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• Used to compute access time probabilistically:
AMAT = Hit RateL1 x Hit TimeL1 + Miss RateL1 x Miss TimeL1
Hit RateL1 + Miss RateL1 = 1
Hit TimeL1 = Time to get value from L1 cache.
Miss TimeL1 = Hit TimeL1 + Miss PenaltyL1
Miss PenaltyL1 = AVG Time to get value from lower level (DRAM)
So, AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

• What about more levels of hierarchy?
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1
Miss PenaltyL1 = AVG time to get value from lower level (L2)

= Hit TimeL2 + Miss RateL2 x Miss PenaltyL2
Miss PenaltyL2 = Average Time to fetch from below L2 (DRAM)

AMAT = Hit TimeL1 +
Miss RateL1 x (Hit TimeL2 + Miss RateL2 x Miss PenaltyL2)

• And so on … (can do this recursively for more levels!)

Recall 61C: Average Memory Access Time
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Recall: Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on same page (accesses are sequential)
– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write (untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?
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What Actually Happens on a TLB Miss?
• Hardware traversed page tables (x86, many others):

– On TLB miss, hardware in MMU looks at current page table to fill TLB (may walk 
multiple levels)

» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which kernel decides what to do 

afterwards
• Software traversed Page tables (like MIPS):

– On TLB miss, processor receives TLB fault
– Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults since they use translation 

for many things
– Examples: 

» shared segments
» user-level portions of an operating system
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Transparent Exceptions: Page fault

• How to transparently restart faulting instructions?
– (Consider load or store that gets Page fault)
– Could we just skip faulting instruction? 

» No: need to perform load or store after reconnecting physical page!
• Hardware must help out by saving:

– Faulting instruction and partial state 
» Need to know which instruction caused fault 
» Is single PC sufficient to identify faulting position????

– Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc

• What if an instruction has side-effects?

Copy on Write/
Update PTE
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Consider weird things that can happen
• What if an instruction has side effects?

– Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)

– Example 1: mov (sp)+,10
» What if page fault occurs when writing to stack pointer?
» Did sp get incremented before or after the page fault?

– Example 2: strcpy (r1), (r2)
» Source and destination overlap: can’t unwind in principle!
» IBM S/370 and VAX solution: execute twice – once read-only

• What about “RISC” processors?
– For instance delayed branches?

» Example: bne somewhere
ld r1,(sp)

» Restart after page fault: need two PCs, PC and nPC!
– Delayed exceptions:

» Example: div r1, r2, r3
ld r1, (sp)

» What if takes many cycles to discover divide by zero, but load has already 
caused page fault?
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Precise Exceptions
• Precise  state of the machine is preserved as if program executed up to 

the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as if they have not 

even started
– Same system code will work on different implementations 
– Difficult in the presence of pipelining, out-of-order execution, ...
– x86 takes this position

• Imprecise  system software has to figure out what is where and put it all 
back together

• Performance goals often lead designers to forsake precise interrupts
– system software developers, user, markets etc. usually wish they had not 

done this
• Modern techniques for out-of-order execution and branch prediction help 

implement precise interrupts
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Current Intel x86 (Skylake, Cascade Lake)

(L1) Instruction TLB

(L2) Unified TLB

(L1) Data TLB

Reorder Buffer
(Precise Exceptions)
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Current Example: Memory Hierarchy
• Caches (all 64 B line size)

– L1 I-Cache: 32 KiB/core, 8-way set assoc.
– L1 D Cache: 32 KiB/core, 8-way set assoc.,  4-5 cycles load-to-use, Write-back policy
– L2 Cache: 1 MiB/core, 16-way set assoc., Inclusive, Write-back policy, 14 cycles 

latency
– L3 Cache: 1.375 MiB/core, 11-way set assoc., shared across cores, Non-inclusive 

victim cache, Write-back policy, 50-70 cycles latency
• TLB

– L1 ITLB, 128 entries; 8-way set assoc. for 4 KB pages
» 8 entries per thread; fully associative, for 2 MiB / 4 MiB page 

– L1 DTLB 64 entries; 4-way set associative for 4 KB pages
» 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
» 4 entries; 4-way associative, 1G page translations:

– L2 STLB: 1536 entries; 12-way set assoc. 4 KiB + 2 MiB pages
» 16 entries; 4-way set associative, 1 GiB page translations:
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What happens on a Context Switch?
• Need to do something, since TLBs map virtual addresses to physical addresses

– Address Space just changed, so TLB entries no longer valid!
• Options?

– Invalidate (“Flush”) TLB: simple but might be expensive
» What if switching frequently between processes?

– Include ProcessID in TLB
» This is an architectural solution: needs hardware

• What if translation tables change?
– For example, to move page from memory to disk or vice versa…
– Must invalidate TLB entry!

» Otherwise, might think that page is still in memory!
– Called “TLB Consistency”

• Aside: with Virtually-Indexed, Virtually-Tagged cache, need to flush cache!
– Everyone has their own version of the address “0” and can’t distinguish them
– This is one advantage of Virtually-Indexed, Physically-Tagged caches..
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Putting Everything Together: Address Translation

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table 
(1st level)

Page Table 
(2nd level)

Physical 
Memory:

Offset
Physical Address:

Physical
Page #
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Putting Everything Together: TLB

Offset

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical 
Memory:

Physical Address:

…

TLB:

Physical
Page #
Physical
Page #
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical 
Memory:

Physical Address:

…

tag: block:
cache:

index bytetag

Physical
Page #
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Page Fault Handling
• The Virtual-to-Physical Translation fails

– PTE marked invalid, Privilege Level Violation, Access violation, or does not exist
– Causes an Fault / Trap

» Not an interrupt because synchronous to instruction execution
– May occur on instruction fetch or data access
– Protection violations typically terminate the process

• Other Page Faults engage operating system to fix the situation and retry the 
instruction

– Allocate an additional stack page, or
– Make the page accessible – (Copy on Write), 
– Bring page in from secondary storage to memory – demand paging

• Fundamental inversion of the hardware / software boundary
– Need to execute software to allow hardware to proceed!



Lec 17.153/16/23 Kubiatowicz CS162 © UCB Spring 2023

Page Fault  Demand Paging

virtual address

MMU
PT

instruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset
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Administrivia
• Still grading exam!

– Hopefully have it by early next week
• Project 2 in full swing

– Stay on top of this one.  Don’t wait until last moment to get pieces together
• Homework 4 also in full swing
• Make sure to fill out survey!  Due today!

– We really want to hear how you think we are doing
– Also, will get a chance to suggest topics for the special topics lecture
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Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year
• But they don’t use all their memory all of the time

– 90-10 rule: programs spend 90% of their time in 10% of their code
– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as “cache” for disk
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Management & Access to the Memory Hierarchy
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Demand Paging as Caching, …
• What  “block size”? - 1 page (e.g, 4 KB)
• What “organization” ie. direct-mapped, set-assoc., fully-associative?

– Fully associative since arbitrary virtual  physical mapping
• How do we locate a page?

– First check TLB, then page-table traversal
• What is page replacement policy? (i.e. LRU, Random…)

– This requires more explanation… (kinda LRU)
• What happens on a miss?

– Go to lower level to fill miss (i.e. disk)
• What happens on a write? (write-through/write back?)

– Definitely write-back – need dirty bit!
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Page
Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory 
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than physical memory

» More programs fit into memory, allowing more concurrency 
• Principle: Transparent Level of Indirection (page table) 

– Supports flexible placement of physical data
» Data could be on disk or somewhere across network

– Variable location of data transparent to user program
» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB



Virtual
Memory
4 GB



Lec 17.213/16/23 Kubiatowicz CS162 © UCB Spring 2023

Review: What is in a PTE?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– 2-level page tabler (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures) 
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently

PS: Page Size: PS=14MB page (directory only).
Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0

PS D A

PC
D

PW
T U W P

01234567811-931-12
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• PTE makes demand paging implementatable
– Valid  Page in memory, PTE points at physical page
– Not Valid  Page not in memory; use info in PTE to find it on 

disk when necessary
• Suppose user references page with invalid PTE?

– Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”

– What does OS do on a Page Fault?:
» Choose an old page to replace 
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs another 

process from ready queue
» Suspended process sits on wait queue

Demand Paging Mechanisms
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Origins of Paging

Disks provide most 
of the storage

Relatively small 
memory, for many 
processes

P

. . .

Many clients on dumb 
terminals running 
different programs

Keep memory full 
of the frequently 
accesses pages 

Keep most of the 
address space on disk

Actively swap 
pages to/from
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Very Different Situation Today

Powerful system
Huge memory
Huge disk
Single user
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A Picture on one machine

• Memory stays about 75% used, 25% for dynamics
• A lot of it is shared 1.9 GB
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• Extend the stack
– Allocate a page and zero it

• Extend the heap (sbrk of old, today mmap)
• Process Fork

– Create a copy of the page table
– Entries refer to parent pages – NO-WRITE
– Shared read-only pages remain shared
– Copy page on write

• Exec 
– Only bring in parts of the binary in active use
– Do this on demand

• MMAP to explicitly share region (or to access a file as RAM)

Many Uses of Virtual Memory and “Demand Paging” …
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Classic: Loading an executable into memory

• .exe
– lives on disk in the file system
– contains contents of code & data segments, relocation entries and symbols
– OS loads it into memory, initializes registers (and initial stack pointer)
– program sets up stack and heap upon initialization: 

crt0 (C runtime init)

disk (huge) memory

code

data

info

exe
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Create Virtual Address Space of the Process

• Utilized pages in the VAS are backed by a page block on disk
– Called the backing store or swap file
– Typically in an optimized block store, but can think of it like a file

disk (huge) memory

code

data

heap

stack

kernel

process VAS

sbrk

kernel 
code & 
data

user page
frames

user 
pagetable
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Create Virtual Address Space of the Process

• User Page table maps entire VAS
• All the utilized regions are backed on disk

– swapped into and out of memory as needed
• For every process

disk (huge, TB) memory

code

data

heap

stack

kernel

process VAS (GBs)

kernel 
code & 
data

user page
frames

user 
pagetable

code

data

heap

stack
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Create Virtual Address Space of the Process

• User Page table maps entire VAS
– Resident pages to the frame in memory they occupy
– The portion of it that the HW needs to access must be resident in memory

disk (huge, TB) memory

code

data

heap

stack

kernel

VAS 
[per process]

kernel 
code & 
data

user page
frames

user 
pagetable

code

data

heap

stack

PT
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Provide Backing Store for VAS

• User Page table maps entire VAS
• Resident pages mapped to memory frames
• For all other pages, OS must record where to find them on disk

– Many ways to do this, but might use remaining bits of PTE when P=0

disk (huge, TB) memory

code

data

heap

stack

kernel

kernel 
code & 
data

user page
frames

user 
pagetable

code

data

heap

stack

VAS 
[per process]
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What Data Structure Maps 
Non-Resident Pages to Disk?

• FindBlock(PID, page#) → disk_block
– Some OSs utilize spare space in PTE for paged blocks
– Like the PT, but purely software

• Where to store it?
– In memory – can be compact representation if swap storage is contiguous on disk
– Could use hash table (like Inverted PT)

• Usually want backing store for resident pages too

• May map code segment directly to on-disk image
– Saves a copy of code to swap file

• May share code segment with multiple instances of the program
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Provide Backing Store for VAS
disk (huge, TB)

memory

kernel 
code & 
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On page Fault …
disk (huge, TB)
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On page Fault … find & start load
disk (huge, TB)

memory
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code & 
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On page Fault … schedule other P or T
disk (huge, TB)
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On page Fault … update PTE
disk (huge, TB)

memory

kernel 
code & 
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Eventually reschedule faulting thread
disk (huge, TB)

memory

kernel 
code & 
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user 
page
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pagetablecode
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Summary: Steps in Handling a Page Fault
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Some questions we need to answer!
• During a page fault, where does the OS get a free frame?

– Keeps a free list
– Unix runs a “reaper” if memory gets too full

» Schedule dirty pages to be written back on disk
» Zero (clean) pages which haven’t been accessed in a while

– As a last resort, evict a dirty page first

• How can we organize these mechanisms?
– Work on the replacement policy

• How many page frames/process?
– Like thread scheduling, need to “schedule” memory resources:

» Utilization?  fairness? priority?
– Allocation of disk paging bandwidth
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Working Set Model
• As a program executes it transitions through a sequence 

of “working sets” consisting of varying sized subsets of 
the address space

Time

Ad
dr

es
s
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Cache Behavior under WS model

• Amortized by fraction of time the Working Set is active
• Transitions from one WS to the next
• Capacity, Conflict, Compulsory misses
• Applicable to memory caches and pages.  Others ?
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Another model of Locality: Zipf

• Likelihood of accessing item of rank r is α 1/ra

• Although rare to access items below the top few, there are so 
many that it yields a “heavy tailed” distribution

• Substantial value from even a tiny cache
• Substantial misses from even a very large cache
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Demand Paging Cost Model
• Since Demand Paging like caching, can compute average access time! 

(“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
– EAT = Hit Time + Miss Rate x Miss Penalty

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = 200ns + p x 8 ms
= 200ns + p x 8,000,000ns

• If one access out of 1,000 causes a page fault, then EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– EAT < 200ns x 1.1  p < 2.5 x 10-6

– This is about 1 page fault in 400,000!
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What Factors Lead to Misses in Page Cache?
• Compulsory Misses: 

– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow!  More later

• Capacity Misses:
– Not enough memory. Must somehow increase available memory size.
– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)
» Another option:  If multiple processes in memory: adjust percentage of memory 

allocated to each one!
• Conflict Misses:

– Technically, conflict misses don’t exist in virtual memory, since it is a “fully-
associative” cache

• Policy Misses:
– Caused when pages were in memory, but kicked out prematurely because of 

the replacement policy
– How to fix? Better replacement policy
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Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page.  Be fair – let every page live in memory for same amount of 

time.
– Bad – throws out heavily used pages instead of infrequently used

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s.  Simple hardware
– Pretty unpredictable – makes it hard to make real-time guarantees

• MIN (Minimum): 
– Replace page that won’t be used for the longest time 
– Great (provably optimal), but can’t really know future…
– But past is a good predictor of the future …
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Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a while, 

unlikely to be used in the near future.
– Seems like LRU should be a good approximation to MIN.

• How to implement LRU? Use a list:

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when page used so that can change position in list… 
– Many instructions for each hardware access

• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)
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• Suppose we have 3 page frames, 4 virtual pages, and following 
reference stream: 

– A B C A B D A D B C B
• Consider FIFO Page replacement:

• FIFO: 7 faults
• When referencing D, replacing A is bad choice, since need A again 

right away

Example: FIFO (strawman)

C

B
A

D

C
B

A

BCBDADBACBA

3
2
1

Ref:
Page:
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• Suppose we have the same reference stream: 
– A B C A B D A D B C B

• Consider MIN Page replacement:

• MIN: 5 faults 
– Where will D be brought in? Look for page not referenced farthest in 

future
• What will LRU do?

– Same decisions as MIN here, but won’t always be true!

Example: MIN / LRU
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• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• Fairly contrived example of working set of N+1 on N frames

D

Is LRU guaranteed to perform well?
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• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• MIN Does much better:

D

When will LRU perform badly?
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D
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• One desirable property: When you add memory the miss rate 
drops (stack property)

– Does this always happen?
– Seems like it should, right?

• No: Bélády’s anomaly 
– Certain replacement algorithms (FIFO) don’t have this obvious 

property!

Graph of Page Faults Versus The Number of Frames
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Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO!  (Called Bélády’s anomaly)

• After adding memory:
– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with X pages are a 

subset of contents with X+1 Page

D
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Approximating LRU: Clock Algorithm

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• Clock Algorithm: Arrange physical pages in circle with single clock hand
– Approximate LRU (approximation to approximation to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page (called “accessed” in Intel architecture):

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Some hardware sets use bit in the TLB; must be copied back to PTE when TLB entry gets replaced

– On page fault:
» Advance clock hand (not real time)
» Check use bit: 1 used recently; clear and leave alone

0 selected candidate for replacement
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Clock Algorithm: More details

• Will always find a page or loop forever?
– Even if all use bits set, will eventually loop

all the way around  FIFO
• What if hand moving slowly?

– Good sign or bad sign?
» Not many page faults 
» or find page quickly

• What if hand is moving quickly?
– Lots of page faults and/or lots of reference bits set

• One way to view clock algorithm: 
– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?

Set of all pages
in Memory

Single Clock Hand
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Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1  clear use and also clear counter (used in last sweep)
» 0  increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without page being used before 
page is replaced

• How do we pick N?
– Why pick large N? Better approximation to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about “modified” (or “dirty”) pages?

– Takes extra overhead to replace a dirty page, so give dirty pages an extra 
chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)
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Recall: Meaning of PTE bits
• Which bits of a PTE entry are useful to us for the Clock Algorithm?  

Remember Intel PTE:

– The “Present” bit (called “Valid” elsewhere): 
» P==0: Page is invalid and a reference will cause page fault
» P==1: Page frame number is valid and MMU is allowed to proceed with translation

– The “Writable” bit (could have opposite sense and be called “Read-only”):
» W==0: Page is read-only and cannot be written.  
» W==1: Page can be written

– The “Accessed” bit (called “Use” elsewhere):
» A==0: Page has not been accessed (or used) since last time software set A0
» A==1: Page has been accessed (or used) since last time software set A0

– The “Dirty” bit (called “Modified” elsewhere):
» D==0: Page has not been modified (written) since PTE was loaded
» D==1: Page has changed since PTE was loaded

Page Frame Number
(Physical Page Number)

Free
(OS) 0

PS D A

PC
D

PW
T U W P

01234567811-931-12

PTE:
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Clock Algorithms Variations
• Do we really need hardware-supported “modified” bit?

– No.  Can emulate it using read-only bit
» Need software DB of which pages are allowed to be written (needed this anyway)
» We will tell MMU that pages have more restricted permissions than the actually do to 

force page faults (and allow us notice when page is written)
– Algorithm (Clock-Emulated-M):

» Initially, mark all pages as read-only (W0), even writable data pages.  
Further, clear all software versions of the “modified” bit  0 (page not dirty)

» Writes will cause a page fault. Assuming write is allowed, OS sets software 
“modified” bit  1, and marks page as writable (W1).

» Whenever page written back to disk, clear “modified” bit  0, mark read-only
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Clock Algorithms Variations (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above (e.g. for read operation)
» Kernel keeps a “use” bit and “modified” bit for each page

– Algorithm (Clock-Emulated-Use-and-M):
» Mark all pages as invalid, even if in memory.  

Clear emulated “use” bits  0 and “modified” bits  0 for all pages (not used, not dirty)
» Read or write to invalid page traps to OS to tell use page has been used
» OS sets “use” bit  1 in software to indicate that page has been “used”. 

Further:
1) If read, mark page as read-only, W0 (will catch future writes)
2) If write (and write allowed), set “modified” bit  1, mark page as writable (W1)

» When clock hand passes, reset emulated “use” bit  0 and mark page as invalid again
» Note that “modified” bit left alone until page written back to disk 

• Remember, however, clock is just an approximation of LRU!
– Can we do a better approximation, given that we have to take page faults on some 

reads and writes to collect use information?
– Need to identify an old page, not oldest page!
– Answer: second chance list
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Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to front of Second-chance list 
(SC) and mark invalid

– Desired Page On SC List: move to front of Active list, mark RW
– Not on SC list: page in to front of Active list, mark RW; page out LRU victim at 

end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second 
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active Pages

New
SC Victims
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Second-Chance List Algorithm (continued)
• How many pages for second chance list?

– If 0  FIFO
– If all  LRU, but page fault on every page reference

• Pick intermediate value.  Result is:
– Pro: Few disk accesses (page only goes to disk if unused for a long time) 
– Con: Increased overhead trapping to OS (software / hardware tradeoff)

• With page translation, we can adapt to any kind of access the program makes
– Later, we will show how to use page translation / protection to share memory 

between threads on widely separated machines
• History: The VAX architecture did not include a “use” bit.

Why did that omission happen???
– Strecker (architect) asked OS people, they said they didn’t need it, so didn’t 

implement it
– He later got blamed, but VAX did OK anyway
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Summary
• Replacement policies

– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past 

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approximate LRU
– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approximate  LRU
– Divide pages into two groups, one of which is truly LRU and managed on page 

faults.
• Working Set:

– Set of pages touched by a process recently
• Thrashing: a process is busy swapping pages in and out

– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process


