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Recall 61C: Average Memory Access Time

» Used to compute access time probabilistically:

o)
AMAT = Hit Rate , x Hit Time , + Miss Rate ; x Miss Time , _::%
Hit Rate; + Miss Rate,; =1 @
Hit Time , = Time to get value from L1 cache. T
Miss Time ; = Hit Time , + Miss Penalty,
Miss Penalty,; = AVG Time to get value from lower level (DRAM)
So, AMAT = Hit Time , + Miss Rate,; x Miss Penalty,
« What about more levels of hierarchy? > o
e
AMAT = Hit Time , + Miss Rate ; x Miss Penalty, S _cc%
Miss Penalty,, = AVG time to get value from lower level (L2) E‘_) g
= Hit Time , + Miss Rate , x Miss Penalty,, — 1

Miss Penalty,, = Average Time to fetch from below L2 (DRAM)

AMAT = Hit Time,, +
Miss Rate, x (Hit Time , + Miss Rate , x Miss Penalty,)

 And so on ... (can do this recursively for more levels!)
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Recall: Caching Applied to Address Translation

Virtual

Physical
Address ysica

Address

Data Read or Write (untranslated)

* Question is one of page locality: does it exist?
— Instruction accesses spend a lot of time on same page (accesses are sequential)
— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...
« Can we have a TLB hierarchy?
— Sure: multiple levels at different sizes/speeds
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What Actually Happens on a TLB Miss?

« Hardware traversed page tables (x86, many others):

— On TLB miss, hardware in MMU looks at current page table to fill TLB (may walk
multiple levels)

» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which kernel decides what to do
afterwards

« Software traversed Page tables (like MIPS):
— On TLB miss, processor receives TLB fault
— Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler
* Most chip sets provide hardware traversal

— Modern operating systems tend to have more TLB faults since they use translation
for many things

— Examples:
» shared segments
» user-level portions of an operating system

3/16/23 Kubiatowicz CS162 © UCB Spring 2023 Lec17.4



Transparent Exceptions: Page fault

o
£ - F\;v gN %N
= ) — -——
User =% IR S o n M
© £ &’E o £ &’E
LL LL
Page Faults
OS

* How to transparently restart faulting instructions?
— (Consider load or store that gets Page fault)
— Could we just skip faulting instruction?
» No: need to perform load or store after reconnecting physical page!
» Hardware must help out by saving:
— Faulting instruction and partial state
» Need to know which instruction caused fault
» Is single PC sufficient to identify faulting position????
— Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc
« What if an instruction has side-effects?
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Consider weird things that can happen

« What if an instruction has side effects?
— Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)
— Example 1: mov (sp)+, 10
» What if page fault occurs when writing to stack pointer?
» Did sp get incremented before or after the page fault?
— Example 2: strcpy (rl), (r2)
» Source and destination overlap: can’t unwind in principle!
» IBM S/370 and VAX solution: execute twice — once read-only
« What about “RISC” processors?

— For instance delayed branches?

» Example: bne somewhere
1d rl, (sp)

» Restart after page fault: need two PCs, PC and nPC!
— Delayed exceptions:

» Example: div rl, r2, r3
1d rl, (sp)

» What if takes many cycles to discover divide by zero, but load has already
caused page fault?
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Precise Exceptions
* Precise = state of the machine is preserved as if program executed up to
the offending instruction
— All previous instructions completed

— Offending instruction and all following instructions act as if they have not
even started

— Same system code will work on different implementations
— Difficult in the presence of pipelining, out-of-order execution, ...
— x86 takes this position

» Imprecise = system software has to figure out what is where and put it all
back together

« Performance goals often lead designers to forsake precise interrupts

— system software developers, user, markets etc. usually wish they had not
done this

* Modern techniques for out-of-order execution and branch prediction help
iImplement precise interrupts
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Current Intel x86 (Skylake, Cascade Lake
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Current Example: Memory Hierarchy

« Caches (all 64 B line size)
— L1 I-Cache: 32 KiB/core, 8-way set assoc.
— L1 D Cache: 32 KiB/core, 8-way set assoc., 4-5 cycles load-to-use, Write-back policy

— L2 Cache: 1 MiB/core, 16-way set assoc., Inclusive, Write-back policy, 14 cycles
latency

— L3 Cache: 1.375 MiB/core, 11-way set assoc., shared across cores, Non-inclusive
victim cache, Write-back policy, 50-70 cycles latency

 TLB

— L1 ITLB, 128 entries; 8-way set assoc. for 4 KB pages
» 8 entries per thread; fully associative, for 2 MiB / 4 MiB page

— L1 DTLB 64 entries; 4-way set associative for 4 KB pages
» 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
» 4 entries; 4-way associative, 1G page translations:

— L2 STLB: 1536 entries; 12-way set assoc. 4 KiB + 2 MiB pages
» 16 entries; 4-way set associative, 1 GiB page translations:
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What happens on a Context Switch?

Need to do something, since TLBs map virtual addresses to physical addresses
— Address Space just changed, so TLB entries no longer valid!
Options?
— Invalidate (“Flush”) TLB: simple but might be expensive
» What if switching frequently between processes?
— Include ProcessID in TLB
» This is an architectural solution: needs hardware
What if translation tables change?
— For example, to move page from memory to disk or vice versa...
— Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!
— Called “TLB Consistency”
Aside: with Virtually-Indexed, Virtually-Tagged cache, need to flush cache!
— Everyone has their own version of the address “0” and can’t distinguish them
— This is one advantage of Virtually-Indexed, Physically-Tagged caches..
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Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:

PageTabIePtr Physica resg:

Page Table
(15t level)

Page Table
(2nd level)
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Putting Everything Together: TLB

Virtual Address:

PageTablpPtr p—"

Physic re

\ Page #

(15t level)

TLB:

Page Table

Page Table
(2nd level)
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Putting Everything Together:

Cache

Virtual Address:

VITtUdl

P1 index

VIIUdl

P2 index] Offset
]

PageTablEPtr p—"]

Physic

Page #

Page Table

(15t level)

TLB:

re

Physical
Memory:

Page Table
(2nd level)
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Page Fault Handling

* The Virtual-to-Physical Translation fails

— PTE marked invalid, Privilege Level Violation, Access violation, or does not exist
— Causes an Fault/ Trap
» Not an interrupt because synchronous to instruction execution
— May occur on instruction fetch or data access
— Protection violations typically terminate the process

» Other Page Faults engage operating system to fix the situation and retry the
Instruction

— Allocate an additional stack page, or

— Make the page accessible — (Copy on Write),

— Bring page in from secondary storage to memory — demand paging
* Fundamental inversion of the hardware / software boundary

— Need to execute software to allow hardware to proceed!
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Page Fault = Demand Paging

Process virtual address physical address
\_/
age#
instMion- b frame#
VAN .| PT
offset
retry exception page fault| |-
rame#
Ogerafing System offset
-~ update PT entry
Page Fault Handler

oad page from disk

scheduler
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Administrivia

Still grading exam!
— Hopefully have it by early next week
Project 2 in full swing
— Stay on top of this one. Don’t wait until last moment to get pieces together
Homework 4 also in full swing
Make sure to fill out survey! Due today!
— We really want to hear how you think we are doing
— Also, will get a chance to suggest topics for the special topics lecture
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Demand Paging

 Modern programs require a lot of physical memory
—Memory per system growing faster than 25%-30%/year

« But they don’t use all their memory all of the time

—90-10 rule: programs spend 90% of their time in 10% of their code

— Wasteful to require all of user's code to be in memory

« Solution: use main memory as “cache” for disk

Processor 4
Control Q‘a'm
= Main Secondary
gg Memory| |Storage
Datapath =ge) (DRAM)| |(SSD)
S )

Tertiary
Storage
(Disk)
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Management & Access to the Memory Hierarc

1y
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Demand Paging as Caching, ...

What “block size™? - 1 page (e.g, 4 KB)
What “organization” ie. direct-mapped, set-assoc., fully-associative?
— Fully associative since arbitrary virtual — physical mapping
How do we locate a page?
— First check TLB, then page-table traversal
What is page replacement policy? (i.e. LRU, Random...)
— This requires more explanation... (kinda LRU)
What happens on a miss?
— Go to lower level to fill miss (i.e. disk)
What happens on a write? (write-through/write back?)
— Definitely write-back — need dirty bit!
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lllusion of Infinite Memory

i

— Table Physical Disk
Virtual Memory 50068
Memor'y 512 MB

4 GB

 Disk is larger than physical memory =
— In-use virtual memory can be bigger than physical memory
— Combined memory of running processes much larger than physical memory
» More programs fit into memory, allowing more concurrency
 Principle: Transparent Level of Indirection (page table)
— Supports flexible placement of physical data
» Data could be on disk or somewhere across network
— Variable location of data transparent to user program
» Performance issue, not correctness issue
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Review: What isina PTE?

 Whatis in a Page Table Entry (or PTE)?

— Pointer to next-level page table or to actual page

— Permission bits: valid, read-only, read-write, write-only
« Example: Intel x86 architecture PTE:

— 2-level page tabler (10, 10, 12-bit offset)

— Intermediate page tables called “Directories”

Page Frame Number Free ey 9|3
(Physical Page Number) os) [°[=[°|AI8)3|Y “IP
31-12 19 876543210
P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible

PWT:
PCD:
A:

D:
PS:

3/16/23

Page write transparent: external cache write-through
Page cache disabled (page cannot be cached)
Accessed: page has been accessed recently

Dirty (PTE only): page has been modified recently
Page Size: PS=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset
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Demand Paging Mechanisms

« PTE makes demand paging implementatable
— Valid = Page in memory, PTE points at physical page
— Not Valid = Page not in memory; use info in PTE to find it on
disk when necessary
« Suppose user references page with invalid PTE?
— Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault” ' 1]
— What does OS do on a Page Fault?: |
» Choose an old page to replace

» If old page modified (“D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
— TLB for new page will be loaded when thread continued!
— While pulling pages off disk for one process, OS runs another
process from ready queue
» Suspended process sits on wait queue
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Origins of Paging

Keep most of the

Disks provide most

address space on disk

of the storage

N~ N1

Actively swap
pages to/from

Keep memory full
of the frequently
accesses pages

Relatively small
memory, for many
processes

Many clients on dumb
terminals running
different programs
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Very Different Situation Today

Powerful system
Huge memory
Huge disk
Single user
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A Picture on one machine

Processes: 487 total, 2 running, 405 sleeping, 2135 threads 22:10:3¢
Load Avg: 1.26, 1.26, .98 CPU usage: 1.35% user, 1.59% sys, 97.5% idle

SharedLibs: 292M resident, 54M data, 43M linkedit.

MemRegions: 155071 total, 4489M resident, 124M private, 1891M shared.

PhysMem: 13G used (3518M wired), 2718M unused.

VM: 1819G vsize, 1372M framework vsize, 68020510(0) swapins, 71208340(8) swapouts.

Networks: packets: 40629441/21G in, 21395374/7747M out.

Disks: 17026780/555G read, 15757470/638G written.

PID COMMAND sCPU TIME #TH #WQ #PORTS MEM PURG CMPRS PGRP PPID STATE
90498 bash 9.0 00:00.41 1 0 21 1080K ©OB 564K 90498 908497 sleeping
90497 login 9.0 00:00.10 2 1 31 1236K 0B 1220K 90497 90496 sleeping
90496 Terminal 8.5 ©01:43.28 6 1 378-  103M- 16M 134 90496 1 sleeping
89197 siriknowledg 9.0 ©00:00.83 2 2 45 2664K 0B 1528K 89197 1 sleeping
89193 com.apple.DF 0.0 00:17.34 2 1 68 2688K 0B 1700K 89193 1 sleeping
82655 LookupViewSe 0.0 00:10.75 3 1 169 13M 1] 8064K 82655 1 sleeping
82453 PAH_Extensio 0.0 90:25.89 3 1 235 15M 0B 7996K 82453 1 sleeping
75819 tzlinkd 0.0 00:00.01 2 2 14 452K oB 444K 75819 1 sleeping
75787 MTLCompilerS 0.0 ©00:00.10 2 2 24 9032K 0B 9820K 75787 1 sleeping
75776 secd 9.0 00:00.78 2 2 36 3208K OB 2328K 75776 1 sleeping
75098 DiskUnmountW 9.0 00:00.48 2 2 34 1420K 0B 728K 75098 1 sleeping
75093 MTLCompilerS 9.0 ©00:00.06 2 2 21 5924K 0B 5912K 75093 1 sleeping
74938 ssh-agent 0.0 00:00.00 1 0 21 908K 0B 892K 74938 1 sleeping
74063 Google Chrom 0.0 10:48.49 15 1 678 192M 1] 51M 54320 54320 sleeping

« Memory stays about 75% used, 25% for dynamics
« Alotof itis shared 1.9 GB
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Many Uses of Virtual Memory and “Demand Paging” ...

» Extend the stack
— Allocate a page and zero it
Extend the heap (sbrk of old, today mmap)
Process Fork
— Create a copy of the page table
— Entries refer to parent pages — NO-WRITE
— Shared read-only pages remain shared
— Copy page on write
Exec
— Only bring in parts of the binary in active use
— Do this on demand
MMAP to explicitly share region (or to access a file as RAM)
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Classic: Loading an executable into memory

disk (huge) memory

TN
~_

E——

exe

~

« .exe
— lives on disk in the file system
— contains contents of code & data segments, relocation entries and symbols
— OS loads it into memory, initializes registers (and initial stack pointer)

— program sets up stack and heap upon initialization:
crt0 (C runtime init)
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Create Virtual Address Space of the Process

disk (huge)

TN
¥/

_ code

~.

kernel

process VAS

-sbrk

memory

user page
frames

user
pagetable

kernel
code &
data

« Utilized pages in the VAS are backed by a page block on disk

— Called the backing store or swap file
— Typically in an optimized block store, but can think of it like a file
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Create Virtual Address Space of the Process

M process VAS (GBs)
~ kernel
_info_ tack
| stack S
- | —— N -
| code heap
exe h
data cap
data
code
w code

» User Page table maps entire VAS

 All the utilized regions are backed on disk
— swapped into and out of memory as needed
* For every process
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Create Virtual Address Space of the Process

| VAS
disk (huge, TB) [per process] PT memory
~_ kernel
stack stack RN user page

frames

11

heap
heap user
data
I
data / pagetable
Lol k-
code code &
data

» User Page table maps entire VAS
— Resident pages to the frame in memory they occupy
— The portion of it that the HW needs to access must be resident in memory
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Provide Backing Store for VAS

VAS

disk (huge, TB) [per process] memory
w kernel y
_info_ ‘staek '''''''''''''''''' user page
—_— stack ‘— S frames
| code heap (*i- [0
—_— Fimhheap T user
data 4 .
________________ 7 |
LI el pagetable
L B e
code code &
data

« User Page table maps entire VAS
« Resident pages mapped to memory frames

* For all other pages, OS must record where to find them on disk
— Many ways to do this, but might use remaining bits of PTE when P=0
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What Data Structure Maps
Non-Resident Pages to Disk?

FindBlock(PID, page#) — disk block
— Some OSs utilize spare space in PTE for paged blocks
— Like the PT, but purely software

Where to store it?
— In memory — can be compact representation if swap storage is contiguous on disk

— Could use hash table (like Inverted PT)

Usually want backing store for resident pages too

May map code segment directly to on-disk image
— Saves a copy of code to swap file

May share code segment with multiple instances of the program
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Provide Backing Store for VAS

disk (huge, TB)

VAS 1 PT1
/\ memory
\_// kernel

stack | | stack || "
stack |~ heap | e user
O DT b /// / page
heap |™  §ata |00 o heap” frames
NN VAS2  PT2 g / /_
NN, R L T user
data | ., ®tode. Ny // pagetable
w kernel // code /
. N\, \‘ yA
N M stack kernel
"""" code &
data
Q———————————---
N heap
] /
. data
* code /|
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On page Fault ...

disk (huge, TB)

VAS 1 PT1
memory
© kernel
stack | stack ||| *
stack |~ heap | e user
R » /// page
h N N | heap~ / £
eap | Jata rames
e VAs2 PR o
data | \‘Code\‘\‘ ______ g . e ala // user
\\—/// .| kernel | __code /| pagetable
il stack q g kernel
"""" code
& data
YT I
\:  heap
data / active process & PT
* code /|
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On page Fault ... find & start load

disk (huge, TB)

>

stack

>
stack |~ heap

heap

.
S N
N \
N
A N N
N N .
\ \, .
data . ode
N \
KN A ‘I
N N N
N \ M
S \ “ ~
\ \
N N !
\ \ )
\ N \
\ N 1

VAS 1 PT 1
memory
kernel
--------------------------- stack | |“
______________________ // user
__________________ » / — bage
______________________ - hea p// / SAAAAAAAAAAA fram es
_vAs2 PE 7"
______ e | ) / user
kernel // code// pagetable
T ' : kernel
————————— code &
data
T T I
\:  heap
. data / active process & PT
* code /|
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On page Fault ... schedule otherP or T

disk (huge, TB) VAS 1 PT 1
kernel
stack L §t§(jk_ DN
S B — SN P il NG ~o
stack | . heap T S e / user
~ I_’_,_ __________ 1\%\~ d / / _______________________ page
heap ______________________ | ea y ,,, e frames
. VAS2 P N
N el ata / user
data | . tode“} Ry ve pagetable
w . kernel |_code/
N /
R stack 4 kernel
————————— code &
data
. heap e
\ data /| active process & PT
[ ]
code ‘/
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On page Fault ... update PTE

disk (huge, TB)

>

stack

3
stack |~ heap

heap

.
S N
N \
N
A N N
N N .
N Y N
ata . ode
N \
KN A ‘I
N N N
N A k\
\ < \‘ N
\ \
\ \ \
\ \ )
\ N \
\ A 1

VAS 1 PT 1
memory
kernel
stack N
// user
~» / page
e heap/ frames
P ata / user
/7( code // pagetable
4 - kernel
code &
data
“

active process & PT
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Eventually reschedule faulting thread

disk (huge, TB)

VAS 1 PT 1
memory
© kernel
stack | L stack | \%%
stack |~ heap | v user
BT ~ - // page
heap | e |, heap” frames
e VAs2 PR o
dat N eoden [ Hiwe didl / user
&/// . kernel 7 code/ pagetable
S stack 4 - kernel
""""" code &
data
e—— - ’
\:  heap
L d / § & PT
. data active process
* code /
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Summary: Steps in Handling a Page Fault

page is on
backing store

i

operating
system

reference

load M

@J@

restart page table

@

trap

instruction

reset page
table

free frame =

\p/

~

physical
memory

O

bring in
missing page
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Some questions we need to answer!

« During a page fault, where does the OS get a free frame?
— Keeps a free list

— Unix runs a “reaper” if memory gets too full
» Schedule dirty pages to be written back on disk
» Zero (clean) pages which haven’t been accessed in a while

— As a last resort, evict a dirty page first

 How can we organize these mechanisms?
— Work on the replacement policy

 How many page frames/process?

— Like thread scheduling, need to “schedule” memory resources:

» Utilization? fairness? priority?
— Allocation of disk paging bandwidth
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Working Set Model

* As a program executes it transitions through a sequence
of “working sets” consisting of varying sized subsets of
the address space

Address

Time
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Cache Behavior under WS model

14
Q9 new working set fits ‘
©
nd
0 >
Cache Size

Amortized by fraction of time the Working Set is active
Transitions from one WS to the next

Capacity, Conflict, Compulsory misses

Applicable to memory caches and pages. Others ?
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Another model of Locality: Zipf

P access(rank) = 1/rank

)

N
=)
X
—

2" | :

©

2 15% — 08¢

S \ / 06T

© 10% —— O

S >( —pop a=1 - 04 &

0 B R -
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Rank
Likelihood of accessing item of rank ris a 1/r2

Although rare to access items below the top few, there are so
many that it yields a "heavy tailed” distribution

Substantial value from even a tiny cache
Substantial misses from even a very large cache
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Demand Paging Cost Model

Since Demand Paging like caching, can compute average access time!

(“Effective Access Time”)
— EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
— EAT = Hit Time + Miss Rate x Miss Penalty
Example:
— Memory access time = 200 nanoseconds
— Average page-fault service time = 8 milliseconds
— Suppose p = Probability of miss, 1-p = Probably of hit
— Then, we can compute EAT as follows:

EAT =200ns +px8 ms

= 200ns + p x 8,000,000ns

If one access out of 1,000 causes a page fault, then EAT = 8.2 us:

— This is a slowdown by a factor of 40!
What if want slowdown by less than 10%?
— EAT <200ns x 1.1 = p <2.5x10°

— This is about 1 page fault in 400,000!
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What Factors Lead to Misses in Page Cache?

Compulsory Misses:
— Pages that have never been paged into memory before
— How might we remove these misses?
» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later
Capacity Misses:
— Not enough memory. Must somehow increase available memory size.

— Can we do this?
» One option: Increase amount of DRAM (not quick fix!)

» Another option: If multiple processes in memory: adjust percentage of memory
allocated to each one!

Conflict Misses:

— Technically, conflict misses don'’t exist in virtual memory, since it is a “fully-
associative” cache

Policy Misses:

— Caused when pages were in memory, but kicked out prematurely because of
the replacement policy

— How to fix? Better replacement policy
3/16/23 Kubiatowicz CS162 © UCB Spring 2023 Lec 17.45




Page Replacement Policies

Why do we care about Replacement Policy?
— Replacement is an issue with any cache
— Particularly important with pages
» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out
FIFO (First In, First Out)

— ;I_'hrow out oldest page. Be fair — let every page live in memory for same amount of
ime.

— Bad — throws out heavily used pages instead of infrequently used
RANDOM:

— Pick random page for every replacement

— Typical solution for TLB’s. Simple hardware

— Pretty unpredictable — makes it hard to make real-time guarantees
MIN (Minimum):

— Replace page that won’t be used for the longest time

— Great (provably optimal), but can’t really know future...

— But past is a good predictor of the future ...
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Replacement Policies (Con't)

LRU (Least Recently Used):

— Replace page that hasn’t been used for the longest time
— Programs have locality, so if something not used for a while,

unlikely to be used in the near future.

— Seems like LRU should be a good approximation to MIN.

How to implement LRU? Use a list:

Head —>|Page 6

ﬁ

Page 7—*{Page 1

ﬁ

Page 2

Tail (LRU)

— On each use, remove page from list and place at head

— LRU page is at tail

Problems with this scheme for paging?
— Need to know immediately when page used so that can change position in list...
— Many instructions for each hardware access

In practice, people approximate LRU (more later)
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Example: FIFO (strawman)

« Suppose we have 3 page frames, 4 virtual pages, and following
reference stream:
—~-ABCABDADBCB

« Consider FIFO Page replacement:

Ref:]A |B |[C |A |B |[D |A |D |[B |C |B
Page:

1 A D

2 A

3

 FIFO: 7 faults

« When referencing D, replacing A is bad choice, since need A again
right away
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Example: MIN / LRU

« Suppose we have the same reference stream:
—~ABCABDADBCB

« Consider MIN Page replacement:

2 B
3 C D
* MIN: 5 faults
—¥Vhere will D be brought in? Look for page not referenced farthest in
uture

* What will LRU do?

— Same decisions as MIN here, but won'’t always be true!
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Is LRU guaranteed to perform well?

» Consider the following: ABCDABCDABCD
* LRU Performs as follows (same as FIFO here):

— Every reference is a page fault!
 Fairly contrived example of working set of N+1 on N frames
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When will LRU perform badly?

« Consider the following: ABCDABCDABCD
* LRU Performs as follows (same as FIFO here):

— Every reference is a page fault!
 MIN Does much better:
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Graph of Page Faults Versus The Number of Frames

number of page faults

—y —y —y ju—y
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* One desirable property: When you add memory the miss rate
drops (stack property)

— Does this always happen?
— Seems like it should, right?

* No: Bélady’s anomaly

— Certain replacement algorithms (FIFO) don’t have this obvious

property!
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Adding Memory Doesn’t Always Help Fault Rate

« Does addin memolr\Y reduce number of page faults?

—Yes for LRU and Ml

— Not necessarily for FIFO! (Called Bélady’s anomaly)

Page
1

Ref. Tale[clD|A

B|E]|A

B

E

 After adding memory:

—With FIFO, contents can be completely different
contents of memory with X pages are a

— In contrast, with LRU or MIN

subset of contents with X+1 Page
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Approximating LRU: Clock Algorithm
7 - = \(Single Clock Hand:

/ Advances only on page fault!
Check for pages not used recently

' Se_t of all pages | Mark pages as not used recently
\ inMemory

\
N 7
« Clock Algorithm: Arrange physical pages in circle with single clock hand
— Approximate LRU (approximation to approximation to MIN)
— Replace an old page, not the oldest page
* Details:
— Hardware “use” bit per physical page (called “accessed” in Intel architecture):
» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Some hardware sets use bit in the TLB; must be copied back to PTE when TLB entry gets replaced
— On page fault:
» Advance clock hand (not real time)

» Check use bit: 1— used recently; clear and leave alone

0— selected candidate for r%olaceme_nt
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Clock Algorithm: More details

>

7 N
/ !
Will always find a page or loop forever? | Setof all pages |

— Even if all use bits set, will eventually loop { in Memory
all the way around = FIFO

What if hand moving slowly? \ V4

— Good sign or bad sign? SN

» Not many page faults
» or find page quickly
What if hand is moving quickly?
— Lots of page faults and/or lots of reference bits set
One way to view clock algorithm:
— Crude partitioning of pages into two groups: young and old
— Why not partition into more than 2 groups?
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Nt Chance version of Clock Algorithm

« Nt chance algorithm: Give page N chances
— OS keeps counter per page: # sweeps
— On page fault, OS checks use bit:

» 1 — clear use and also clear counter (used in last sweep)
» 0 — increment counter; if count=N, replace page
— Means that clock hand has to sweep by N times without page being used before
page is replaced
 How do we pick N?
— Why pick large N? Better approximation to LRU
» If N ~ 1K, really good approximation
— Why pick small N? More efficient
» Otherwise might have to look a long way to find free page
« What about “modified” (or “dirty”) pages?

— Takes extra overhead to replace a dirty page, so give dirty pages an extra
chance before replacing?

— Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)
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Recall: Meaning of PTE bits

« Which bits of a PTE entry are useful to us for the Clock Algorithm?
Remember Intel PTE:

pTE: [Page Frame Number Free ol
" |(Physical Page Number) (OS) (77
31-12 119 8 7

D
6

~10d
wlLMd
Nl C

— The “Present” bit (called “Valid” elsewhere):
» P==0: Page is invalid and a reference will cause page fault
» P==1: Page frame number is valid and MMU is allowed to proceed with translation
— The “Writable” bit (could have opposite sense and be called “Read-only”):
» W==0: Page is read-only and cannot be written.
» W==1: Page can be written
— The “Accessed” bit (called “Use” elsewhere):
» A==0: Page has not been accessed (or used) since last time software set A—0
» A==1: Page has been accessed (or used) since last time software set A—>0
— The “Dirty” bit (called “Modified” elsewhere):
» D==0: Page has not been modified (written) since PTE was loaded
» D==1: Page has changed since PTE was loaded
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Clock Algorithms Variations

* Do we really need hardware-supported “modified” bit?

— No. Can emulate it using read-only bit
» Need software DB of which pages are allowed to be written (needed this anyway)

» We will tell MMU that pages have more restricted permissions than the actually do to
force page faults (and allow us notice when page is written)

— Algorithm (Clock-Emulated-M):

» Initially, mark all pages as read-only (W—0), even writable data pages.
Further, clear all software versions of the “modified” bit — 0 (page not dirty)

» Writes will cause a page fault. Assuming write is allowed, OS sets software
“‘modified” bit —> 1, and marks page as writable (W—1).

» Whenever page written back to disk, clear “modified” bit — 0, mark read-only
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Clock Algorithms Variations (continued)

* Do we really need a hardware-supported “use” bit?

— No. Can emulate it similar to above (e.g. for read operation)
» Kernel keeps a “use” bit and “modified” bit for each page

— Algorithm (Clock-Emulated-Use-and-M):

» Mark all pages as invalid, even if in memory.
Clear emulated “use” bits — 0 and “modified” bits — 0 for all pages (not used, not dirty)

» Read or write to invalid page traps to OS to tell use page has been used

» OS sets “use” bit — 1 in software to indicate that page has been “used”.
Further:
1) If read, mark page as read-only, W—0 (will catch future writes)
2) If write (and write allowed), set “modified” bit — 1, mark page as writable (W—1)

» When clock hand passes, reset emulated “use” bit - 0 and mark page as invalid again
» Note that “modified” bit left alone until page written back to disk
« Remember, however, clock is just an approximation of LRU!

— Can we do a better approximation, given that we have to take page faults on some
reads and writes to collect use information?

— Need to identify an old page, not oldest page!

— Answer: second chance list
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Second-Chance List Algorithm (VAX/VMS)

> LRU victim
Directly Second
Mapped Pages Chance List
Marked: RW Marked: Invalid
List: FIFO List: LRU
Page-in New New

From disk Active Pages SC Victims

« Split memory in two: Active list (RW), SC list (Invalid)
« Access pages in Active list at full speed

« Otherwise, Page Fault

— Always move overflow page from end of Active list to front of Second-chance list
(SC) and mark invalid

— Desired Page On SC List: move to front of Active list, mark RW

— Not on SC list: page in to front of Active list, mark RW; page out LRU victim at
end of SC list
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Second-Chance List Algorithm (continued)

How many pages for second chance list?
—1f0 = FIFO
— If all = LRU, but page fault on every page reference
Pick intermediate value. Result is:
— Pro: Few disk accesses (page only goes to disk if unused for a long time)
— Con: Increased overhead trapping to OS (software / hardware tradeoff)

With page translation, we can adapt to any kind of access the program makes

— Later, we will show how to use page translation / protection to share memory
between threads on widely separated machines

History: The VAX architecture did not include a “use” bit.
Why did that omission happen???

— Strecker (architect) asked OS people, they said they didn’t need it, so didn’t
implement it

— He later got blamed, but VAX did OK anyway
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Summary

Replacement policies

— FIFO: Place pages on queue, replace page at end

— MIN: Replace page that will be used farthest in future

— LRU: Replace page used farthest in past
Clock Algorithm: Approximation to LRU

— Arrange all pages in circular list

— Sweep through them, marking as not “in use”

— If page not “in use” for one pass, than can replace
Nt-chance clock algorithm: Another approximate LRU

— Give pages multiple passes of clock hand before replacing
Second-Chance List algorithm: Yet another approximate LRU

— Pivlide pages into two groups, one of which is truly LRU and managed on page
aults.
Working Set:
— Set of pages touched by a process recently
Thrashing: a process is busy swapping pages in and out
— Process will thrash if working set doesn't fit in memory

— Need to swap out a process
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