
CS162
Operating Systems and
Systems Programming

Lecture 21

Filesystems 1: Performance,
Queueing Theory, Filesystem Design

April 6th, 2023
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 21.24/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Magnetic Disks

• Cylinders: all the tracks under the
head at a given point on all surfaces

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper track
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head

Sector
Track

Cylinder
Head

Platter

Software
Queue
(Device Driver)

H
ardw

are
C

ontroller
Media Time
(Seek+Rot+Xfer)

R
equest

R
esult

Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

Lec 21.34/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: FLASH Memory

• Like a normal transistor but:
– Has a floating gate that can hold charge
– To write: raise or lower wordline high enough to cause charges to tunnel
– To read: turn on wordline as if normal transistor

» presence of charge changes threshold and thus measured current
• Two varieties:

– NAND: denser, must be read and written in blocks
– NOR: much less dense, fast to read and write

• V-NAND: 3D stacking (Samsung claims 1TB possible in 1 chip)

Samsung 2015:
512GB, NAND Flash

Lec 21.44/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Ways of Measuring Performance: Times (s) and Rates (op/s)
• Latency – time to complete a task

– Measured in units of time (s, ms, us, …, hours, years)
• Response Time - time to initiate and operation and get its response

– Able to issue one that depends on the result
– Know that it is done (anti-dependence, resource usage)

• Throughput or Bandwidth – rate at which tasks are performed
– Measured in units of things per unit time (ops/s, GFLOP/s)

• Start up or “Overhead” – time to initiate an operation
• Most I/O operations are roughly linear in b bytes

– Latency(b) = Overhead + b/TransferCapacity
• Performance???

– Operation time (4 mins to run a mile…)
– Rate (mph, mpg, …)

Lec 21.54/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Example: Overhead in Fast Network
• Consider a 1 Gb/s link (𝐵 125 MB/s)

with startup cost 𝑆 1 ms

• Latency: 𝐿 𝑥 𝑆

• Effective Bandwidth:

𝐸 𝑥
𝑥

𝑆 𝑥
𝐵

𝐵 ⋅ 𝑥
𝐵 ⋅ 𝑆 𝑥

𝐵
𝐵 ⋅ 𝑆
𝑥 1

• Half-power Bandwidth: 𝐸 𝑥
• For this example, half-power bandwidth

occurs at x 125 KB
Length (x)

Lec 21.64/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Example: 10 ms Startup Cost (e.g., Disk)

• Half-power bandwidth at x 1.25 MB

• Large startup cost can degrade
effective bandwidth

• Amortize it by performing I/O in larger
blocks

0

5

10

15

20

25

30

35

40

45

50

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

Ba
nd

w
id
th

 (m
B/
s)

La
te
nc
y
(u
s)

Length (b)

Performance of gbps link with 10 ms startup

Half-power x = 1,250,000 bytes!

Length (x)

Lec 21.74/6/2023 Kubiatowicz CS162 © UCB Spring 2023

What Determines Peak BW for I/O?
• Bus Speed

– PCI-X: 1064 MB/s = 133 MHz x 64 bit (per lane)
– ULTRA WIDE SCSI: 40 MB/s
– Serial Attached SCSI & Serial ATA & IEEE 1394 (firewire): 1.6 Gb/s full duplex

(200 MB/s)
– USB 3.0 – 5 Gb/s
– Thunderbolt 3 – 40 Gb/s

• Device Transfer Bandwidth
– Rotational speed of disk
– Write / Read rate of NAND flash
– Signaling rate of network link

• Whatever is the bottleneck in the path…

Lec 21.84/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Sequential Server Performance

• Single sequential “server” that can deliver a task in time 𝐿 operates at
rate (on average, in steady state, …)

– 𝐿 10 ms → 𝐵 100 op
s

– 𝐿 2 yr → 𝐵 0.5 op
yr

• Applies to a processor, a disk drive, a person, a TA, …

L L L L…
time

L

Lec 21.94/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Single Pipelined Server

• Single pipelined server of 𝑘 stages for tasks of length 𝐿 (i.e., time ⁄ per
stage) delivers at rate ⁄ .

– 𝐿 10 ms, 𝑘 4 → 𝐵 400 op
s

– 𝐿 2 yr, 𝑘 2 → 𝐵 1 op
yr

L

…

L

L L L L L L L

logical operation divided over distinct resources

time

Lec 21.104/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Example Systems “Pipelines”

• Anything with queues between operational process behaves roughly
“pipeline like”

• Important difference is that “initiations” are decoupled from processing
– May have to queue up a burst of operations
– Not synchronous and deterministic like in 61C

User Process

sy
sc

al
l

File
System

Upper
Driver

Lower
Driver

I/O Processing

Communication

Lec 21.114/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Multiple Servers

• 𝑘 servers handling tasks of length 𝐿 delivers at rate ⁄ .
– 𝐿 10 ms, 𝑘 4 → 𝐵 400 op

s
– 𝐿 2 yr, 𝑘 2 → 𝐵 1 op

yr
• In 61C you saw multiple processors (cores)

– Systems present lots of multiple parallel servers
– Often with lots of queues

L

… k

Lec 21.124/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Example Systems “Parallelism”

User Process syscall File
System

Upper
Driver

Lower
Driver

I/O Processing

Communication

User Process
User Process

Parallel Computation, Databases, …

Lec 21.134/6/2023 Kubiatowicz CS162 © UCB Spring 2023

I/O Performance

Response Time = Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

• Performance of I/O subsystem
– Metrics: Response Time, Throughput
– Effective BW per op = transfer size / response time

» EffBW(n) = n / (S + n/B) = B / (1 + SB/n)

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

of ops

Fixed overhead

time per op

Lec 21.144/6/2023 Kubiatowicz CS162 © UCB Spring 2023

I/O Performance

Response Time = Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

• Performance of I/O subsystem
– Metrics: Response Time, Throughput
– Effective BW per op = transfer size / response time

» EffBW(n) = n / (S + n/B) = B / (1 + SB/n)
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time

• Queuing behavior:
– Can lead to big increases of latency as utilization increases
– Solutions?

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

Lec 21.154/6/2023 Kubiatowicz CS162 © UCB Spring 2023

A Simple Deterministic World

• Assume requests arrive at regular intervals, take a fixed
time to process, with plenty of time between …

• Service rate (μ = 1/TS) - operations per second
• Arrival rate: (λ = 1/TA) - requests per second
• Utilization: U = λ/μ , where λ < μ
• Average rate is the complete story

Queue Serverarrivals departures

TQ TS

TA TA TA

TSTq

Lec 21.164/6/2023 Kubiatowicz CS162 © UCB Spring 2023

A Ideal Linear World

• What does the queue wait time look like?
– Grows unbounded at a rate ~ (Ts/TA) till request rate subsides

Offered Load (TS/TA)

D
el

iv
er

ed
 T

hr
ou

gh
pu

t

0 1

1

time

Q
ue

ue
 d

el
ay

D
el

iv
er

ed
 T

hr
ou

gh
pu

t

0 1

1

Offered Load (TS/TA)

Empty Queue

Saturation

Unbounded

time
Q

ue
ue

 d
el

ay

Lec 21.174/6/2023 Kubiatowicz CS162 © UCB Spring 2023

A Bursty World

• Requests arrive in a burst, must queue up till served
• Same average arrival time, but almost all of the requests

experience large queue delays
• Even though average utilization is low

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals

Lec 21.184/6/2023 Kubiatowicz CS162 © UCB Spring 2023

• Elegant mathematical framework if you start with
exponential distribution

– Probability density function of a continuous random variable
with a mean of 1/λ

– f(x) = λe-λx

– “Memoryless”

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

Likelihood of an event
occurring is independent of
how long we’ve been waiting

So how do we model the burstiness of arrival?

Lots of short arrival
intervals (i.e., high
instantaneous rate)

Few long gaps (i.e., low
instantaneous rate)

x (λ)

mean arrival interval (1/λ)

Lec 21.194/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Background:
General Use of Random Distributions

• Server spends variable time (T) with customers
– Mean (Average) m = p(T)T
– Variance (stddev2) 2 = p(T)(T-m)2 = p(T)T2-m2

– Squared coefficient of variance: C = 2/m2

Aggregate description of the distribution

• Important values of C:
– No variance or deterministic C=0
– “Memoryless” or exponential C=1

» Past tells nothing about future
» Poisson process – purely or completely random process
» Many complex systems (or aggregates)

are well described as memoryless
– Disk response times C 1.5 (majority seeks < average)

Mean
(m)

mean

Memoryless

Distribution
of service times

Lec 21.204/6/2023 Kubiatowicz CS162 © UCB Spring 2023

DeparturesArrivals
Queuing System

Introduction to Queuing Theory

• What about queuing time??
– Let’s apply some queuing theory
– Queuing Theory applies to long term, steady state behavior

Arrival rate = Departure rate

• Arrivals characterized by some probabilistic distribution

• Departures characterized by some probabilistic
distribution

Queue

C
ontroller

Disk

Lec 21.214/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Little’s Law

• In any stable system
– Average arrival rate = Average departure rate

• The average number of jobs/tasks in the system (N) is equal to
arrival time / throughput (λ) times the response time (L)

– N (jobs) = λ (jobs/s) x L (s)
• Regardless of structure, bursts of requests, variation in service

– Instantaneous variations, but it washes out in the average
– Overall, requests match departures

arrivals departuresN
λ

L

Lec 21.224/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Example

λ = 1
L = 5

0 1 2 3 4 5 6 7 8 169 10 11 12 13 14 15 time

Jobs

L = 5

N = 5 jobs

A: N = λ x L
• E.g., N = λ x L = 5

Lec 21.234/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Little’s Theorem: Proof Sketch

time

T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t

Job i

L(1)

Lec 21.244/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t

What is the system occupancy, i.e., average
number of jobs in the system?

Job i

Lec 21.254/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

S = S(1) + S(2) + … + S(k) = L(1) + L(2) + … + L(k)

S(k)

Lec 21.264/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Average occupancy (Navg) = S/T

Job i

S= area

Lec 21.274/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = S/T = (L(1) + … + L(k))/T

S(k)

Lec 21.284/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = (L(1) + … + L(k))/T = (Ntotal/T)*(L(1) + … + L(k))/Ntotal

S(k)

Lec 21.294/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = (Ntotal/T)*(L(1) + … + L(k))/Ntotal = λavg × Lavg

S(k)

Lec 21.304/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = λavg × Lavg

S(k)

Lec 21.314/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Little’s Law Applied to a Queue

• When Little’s Law applied to a queue, we get:

Average length of
the queue

Average Arrival Rate

Average time “waiting”
in queue

Lec 21.324/6/2023 Kubiatowicz CS162 © UCB Spring 2023

A Little Queuing Theory: Computing TQ
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– : mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = 2/m12

– μ: service rate = 1/Tser
– u: server utilization (0u1): u = /μ = Tser

• Results:
– Memoryless service distribution (C = 1): (an “M/M/1 queue”):

» Tq = Tser x u/(1 – u)
– General service distribution, 1 server (an “M/G/1 queue”):

» Tq = Tser x ½(1+C) x u/(1 – u)

Arrival Rate

Queue ServerService Rate
μ=1/Tser

Why does response/queueing
delay grow unboundedly even
though the utilization is < 1 ?

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

Lec 21.334/6/2023 Kubiatowicz CS162 © UCB Spring 2023

System Performance In presence of a Queue

Request Rate (𝜆) - “offered load”

Se
rv

ic
e

R
at

e
(𝜇

)
-“

de
liv

er
ed

lo

ad
” 𝜇𝑚𝑎𝑥

𝜇𝑚𝑎𝑥

Latency (𝜆)

Operation Time

Ti
m

e

“Half-Power Point” : load at which system delivers half of peak performance
- Design and provision systems to operate roughly in this regime
- Latency low and predictable, utilization good: ~50%

• 𝑇 ~ , u ⁄
• Why does latency

blow up as we
approach 100%
utilization?

• Queue builds up on
each burst

• But very rarely (or
never) gets a
chance to drain

Lec 21.344/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Why unbounded response time?
• Assume deterministic arrival process and service time

– Possible to sustain utilization = 1 with bounded response time!

time

arrival
time

service
time

Lec 21.354/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Why unbounded response time?
• Assume stochastic arrival process

(and service time)
– No longer possible to achieve

utilization = 1

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

time

This wasted time can
never be reclaimed!
So cannot achieve u = 1!

Lec 21.364/6/2023 Kubiatowicz CS162 © UCB Spring 2023

A Little Queuing Theory: An Example
• Example Usage Statistics:

– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller+seek+rot+trans)

• Questions:
– How utilized is the disk?

» Ans: server utilization, u = Tser
– What is the average time spent in the queue?

» Ans: Tq
– What is the number of requests in the queue?

» Ans: Lq
– What is the avg response time for disk request?

» Ans: Tsys = Tq + Tser
• Computation:
 (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
u (server utilization) = x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u)

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) = x Tq=10/s x .005s = 0.05
Tsys (avg time/customer in system) =Tq + Tser= 25 ms

Lec 21.374/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Queuing Theory Resources
• Resources page contains Queueing Theory Resources (under

Readings):
– Scanned pages from Patterson and Hennessy book that gives further

discussion and simple proof for general equation:
https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf

– A complete website full of resources:
http://web2.uwindsor.ca/math/hlynka/qonline.html

• Some previous midterms with queueing theory questions

• Assume that Queueing Theory is fair game for Midterm III!

Lec 21.384/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Optimize I/O Performance

• How to improve performance?
– Make everything faster
– More Decoupled (Parallelism) systems

» multiple independent buses or controllers
– Optimize the bottleneck to increase service rate

» Use the queue to optimize the service
– Do other useful work while waiting

• Queues absorb bursts and smooth the flow
• Admissions control (finite queues)

– Limits delays, but may introduce unfairness and livelock

Response Time =
Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

Lec 21.394/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: I/O and Storage Layers

High Level I/O
Low Level I/O

Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors
open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

What we covered in Lecture 4

Open File Descriptions

What we just covered…

What we will cover next…

Lec 21.404/6/2023 Kubiatowicz CS162 © UCB Spring 2023

From Storage to File Systems

I/O API and
syscalls Variable-Size Buffer

File System Block
Logical Index,
Typically 4 KB

Hardware
Devices

Memory Address

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block Phys Index.,
4KB

Sector(s)Sector(s)

Erasure Page

Lec 21.414/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Building a File System
• File System: Layer of OS that transforms block interface of disks (or other

block devices) into Files, Directories, etc.
• Classic OS situation: Take limited hardware interface (array of blocks) and

provide a more convenient/useful interface with:
– Naming: Find file by name, not block numbers
– Organize file names with directories
– Organization: Map files to blocks
– Protection: Enforce access restrictions
– Reliability: Keep files intact despite crashes, hardware failures, etc.

Lec 21.424/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: User vs. System View of a File
• User’s view:

– Durable Data Structures
• System’s view (system call interface):

– Collection of Bytes (UNIX)
– Doesn’t matter to system what kind of data structures you want to store on disk!

• System’s view (inside OS):
– Collection of blocks (a block is a logical transfer unit, while a sector is the physical

transfer unit)
– Block size sector size; in UNIX, block size is 4KB

Lec 21.434/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Translation from User to System View

• What happens if user says: “give me bytes 2 – 12?”
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about writing bytes 2 – 12?
– Fetch block, modify relevant portion, write out block

• Everything inside file system is in terms of whole-size blocks
– Actual disk I/O happens in blocks
– read/write smaller than block size needs to translate and buffer

File
System

File
(Bytes)

Lec 21.444/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Disk Management
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially in logical space
– Directory: user-visible index mapping names to files

• The disk is accessed as linear array of sectors
• How to identify a sector?

–Physical position
» Sectors is a vector [cylinder, surface, sector]
» Not used anymore
» OS/BIOS must deal with bad sectors

–Logical Block Addressing (LBA)
» Every sector has integer address
» Controller translates from address physical position
» Shields OS from structure of disk

Lec 21.454/6/2023 Kubiatowicz CS162 © UCB Spring 2023

What Does the File System Need?

• Track free disk blocks
– Need to know where to put newly written data

• Track which blocks contain data for which files
– Need to know where to read a file from

• Track files in a directory
– Find list of file's blocks given its name

• Where do we maintain all of this?
– Somewhere on disk

Lec 21.464/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Data Structures on Disk

• Somewhat different from data structures in memory
• Access a block at a time

– Can't efficiently read/write a single word
– Have to read/write full block containing it
– Ideally want sequential access patterns

• Durability
– Ideally, file system is in meaningful state upon shutdown
– This obviously isn't always the case…

Lec 21.474/6/2023 Kubiatowicz CS162 © UCB Spring 2023

FILE SYSTEM DESIGN

Lec 21.484/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Critical Factors in File System Design
• (Hard) Disks Performance !!!

– Maximize sequential access, minimize seeks
• Open before Read/Write

– Can perform protection checks and look up where the actual file resource
are, in advance

• Size is determined as they are used !!!
– Can write (or read zeros) to expand the file
– Start small and grow, need to make room

• Organized into directories
– What data structure (on disk) for that?

• Need to carefully allocate / free blocks
– Such that access remains efficient

Lec 21.494/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Components of a File System

File path

Directory
Structure

File
Header
StructureFile number

“inumber”

…

Data blocks

“inode”

One Block = multiple sectors
Ex: 512 sector, 4K block

Lec 21.504/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Example of BSD/Linux-like Inode structure
• Sample file in multilevel

indexed format:
– Data Stored in Blocks
– 10 direct ptrs, 1K blocks
– One Indirect block
– One Doubly-indirect Block
– One Triply-indirect Block

• Example accesses
– How many accesses for

block #23? (assume file
header accessed on open)?

» Two: One for indirect block,
one for data

– How about block #5?
» One: One for data

– Block #340?
» Three: double indirect block,

indirect block, and data

Lec 21.514/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Abstract Representation of a Process

Suppose that we execute
open(“foo.txt”)
and that the result is 3

Next, suppose that we
execute
read(3, buf, 100)
and that the result is 100

User Space
Kernel Space

Address
Space

(Memory)

Thread’s
Regs

File Descriptors

Not shown:
Initially contains
0, 1, and 2
(stdin, stdout,
stderr)

3
File: foo.txt
Position: 100

Open File Description

Process

…

Lec 21.524/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Components of a File System

Open file description is
better described as
remembering the inumber
(file number) of the file,
not its nameUser Space

Kernel Space

Address
Space

(Memory)

Thread’s
Regs

File Descriptors

Not shown: Initially
contains 0, 1, and 2
(stdin, stdout,
stderr)

3 File: foo.txt
inumber
Position: 100

Open File Description

Process

…

Lec 21.534/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Components of a File System

• Open performs Name Resolution
– Translates path name into a “file number”

• Read and Write operate on the file number
– Use file number as an “index” to locate the blocks

• 4 components:
– directory, index structure, storage blocks, free space map

file name
offset directory structure

file number
offset index structure

(“inode”)

storage block

Lec 21.544/6/2023 Kubiatowicz CS162 © UCB Spring 2023

How to get the File Number?
• Look up in directory structure

• A directory is a file containing <file_name : file_number> mappings
– File number could be a file or another directory
– Operating system stores the mapping in the directory in a format it interprets
– Each <file_name : file_number> mapping is called a directory entry

• Process isn’t allowed to read the raw bytes of a directory
– The read function doesn’t work on a directory
– Instead, see readdir, which iterates over the map without revealing the raw bytes

• Why shouldn’t the OS let processes read/write the bytes of a directory?

Lec 21.554/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Directories

Lec 21.564/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Directory Abstraction

• Directories are specialized files
– Contents: List of pairs

<file name, file number>
• System calls to access directories

– open / creat / readdir traverse the structure
– mkdir / rmdir add/remove entries
– link / unlink (rm)

• libc support
– DIR * opendir (const char *dirname)
– struct dirent * readdir (DIR *dirstream)
– int readdir_r (DIR *dirstream, struct dirent *entry,

struct dirent **result)

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

Lec 21.574/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Directory Structure
• How many disk accesses to resolve “/my/book/count”?

– Read in file header for root (fixed spot on disk)
– Read in first data block for root

» Table of file name/index pairs.
» Search linearly – ok since directories typically very small

– Read in file header for “my”
– Read in first data block for “my”; search for “book”
– Read in file header for “book”
– Read in first data block for “book”; search for “count”
– Read in file header for “count”

• Current working directory: Per-address-space pointer to a directory used for
resolving file names

– Allows user to specify relative filename instead of absolute path (say
CWD=“/my/book” can resolve “count”)

Lec 21.584/6/2023 Kubiatowicz CS162 © UCB Spring 2023

In-Memory File System Structures

• Open syscall: find inode on disk from pathname (traversing directories)
– Create “in-memory inode” in system-wide open file table
– One entry in this table no matter how many instances of the file are open

• Read/write syscalls look up in-memory inode using the file handle

(fd)

fd

inode

Lec 21.594/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Characteristics of Files

Published in FAST 2007

Lec 21.604/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Observation #1: Most Files Are Small

Lec 21.614/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Observation #2: Most Bytes are in Large Files

Lec 21.624/6/2023 Kubiatowicz CS162 © UCB Spring 2023

Conclusion
• Bursts & High Utilization introduce queuing delays
• Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency

Tq = Tser x ½(1+C) x u/(1 – u))
• File System:

– Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access

• File (and directory) defined by header, called “inode”
• Naming: translating from user-visible names to actual sys resources

– Directories used for naming for local file systems
– Linked or tree structure stored in files

