x.Release();x.Release();y.Release();
```

Consider instead:


```
Thread A:
x.Acquire();
y.Acquire();
...
y.Release();
x.Release();
```

Thread B: y.Acquire(); x.Acquire(); ... x.Release(); y.Release();

Thread B: x.Acquire(); y.Acquire(); ... x.Release(); y.Release();
Does it matter in which order the locks are released?

Train Example (Wormhole-Routed Network)

- Circular dependency (Deadlock!)
 - Each train wants to turn right, but is blocked by other trains
- Similar problem to multiprocessor networks
 - Wormhole-Routed Network: Messages trail through network like a "worm"
- Fix? Imagine grid extends in all four directions
 - Force ordering of channels (tracks)
 - » Protocol: Always go east-west first, then north-south
 - Called "dimension ordering" (X then Y)

Techniques for Recovering from Deadlock

- Terminate thread, force it to give up resources
 - In Bridge example, Godzilla picks up a car, hurls it into the river. Deadlock solved!
 - Hold dining lawyer in contempt and take away in handcuffs
 - But, not always possible killing a thread holding a mutex leaves world inconsistent
- Preempt resources without killing off thread
 - Take away resources from thread temporarily
 - Doesn't always fit with semantics of computation
- Roll back actions of deadlocked threads
 - Hit the rewind button on TiVo, pretend last few minutes never happened
 - For bridge example, make one car roll backwards (may require others behind him)
 - Common technique in databases (transactions)
 - Of course, if you restart in exactly the same way, may reenter deadlock once again
- Many operating systems use other options

Another view of virtual memory: Pre-empting Resources

<u>Thread A</u> :	<u>Thread B</u> :
AllocateOrWait(1 MB)	AllocateOrWait(1 MB)
AllocateOrWait(1 MB)	AllocateOrWait(1 MB)
Free(1 MB)	Free(1 MB)
Free(1 MB)	Free(1 MB)

- Before: With virtual memory we have "infinite" space so everything will just succeed, thus above example won't deadlock
 - Of course, it isn't actually infinite, but certainly larger than 2MB!
- Alternative view: we are "pre-empting" memory when paging out to disk, and giving it back when paging back in
 - This works because thread can't use memory when paged out

Techniques for Deadlock Avoidance

- Idea: When a thread requests a resource, OS checks if it would result in deadlock
 - If not, it grants the resource right away
 - If so, it waits for other threads to release resources

THIS DOES NOT WORK!!!!

• Example:

Deadlock Avoidance: Three States

• Safe state

– System can delay resource acquisition to prevent deadlock

- Unsafe state
 - No deadlock yet...

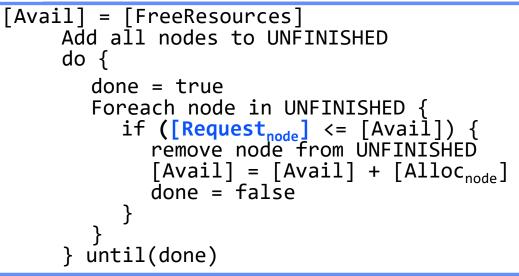
Deadlock avoidance: prevent system from reaching an *unsafe* state

- But threads can request resources in a pattern that *unavoidably* leads to deadlock
- Deadlocked state
 - There exists a deadlock in the system
 - Also considered "unsafe"

Deadlock Avoidance

- Idea: When a thread requests a resource, OS checks if it would result in deadlock an unsafe state
 - If not, it grants the resource right away
 - If so, it waits for other threads to release resources
- Example:

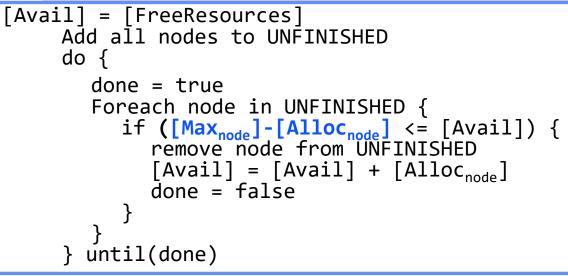
<u>Thread A</u> :	<u>Thread B:</u>	
x.Acquire();	y.Acquire();	Wait until Thread A
y.Acquire();	<pre>x.Acquire();</pre>	
•••	•••	releases
y.Release();	<pre>x.Release();</pre>	mutex X
<pre>x.Release();</pre>	y.Release();	


- Toward right idea:
 - State maximum (max) resource needs in advance
 - Allow particular thread to proceed if:

(available resources - #requested) \geq max remaining that might be needed by any thread

- Banker's algorithm (less conservative):
 - Allocate resources dynamically
 - » Evaluate each request and grant if some ordering of threads is still deadlock free afterward
 - » Technique: pretend each request is granted, then run deadlock detection algorithm, substituting:

([Max_{node}]-[Alloc_{node}] <= [Avail]) for ([Request_{node}] <= [Avail]) Grant request if result is deadlock free (conservative!)



- » Evaluate each request and grant if some ordering of threads is still deadlock free afterward
- » Technique: pretend each request is granted, then run deadlock detection algorithm, substituting:

([Max_{node}]-[Alloc_{node}] <= [Avail]) for ([Request_{node}] <= [Avail]) Grant request if result is deadlock free (conservative!)

- » Evaluate each request and grant if some ordering of threads is still deadlock free afterward
- » Technique: pretend each request is granted, then run deadlock detection algorithm, substituting:

([Max_{node}]-[Alloc_{node}] <= [Avail]) for ([Request_{node}] <= [Avail]) Grant request if result is deadlock free (conservative!)

- Toward right idea:
 - State maximum (max) resource needs in advance
 - Allow particular thread to proceed if:

(available resources - #requested) \geq max remaining that might be needed by any thread

- Banker's algorithm (less conservative):
 - Allocate resources dynamically
 - » Evaluate each request and grant if some ordering of threads is still deadlock free afterward
 - » Technique: pretend each request is granted, then run deadlock detection algorithm, substituting:

([Max_{node}]-[Alloc_{node}] <= [Avail]) for ([Request_{node}] <= [Avail]) Grant request if result is deadlock free (conservative!)

Keeps system in a "SAFE" state: there exists a sequence {T₁, T₂, ... T_n} with T₁ requesting all remaining resources, finishing, then T₂ requesting all remaining resources, etc..

Banker's Algorithm Example

- Banker's algorithm with dining lawyers
 - "Safe" (won't cause deadlock) if when try to grab chopstick either:
 - » Not last chopstick
 - » Is last chopstick but someone will have two afterwards
 - What if k-handed lawyers? Don't allow if:
 » It's the last one, no one would have k
 » It's 2nd to last, and no one would have k-1
 » It's 3rd to last, and no one would have k-2
 » ...

Deadlock Summary

- Four conditions for deadlocks
 - Mutual exclusion
 - Hold and wait
 - No preemption
 - Circular wait
- Techniques for addressing Deadlock
 - Deadlock prevention:
 - » write your code in a way that it isn't prone to deadlock
 - <u>Deadlock recovery</u>:
 - » let deadlock happen, and then figure out how to recover from it
 - <u>Deadlock avoidance</u>:
 - » dynamically delay resource requests so deadlock doesn't happen
 - » Banker's Algorithm provides on algorithmic way to do this
 - Deadlock denial:
 - » ignore the possibility of deadlock