
CS162
Operating Systems and
Systems Programming

Lecture 23

Filesystems 3: Filesystem Case Studies (Con’t),
Buffering, Reliability, and Transactions

April 13th, 2023
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 23.24/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Components of a File System

File path

Directory
Structure

File
Header
StructureFile number

“inumber”

…

Data blocks

“inode”

One Block = multiple sectors
Ex: 512 sector, 4K block

Lec 23.34/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: FAT Properties
• File is collection of disk blocks

(Microsoft calls them “clusters”)
• FAT is array of integers mapped 1-1

with disk blocks
– Each integer is either:

» Pointer to next block in file; or
» End of file flag; or
» Free block flag

• File Number is index of root
of block list for the file

– Follow list to get block #
– Directory must map name to block

number at start of file
• But: Where is FAT stored?

– Beginning of disk, before the data blocks
– Usually 2 copies (to handle errors)

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

free
File 31, Block 3

Lec 23.44/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Multilevel Indexed Files (Original 4.1 BSD)
• Sample file in multilevel indexed format:

– 10 direct ptrs, 1K blocks
– How many accesses for block #23?

(assume file header accessed on open)?
» Two: One for indirect block, one for data

– How about block #5?
» One: One for data

– Block #340?
» Three: double indirect block,

indirect block, and data
• UNIX 4.1 Pros and cons

– Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy

– Cons: Lots of seeks
Very large files must read many indirect block (four I/Os per block!)

Lec 23.54/13/2023 Kubiatowicz CS162 © UCB Spring 2023

CASE STUDY:
BERKELEY FAST FILE SYSTEM (FFS)

Lec 23.64/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Fast File System (BSD 4.2, 1984)
• Same inode structure as in BSD 4.1

– same file header and triply indirect blocks like we just studied
– Some changes to block sizes from 1024 4096 bytes for performance

• Paper on FFS: “A Fast File System for UNIX”
– Marshall McKusick, William Joy, Samuel Leffler and Robert Fabry
– Off the “resources” page of course website – Take a look!

• Optimization for Performance and Reliability:
– Distribute inodes among different tracks to be closer to data
– Uses bitmap allocation in place of freelist
– Attempt to allocate files contiguously
– 10% reserved disk space
– Skip-sector positioning (mentioned later)

Lec 23.74/13/2023 Kubiatowicz CS162 © UCB Spring 2023

FFS Changes in Inode Placement: Motivation
• In early UNIX and DOS/Windows’ FAT file system, headers stored in special

array in outermost cylinders
– Fixed size, set when disk is formatted

» At formatting time, a fixed number of inodes are created
» Each is given a unique number, called an “inumber”

• Problem #1: Inodes all in one place (outer tracks)
– Head crash potentially destroys all files by destroying inodes
– Inodes not close to the data that the point to

» To read a small file, seek to get header, seek back to data

• Problem #2: When create a file, don’t know how big it will become (in UNIX,
most writes are by appending)

– How much contiguous space do you allocate for a file?
– Makes it hard to optimize for performance

Lec 23.84/13/2023 Kubiatowicz CS162 © UCB Spring 2023

FFS Locality: Block Groups
• The UNIX BSD 4.2 (FFS) distributed the header information

(inodes) closer to the data blocks
– Often, inode for file stored in same “cylinder group”

as parent directory of the file
– makes an “ls” of that directory run very fast

• File system volume divided into set of block groups
– Close set of tracks

• Data blocks, metadata, and free space
interleaved within block group

– Avoid huge seeks between user data and
system structure

• Put directory and its files in common block group

Lec 23.94/13/2023 Kubiatowicz CS162 © UCB Spring 2023

FFS Locality: Block Groups (Con’t)
• First-Free allocation of new file blocks

– To expand file, first try successive blocks in bitmap, then
choose new range of blocks

– Few little holes at start, big sequential runs at
end of group

– Avoids fragmentation
– Sequential layout for big files

• Important: keep 10% or more free!
– Reserve space in the Block Group

• Summary: FFS Inode Layout Pros
– For small directories, can fit all data, file headers,

etc. in same cylinder no seeks!
– File headers much smaller than whole block

(a few hundred bytes), so multiple headers fetched from disk at same time
– Reliability: whatever happens to the disk, you can find many of the files

(even if directories disconnected)

Lec 23.104/13/2023 Kubiatowicz CS162 © UCB Spring 2023

UNIX 4.2 BSD FFS First Fit Block Allocation

• Fills in the small holes at the start of block group
• Avoids fragmentation, leaves contiguous free space at end

Lec 23.114/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Attack of the Rotational Delay
• Problem 3: Missing blocks due to rotational delay

– Issue: Read one block, do processing, and read next block. In meantime, disk has
continued turning: missed next block! Need 1 revolution/block!

– Solution1: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a track: give time for processing

to overlap rotation
» Can be done by OS or in modern drives by the disk controller

– Solution 2: Read ahead: read next block right after first, even if application hasn’t asked
for it yet

» This can be done either by OS (read ahead)
» By disk itself (track buffers) - many disk controllers have internal RAM that allows them

to read a complete track
• Modern disks + controllers do many things “under the covers”

– Track buffers, elevator algorithms, bad block filtering

Skip Sector

Track Buffer
(Holds complete track)

Lec 23.124/13/2023 Kubiatowicz CS162 © UCB Spring 2023

UNIX 4.2 BSD FFS
• Pros

– Efficient storage for both small and large files
– Locality for both small and large files
– Locality for metadata and data
– No defragmentation necessary!

• Cons
– Inefficient for tiny files (a 1 byte file requires both an inode and a data

block)
– Inefficient encoding when file is mostly contiguous on disk
– Need to reserve 10-20% of free space to prevent fragmentation

Lec 23.134/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Linux Example: Ext2/3 Disk Layout
• Disk divided into block groups

– Provides locality
– Each group has two block-sized bitmaps

(free blocks/inodes)
– Block sizes settable at format time:

1K, 2K, 4K, 8K…
• Actual inode structure similar to 4.2 BSD

– with 12 direct pointers
• Ext3: Ext2 with Journaling

– Several degrees of protection with
comparable overhead

– We will talk about Journalling later

• Example: create a file1.dat
under /dir1/ in Ext3

Lec 23.144/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Directory Abstraction
• Directories are specialized files

– Contents: List of pairs <file name, file number>
• System calls to access directories

– open / creat traverse the structure
– mkdir /rmdir add/remove entries
– link / unlink (rm)

• libc support
– DIR * opendir (const char *dirname)
– struct dirent * readdir (DIR *dirstream)
– int readdir_r (DIR *dirstream, struct dirent
*entry,

struct dirent **result)

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

Lec 23.154/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Hard Links
• Hard link

– Mapping from name to file number in the directory structure
– First hard link to a file is made when file created
– Create extra hard links to a file with the link() system call
– Remove links with unlink() system call

• When can file contents be deleted?
– When there are no more hard links to the file
– Inode maintains reference count for this purpose

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

Lec 23.164/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Soft Links (Symbolic Links)
• Soft link or Symbolic Link or Shortcut

– Directory entry contains the path and name of the file
– Map one name to another name

• Contrast these two different types of directory entries:
– Normal directory entry: <file name, file #>
– Symbolic link: <file name, dest. file name>

• OS looks up destination file name each time program accesses
source file name

– Lookup can fail (error result from open)

• Unix: Create soft links with symlink syscall

Lec 23.174/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Directory Traversal
• What happens when we open /home/cs162/stuff.txt?
• “/” - inumber for root inode configured into kernel, say 2

– Read inode 2 from its position in inode array on disk
– Extract the direct and indirect block pointers
– Determine block that holds root directory (say block 49358)
– Read that block, scan it for “home” to get inumber for this

directory (say 8086)
• Read inode 8086 for /home, extract its blocks, read block

(say 7756), scan it for “cs162” to get its inumber (say 732)
• Read inode 732 for /home/cs162, extract its blocks, read

block (say 12132), scan it for “stuff.txt” to get its inumber,
say 9909

• Read inode 9909 for /home/cs162/stuff.txt
• Set up file description to refer to this inode so reads /

write can access the data blocks referenced by its direct
and indirect pointers

• Check permissions on the final inode and each
directory’s inode…

“home”:8086

block 49358

2

8086 block 7756

“cs162”:732

732 block 12132

“stuff.txt”:9909

9909
Blocks of
stuff.txt

inode

2
732
8086

9099 “home”:8086

“stuff.txt”:9909“cs162”:732

Lec 23.184/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Large Directories: B-Trees (dirhash)

in FreeBSD, NetBSD, OpenBSD

Lec 23.194/13/2023 Kubiatowicz CS162 © UCB Spring 2023

CASE STUDY:
WINDOWS NTFS

Lec 23.204/13/2023 Kubiatowicz CS162 © UCB Spring 2023

New Technology File System (NTFS)
• Default on modern Windows systems
• Variable length extents

– Rather than fixed blocks
• Instead of FAT or inode array: Master File Table

– Like a database, with max 1 KB size for each table entry
– Everything (almost) is a sequence of <attribute:value> pairs

» Meta-data and data
• Each entry in MFT contains metadata and:

– File’s data directly (for small files)
– A list of extents (start block, size) for file’s data
– For big files: pointers to other MFT entries with more extent lists

Lec 23.214/13/2023 Kubiatowicz CS162 © UCB Spring 2023

NTFS
• Master File Table

– Database with Flexible 1KB entries for metadata/data
– Variable-sized attribute records (data or metadata)
– Extend with variable depth tree (non-resident)

• Extents – variable length contiguous regions
– Block pointers cover runs of blocks
– Similar approach in Linux (ext4)
– File create can provide hint as to
– size of file

• Journaling for reliability
– Discussed later

http://ntfs.com/ntfs-mft.htm
Lec 23.224/13/2023 Kubiatowicz CS162 © UCB Spring 2023

NTFS Small File: Data stored with Metadata

Create time, modify time, access time,
Owner id, security specifier, flags (RO, hidden, sys)

data attribute

Attribute list

Lec 23.234/13/2023 Kubiatowicz CS162 © UCB Spring 2023

NTFS Medium File: Extents for File Data

Lec 23.244/13/2023 Kubiatowicz CS162 © UCB Spring 2023

NTFS Large File: Pointers to Other MFT Records

Lec 23.254/13/2023 Kubiatowicz CS162 © UCB Spring 2023

NTFS Huge, Fragmented File:
Many MFT Records

Lec 23.264/13/2023 Kubiatowicz CS162 © UCB Spring 2023

NTFS Directories
• Directories implemented as B Trees
• File's number identifies its entry in MFT
• MFT entry always has a file name attribute

– Human readable name, file number of parent dir
• Hard link? Multiple file name attributes in MFT entry

Lec 23.274/13/2023 Kubiatowicz CS162 © UCB Spring 2023

MEMORY MAPPED FILES

Lec 23.284/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Memory Mapped Files
• Traditional I/O involves explicit transfers between buffers in process

address space to/from regions of a file
– This involves multiple copies into caches in memory, plus system calls

• What if we could “map” the file directly into an empty region of our
address space

– Implicitly “page it in” when we read it
– Write it and “eventually” page it out

• Executable files are treated this way when we exec the process!!

Lec 23.294/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Who Does What, When?

virtual address

MMU
PT

instruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry frame#

offset

Lec 23.304/13/2023 Kubiatowicz CS162 © UCB Spring 2023

page#

Using Paging to mmap() Files

virtual address

MMU PTinstruction

physical address

frame#

offset
page fault

Process

File
mmap() file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

exception

Page Fault Handler

scheduler

retry
Read File
contents

from memory!

Lec 23.314/13/2023 Kubiatowicz CS162 © UCB Spring 2023

mmap() system call

• May map a specific region or let the system find one for you
– Tricky to know where the holes are

• Used both for manipulating files and for sharing between processes

Lec 23.324/13/2023 Kubiatowicz CS162 © UCB Spring 2023

An mmap() Example
#include <sys/mman.h> /* also stdio.h, stdlib.h, string.h, fcntl.h, unistd.h */

int something = 162;

int main (int argc, char *argv[]) {
int myfd;
char *mfile;

printf("Data at: %16lx\n", (long unsigned int) &something);
printf("Heap at : %16lx\n", (long unsigned int) malloc(1));
printf("Stack at: %16lx\n", (long unsigned int) &mfile);

/* Open the file */
myfd = open(argv[1], O_RDWR | O_CREAT);
if (myfd < 0) { perror("open failed!");exit(1); }

/* map the file */
mfile = mmap(0, 10000, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, myfd, 0);
if (mfile == MAP_FAILED) {perror("mmap failed"); exit(1);}

printf("mmap at : %16lx\n", (long unsigned int) mfile);

puts(mfile);
strcpy(mfile+20,"Let's write over it");
close(myfd);
return 0;

}

$./mmap test
Data at: 105d63058
Heap at : 7f8a33c04b70
Stack at: 7fff59e9db10
mmap at : 105d97000
This is line one
This is line two
This is line three
This is line four

$ cat test
This is line one
ThiLet's write over its line three
This is line four

Lec 23.334/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Sharing through Mapped Files

• Also: anonymous memory between parents and children
– no file backing – just swap space

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory

Lec 23.344/13/2023 Kubiatowicz CS162 © UCB Spring 2023

THE BUFFER CACHE

Lec 23.354/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Buffer Cache
• Kernel must copy disk blocks to main memory to access their contents and

write them back if modified
– Could be data blocks, inodes, directory contents, etc.
– Possibly dirty (modified and not written back)

• Key Idea: Exploit locality by caching disk data in memory
– Name translations: Mapping from pathsinodes
– Disk blocks: Mapping from block addressdisk content

• Buffer Cache: Memory used to cache kernel resources, including disk
blocks and name translations

– Can contain “dirty” blocks (with modifications not on disk)

Lec 23.364/13/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Buffer Cache

• OS implements a
cache of disk
blocks for efficient
access to data,
directories,
inodes, freemap

Memory

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

Blocks
State free free

Lec 23.374/13/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Buffer Cache: open

• Directory lookup
repeat as needed:

– load block of
directory

– search for map

Memory

Blocks
State

Disk

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free freerddir

Data blocks

Lec 23.384/13/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Buffer Cache: open

• Directory lookup
repeat as needed:

– load block of
directory

– search for map
• Create reference

via open file
descriptor

Memory

Blocks
State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free inode

<name>:inumber

dir rd

Lec 23.394/13/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Buffer Cache: Read?

• Read Process
– From inode,

traverse index
structure to find
data block

– load data block
– copy all or part

to read data
buffer

Memory

Blocks
State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free

<name>:inumber

dir inode

Lec 23.404/13/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Buffer Cache: Write?

• Process similar to
read, but may
allocate new
blocks (update
free map), blocks
need to be written
back to disk;
inode?

Memory

Blocks
State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free

<name>:inumber

dir inode

Lec 23.414/13/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Buffer Cache: Eviction?

• Blocks being
written back to
disc go through a
transient state

Memory

Blocks
State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free

<name>:inumber

dir dirty inode

Lec 23.424/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Buffer Cache Discussion
• Implemented entirely in OS software

– Unlike memory caches and TLB
• Blocks go through transitional states between free and in-use

– Being read from disk, being written to disk
– Other processes can run, etc.

• Blocks are used for a variety of purposes
– inodes, data for dirs and files, freemap
– OS maintains pointers into them

• Termination – e.g., process exit – open, read, write
• Replacement – what to do when it fills up?

Lec 23.434/13/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Caching
• Replacement policy? LRU

– Can afford overhead full LRU implementation
– Advantages:

» Works very well for name translation
» Works well in general as long as memory is big enough to accommodate a host’s

working set of files.
– Disadvantages:

» Fails when some application scans through file system, thereby flushing the cache
with data used only once

» Example: find . –exec grep foo {} \;
• Other Replacement Policies?

– Some systems allow applications to request other policies
– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used

Lec 23.444/13/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Caching (con’t)
• Cache Size: How much memory should the OS allocate to the buffer cache

vs virtual memory?
– Too much memory to the file system cache won’t be able to run many

applications
– Too little memory to file system cache many applications may run slowly (disk

caching not effective)
– Solution: adjust boundary dynamically so that the disk access rates for paging

and file access are balanced

Lec 23.454/13/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Prefetching
• Read Ahead Prefetching: fetch sequential blocks early

– Key Idea: exploit fact that most common file access is sequential by prefetching
subsequent disk blocks ahead of current read request

– Elevator algorithm can efficiently interleave prefetches from concurrent
applications

• How much to prefetch?
– Too much prefetching imposes delays on requests by other applications
– Too little prefetching causes many seeks (and rotational delays) among

concurrent file requests

Lec 23.464/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Delayed Writes
• Buffer cache is a writeback cache (writes are termed “Delayed Writes”)

• write() copies data from user space to kernel buffer cache
– Quick return to user space

• read() is fulfilled by the cache, so reads see the results of writes
– Even if the data has not reached disk

• When does data from a write syscall finally reach disk?
– When the buffer cache is full (e.g., we need to evict something)
– When the buffer cache is flushed periodically (in case we crash)

Lec 23.474/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Delayed Writes (Advantages)
• Performance advantage: return to user quickly without writing to disk!

• Disk scheduler can efficiently order lots of requests
– Elevator Algorithm can rearrange writes to avoid random seeks

• Delay block allocation:
– May be able to allocate multiple blocks at same time for file, keep them contiguous

• Some files never actually make it all the way to disk
– Many short-lived files!

Lec 23.484/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Buffer Caching vs. Demand Paging
• Replacement Policy?

– Demand Paging: LRU is infeasible; use approximation (like NRU/Clock)
– Buffer Cache: LRU is OK

• Eviction Policy?
– Demand Paging: evict not-recently-used pages when memory is close to full
– Buffer Cache: write back dirty blocks periodically, even if used recently

» Why? To minimize data loss in case of a crash

Lec 23.494/13/2023 Kubiatowicz CS162 © UCB Spring 2023

Dealing with Persistent State
• Buffer Cache: write back dirty blocks periodically, even if used recently

– Why? To minimize data loss in case of a crash
– Linux does periodic flush every 30 seconds

• Not foolproof! Can still crash with dirty blocks in the cache
– What if the dirty block was for a directory?

» Lose pointer to file’s inode (leak space)
» File system now in inconsistent state

Lec 23.504/13/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Summary (1/2)
• File System:

– Transforms blocks into Files and Directories
– Optimize for size, access and usage patterns
– Maximize sequential access, allow efficient random access
– Projects the OS protection and security regime (UGO vs ACL)

• File defined by header, called “inode”
• Naming: translating from user-visible names to actual sys resources

– Directories used for naming for local file systems
– Linked or tree structure stored in files

• 4.2 BSD Multilevel Indexed Scheme
– inode contains file info, direct pointers to blocks, indirect blocks, doubly

indirect, etc..
– NTFS: variable extents not fixed blocks, tiny files data is in header

Lec 23.514/13/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Summary (2/2)
• File layout driven by freespace management

– Optimizations for sequential access: start new files in open ranges of free
blocks, rotational optimization

– Integrate freespace, inode table, file blocks and dirs into block group
• Deep interactions between mem management, file system, sharing

– mmap(): map file or anonymous segment to memory
• Buffer Cache: Memory used to cache kernel resources, including disk

blocks and name translations
– Can contain “dirty” blocks (blocks yet on disk)

