CS162
Operating Systems and
Systems Programming

Lecture 24

Filesystems 4: Buffering, Reliability, Transactions

April 181, 2023
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: From Storage to File Systems

VO API and Variable-Size Buffer Memory Address

syscalls

. Logical Index,
File System Typically 4 KB
Hardware

Devices

4KB

Physical Index,

HDD SSD

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.2

4/18/2023

Need for Cache Between FileSystem and Devices

I/0 API and . . Not block-sized
syscalls Variable-Size Buffer Memory Address or block-aligned
__ access
File System Logical Index, Reuse of inodes,

indirect blocks,

(Block Based) data blocks

BufferCache[.||.|-||||||

(Block Based) fer—T—T—Teer—T T—T—T—T T—T-—T T T 1]

Typically 4 KB

| Speed up access
to file system
path and data

Apparent speed

Hardware and flexibility is
Devices Phys Index. greater because
Phys. Block y4KB ’ of Buffer Cache

Physical Index,
512B or 4KB

HDDKubiatowicz CS162 © UCB &) 2023

Lec24.3

Buffer Cache: Motivation

ourer e [T | I TN [T 11|

(Block Based) f@er—T—T—Ter—T T—TT—T T T T T T 1

| Blocks
] State

» Kernel must copy disk blocks to memory (somewhere) to access their
contents and write them back if modified

— Could be data blocks, inodes, directory contents, etc.
— Possibly dirty (modified and not yet written back)
* Key Idea: Exploit locality by caching disk data in memory
— Name translations: Mapping from paths—inodes
— Disk blocks: Mapping from block address—disk content

» Buffer Cache: Memory used to cache kernel resources, including disk
blocks and name translations

— Can contain “dirty” blocks (with modifications not on disk)

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec24.4

File System Buffer Cache

directories,

inodes, freemap Dir Data blocks

HE

Free bitmap

Data blocks . Blkzrn Disk
. . . | Reading /S élf(ki"f:]
» OS implements a PCB ! N

cache of disk iNodes :
blocks for efficient file ed17" !
access to data, desc N

! Writing

i

il BEE Eu EEB

State [fee] [Tree[[T[T T T T T T T T 71]

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Lec24.5

File System Buffer Cache: open

. Data blocks o DiSK
* Directory lookup . S »
repeat as needed: PCB . Reading /o SR
b & Block Group 2 ™%
—load block of iNodes e g
directory e

— search for map desc

State [free T

Lec 24.6

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Buffer Cache: open

Data blocks

I

Disk

+ Directory lookup

Block Group 1

Reading / —

repeat as needed: ——
— load block of ‘/EID/‘alof%Efupz %,
directory w

file
— search for map desc

» Create reference

[]

T 1Y

i
iNodes i |:|

Writing

via open file Dir Data blocks !
descriptor D D elb:mumber
I
Free bitmap H
i
wull IEN EN ENNEENES
State [ee [T [Jor[T [T T [[T 1 e []
4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.7

File System Buffer Cache: Read?

Data blocks

PCB .

i
iNodes i
Dir Data blocks i

|:| D eb:inumber

1
1
Free bitmap H
1

State [feeT [Tar [T T T T T T T T TJnode] 7]]

Disk

* Read Process

— From inode,
traverse index
structure to find
data block file

desc
— load data block

—copy all or part
to read data
buffer

Block Group 1

/ |:| Block Group 2 ’.")q..

Reading

t 1Y

Writing

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Lec24.8

File System Buffer Cache: Write?

File System Buffer Cache: Eviction?

~-—-—.__Disk ~-—-—.__Disk
. Data blocks , Block Group 0 . Data blocks . Block Group 0
» Process similar to | ——— "\ * Blocks being ; ———
read, but may . . | Reading / ?l?kiaf;pj : W_rltten back to . . | Reading ?Miaipj
allocate new PCB I ANcES disc go through a PcB : posciliy
blocks (update iNodes . { D /) transient state iNodes . {
free map), blocks file [+ D | . | file [D |
need to be written 4% \Writng dese—= 'Writing
back to disk; ' :
inode? Dir Data blocks ! Dir Data blocks !
' Inarep:inumber Inarmep:inumber
[I e == I
Free bitmap H I Free bitmap H
Memory
socks|] TN T [[[[[] | socks|] TN TR [[[[[] |
State [free T | [dir | | | [T I I Jinode] I] State [fee] || [dir T | I [dity [T | I Tinode] I]
4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.9 4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.10
Buffer Cache Discussion File System Caching
* Implemented entirely in OS software * Replacement policy? LRU
— Unlike memory caches and TLB — Can afford overhead full LRU implementation
« Blocks go through transitional states between free and in-use — Advantages: ,
Bei df disk_ bei itten to disk » Works very well for name translation
— Being read trom disk, being written 1o dis » Works well in general as long as memory is big enough to accommodate a host’s
— Other processes can run, etc. working set of files.
+ Blocks are used for a variety of purposes — Disadvantages:
— inodes, data for dirs and files, freemap » Fails when some application scans through file system, thereby flushing the cache
oS " tai ters int th’ with data used only once
- maintains pointers into them » Example: find . -exec grep foo {} \;
+ Termination — e.g., process exit — open, read, write « Other Replacement Policies?
— Data flushed to disk if necessary — Some systems allow applications to request other policies
* Replacement — what to do when it fills up? — Example, ‘Use Once’:
» File system can discard blocks as soon as they are used
4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.11 4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.12

File System Caching (con’t)
* Cache Size: How much memory should the OS allocate to the buffer cache
vs virtual memory?

— Too much memory to the file system cache = won’t be able to run many
applications

— Too little memory to file system cache = many applications may run slowly (disk
caching not effective)

— Solution: adjust boundary dynamically so that the disk access rates for paging
and file access are balanced

4/18/2023

Kubiatowicz CS162 © UCB Spring 2023 Lec 24.13

4/18/2023

Administrivia

* Midterm 3: Next Thursday!
— No class on day of midterm
— Three double-sided pages of notes
— Watch for Ed post about where you should go: we have multiple exam rooms
— Confict request form due Thursday!
+ All material up to next Tuesday’s lecture is fair game

Kubiatowicz CS162 © UCB Spring 2023 Lec 24.14
File System Prefetching Delayed Writes
* Read Ahead Prefetching: fetch sequential blocks early « Buffer cache is a writeback cache (writes are termed “Delayed Writes”)
— Key Idea: exploit fact that most common file access is sequential by prefetching
subsequent disk blocks ahead of current read request . .
) . , « write() copies data from user space to kernel buffer cache
— Elevator algorithm can efficiently interleave prefetches from concurrent)
applications — Quick return to user space
* How much to prefetch? _ _
— Too much prefetching imposes delays on requests by other applications » read() is fulfilled by the cache, so reads see the results of writes
— Too little prefetching causes many seeks (and rotational delays) among — Even if the data has not reached disk
concurrent file requests
* When does data from a write syscall finally reach disk?
— When the buffer cache is full (e.g., we need to evict something)
— When the buffer cache is flushed periodically (in case we crash)
4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.15 4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.16

Delayed Writes (Advantages)

» Performance advantage: return to user quickly without writing to disk!

Disk scheduler can efficiently order lots of requests
— Elevator Algorithm can rearrange writes to avoid random seeks
Delay block allocation:
— May be able to allocate multiple blocks at same time for file, keep them contiguous
« Some files never actually make it all the way to disk
— Many short-lived files!

Buffer Caching vs. Demand Paging

* Replacement Policy?
— Demand Paging: LRU is infeasible; use approximation (like NRU/Clock)
— Buffer Cache: LRU is OK

* Eviction Policy?
— Demand Paging: evict not-recently-used pages when memory is close to full
— Buffer Cache: write back dirty blocks periodically, even if used recently
» Why? To minimize data loss in case of a crash

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.17 4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.18
Dealing with Persistent State Important “ilities”
» Buffer Cache: write back dirty blocks periodically, even if used recently * Availability: the p.robability that.t_he system can acce_p.t apd process rques’gg
— Why? To minimize data loss in case of a crash - Mea§ured in “qlngs” of probability: e.g. 99.9% probability is “3-nines of availability”
. L — Key idea here is independence of failures
— Linux does periodic flush every 30 seconds
* Not foolproof! Can still crash with dirty blocks in the cache + Durability: the ability of a system to recover data despite faults
— What if the dirty block was for a directory? — This idea is fault tolerance applied to data
» Lose pointer to file’s inode (leak space) — Doesn'’t necessarily imply availability: information on pyramids was very durable,
. . . but could not be accessed until discovery of Rosetta Stone
» File system now in inconsistent state ®
 Reliability: the ability of a system or component to perform its required
functions under stated conditions for a specified period of time (IEEE
- definition)
= — Usually stronger than simply availability: means that the system is not only “up”,
Takeaway: File systems need Usualy stronger than sm
= — Includes availability, security, fault tolerance/durability
recovery meChan Is ms — Must make sure data survives system crashes, disk crashes, other problems
4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.19 4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.20

HOW TO MAKE FILE SYSTEMS MORE
DURABLE?

Lec 24.21

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023

How to Make File Systems more Durable?

+ Disk blocks contain Reed-Solomon error correcting codes (ECC) to deal with
small defects in disk drive
— Can allow recovery of data from small media defects

* Make sure writes survive in short term
— Either abandon delayed writes or
— Use special, battery-backed RAM (called non-volatile RAM or NVRAM) for dirty blocks
in buffer cache

* Make sure that data survives in long term
— Need to replicate! More than one copy of data!
— Important element: independence of failure
» Could put copies on one disk, but if disk head fails...
» Could put copies on different disks, but if server fails...
» Could put copies on different servers, but if building is struck by lightning....
» Could put copies on servers in different continents...

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.22

Redundant Array of Inexpensive D

© 0 o (developed here at Berkeley!)

RAID 1: Disk Mirroring/Shadowing
«——_recovery

28 88

» Each disk is fully duplicated onto its “shadow”
— For high I/O rate, high availability environments
— Most expensive solution: 100% capacity overhead
Bandwidth sacrificed on write:
— Logical write = two physical writes
— Highest bandwidth when disk heads and rotation synchronized (challenging)
* Reads may be optimized
— Can have two independent reads to same data
* Recovery:
— Disk failure = replace disk and copy data to new disk

— Hot Spare: idle disk attached to system for immediate replacement
Kubiatowicz CS162 © UCB Spring 2023

4/18/2023 Lec24.23

RAID 5+: High 1/0O Rate Parity

+ Data stripped across multiple disks Stripe Unit
— Successive blocks stored on successive PO
(non-parity) disks
— Increased bandwidth over single disk |nf(f)z?cs;'|19
Disk
« Parity block (in green) constructed Addresses

by XORing data blocks in stripe

— PO=D0®D1®D2®D3 D15
— Can destroy any one disk and still
reconstruct data D19
» Suppose Disk 3 fails, then can reconstruct: P5
D2=D0®D1®&D3®P0
Disk1 Disk2 Disk3 Disk4 Disk5

» Can spread information widely across internet for durability
— RAID algorithms work over geographic scale

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.24

RAID 6 and other Erasure Codes

* In general: RAIDX is an “erasure code”
— Must have ability to know which disks are bad
— Treat missing disk as an “Erasure”
» Today, disks so big that: RAID 5 not sufficient!
— Time to repair disk sooooo long, another disk might fail in process!
—“RAID 6” — allow 2 disks in replication stripe to fail

— Requires more complex erasure code, such as EVENODD code (see readings)

» More general option for general erasure code: Reed-Solomon codes
— Based on polynomials in GF(2X) (I.e. k-bit symbols)

- m data points define a degree m polynomial; encoding is n points on the polynomial

— Any m points can be used to recover the polynomial; n — m failures tolerated
 Erasure codes not just for disk arrays. For example, geographic replication

— E.g., split data into m = 4 chunks, generate n = 16 fragments and distribute across

the Internet
— Any 4 fragments can be used to recover the original data --- very durable!

Use of Erasure Coding for High Durability/overhead ratio!

el Fraction Blocks Lost | .
Per Year (FBLPY)

Probability of Block Failute per Year

nu —
number of fragments = 64 ————

Le-70 L L

6 12 £ 24

Repaic Time (months)

» Exploit law of large numbers for durability!

» 6 month repair, FBLPY with 4x increase in total size of data:
— Replication (4 copies): 0.03
— Fragmentation (16 of 64 fragments needed): 10-35

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.25 4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.26
Higher Durability through Geographic Replication
» Highly durable — hard to destroy all copies
» Highly available for reads
— Simple replication: read any copy
— Erasure coded: read m of n
* Low availability for writes
— Can't write if any one replica is not up
— Or — need relaxed consistency model
» Reliability? — availability, security, durability, fault-tolerance
- Replica/Frag #1
W ReplicalFrag #2 HOW TO MAKE FILE SYSTEMS MORE
RELIABLE?
\ Replica/Frag #n
4/18/2023 Kubiatowicz CS162 © UCB Spring Lec 24.27 4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.28

File System Reliability:
(Difference from Block-level reliability)

What can happen if disk loses power or software crashes?
— Some operations in progress may complete
— Some operations in progress may be lost
— Overwrite of a block may only partially complete

Having RAID doesn’t necessarily protect against all such failures
— No protection against writing bad state
— What if one disk of RAID group not written?

File system needs durability (as a minimum!)

— Data previously stored can be retrieved (maybe after some recovery step),
regardless of failure

But durability is not quite enough...!

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.29

4/18/2023

Storage Reliability Problem

+ Single logical file operation can involve updates to multiple physical disk blocks
—inode, indirect block, data block, bitmap, ...

— With sector remapping, single update to physical disk block can require multiple
(even lower level) updates to sectors

+ At a physical level, operations complete one at a time
— Want concurrent operations for performance

* How do we guarantee consistency regardless of when crash occurs?

Kubiatowicz CS162 © UCB Spring 2023 Lec 24.30

Threats to Reliability

* Interrupted Operation

— Crash or power failure in the middle of a series of related updates may leave stored
data in an inconsistent state

— Example: transfer funds from one bank account to another
— What if transfer is interrupted after withdrawal and before deposit?

* Loss of stored data

— Failure of non-volatile storage media may cause previously stored data to
disappear or be corrupted

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.31

Careful Ordering and Recovery

4/18/2023

Two Reliability Approaches

Versioning and Copy-on-Write

FAT & FFS + (fsck) « ZFS, ...

Each step builds structure, » Version files at some granularity
Data block < inode < free <= directory < Create new structure linking back to
Last step links it in to rest of FS unchanged parts of old

Recover scans structure looking for * Last step is to declare that the new
incomplete actions version is ready

Kubiatowicz CS162 © UCB Spring 2023 Lec 24.32

Reliability Approach #1: Careful Ordering

» Sequence operations in a specific order

— Careful design to allow sequence to be interrupted safely

» Post-crash recovery

— Read data structures to see if there were any operations in progress
— Clean up/finish as needed

* Approach taken by

4/18/2023

— FAT and FFS (fsck) to protect filesystem structure/metadata
— Many app-level recovery schemes (e.g., Word, emacs autosaves)

Kubiatowicz CS162 © UCB Spring 2023 Lec 24.33

4/18/2023

Normal operation:

Berkeley FFS: Create a File

Recovery:

» Scan inode table

+ If any unlinked files (not in any
directory), delete or put in lost &
found dir

» Compare free block bitmap
against inode trees

+ Scan directories for missing
update/access times

Allocate data block
Write data block
Allocate inode
Write inode block

Update bitmap of free blocks
and inodes

Update directory with file name
— inode number

Update modify time for directory Time proportional to disk size

Kubiatowicz CS162 © UCB Spring 2023 Lec 24.34

4/18/2023

Reliability Approach #2: Copy on Write File Layout

Recall: multi-level index structure lets us find the data blocks of a file
Instead of over-writing existing data blocks and updating the index structure:
— Create a new version of the file with the updated data
— Reuse blocks that don’t change much of what is already in place
— This is called: Copy On Write (COW)

Seems expensive! But
— Updates can be batched
— Almost all disk writes can occur in parallel

Approach taken in network file server appliances
— NetApp’s Write Anywhere File Layout (WAFL)
— ZFS (Sun/Oracle) and OpenZFS

Kubiatowicz CS162 © UCB Spring 2023 Lec 24.35

4/18/2023

COW with Smaller-Radix Blocks

old version new version

\

2

Write t

* If file represented as a tree of blocks, just need
to update the leading fringe

Kubiatowicz CS162 © UCB Spring 2023 Lec 24.36

Example: ZFS and OpenZFS

Variable sized blocks: 512 B — 128 KB
* Symmetric tree
— Know if it is large or small when we make the copy
» Store version number with pointers
— Can create new version by adding blocks and new pointers
+ Buffers a collection of writes before creating a new version with them
» Free space represented as tree of extents in each block group
— Delay updates to freespace (in log) and do them all when block group is activated

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.37

More General Reliability Solutions

» Use Transactions for atomic updates
— Ensure that multiple related updates are performed atomically

—i.e., if a crash occurs in the middle, the state of the systems reflects either all or
none of the updates

— Most modern file systems use transactions internally to update filesystem
structures and metadata

— Many applications implement their own transactions

» Provide Redundancy for media failures
— Redundant representation on media (Error Correcting Codes)
— Replication across media (e.g., RAID disk array)

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.38

Transactions

» Closely related to critical sections for manipulating shared data structures

» They extend concept of atomic update from memory to stable storage
— Atomically update multiple persistent data structures

* Many ad-hoc approaches

— FFS carefully ordered the sequence of updates so that if a crash occurred
while manipulating directory or inodes the disk scan on reboot would detect
and recover the error (fsck)

— Applications use temporary files and rename

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.39

Key Concept: Transaction

» A fransaction is an atomic sequence of reads and writes that takes the
system from consistent state to another.

transaction

consistent state 1 consistent state 2

\ 4

J .

» Recall: Code in a critical section appears atomic to other threads

» Transactions extend the concept of atomic updates from memory to
persistent storage

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.40

Typical Structure

» Begin a transaction — get transaction id

* Do a bunch of updates
— If any fail along the way, roll-back
— Or, if any conflicts with other transactions, roll-back

* Commit the transaction

“Classic” Example: Transaction

BEGIN; --BEGIN TRANSACTION

UPDATE accounts SET balance = balance - 100.00 WHERE
name = 'Alice’;

UPDATE branches SET balance = balance - 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= "Alice');

UPDATE accounts SET balance = balance + 100.00 WHERE
name = 'Bob’;

UPDATE branches SET balance = balance + 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Bob');

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.41 4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.42
Concept of a log Transactional File Systems
» One simple action is atomic — write/append a basic item * Better reliability through use of log
+ Use that to seal the commitment to a whole series of actions — Changes are treated as transactions
— A transaction is committed once it is written to the log
— — — » Data forced to disk for reliability
]] » Process can be accelerated with NVRAM
< m et x |[>])))
c € 5 € ‘g’ z — Although File system may not be updated immediately, data preserved in the log
= < 3 o 3 e
£ o g |8 818 |8
= £ ; £ ole £ + Difference between “Log Structured” and “Journaled”
k= o o cle . .
S E £ E S1= | E —In a Log Structured filesystem, data stays in log form
» 4 * 4 B8 | o .
= ~ e ol — In a Journaled filesystem, Log used for recovery
8 o| |8 g|&
4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.43 4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.44

Journaling File Systems

* Don’t modify data structures on disk directly
» Write each update as transaction recorded in a log
— Commonly called a journal or intention list

Creating a File (No Journaling Yet)

» Find free data block(s)
« Find free inode entry B — W

— Also maintained on disk (allocate blocks for it when formatting) , . , , ,) Free
. . . « Find dirent insertion point space
* Once changes are in the log, they can be safely applied to file system ’ ’ [’ ‘ ‘ o S
— e.g. modify |n(?de.p0|nters and dlrec.tory ma.pplng . - Write map (i.e., mark used) [1] PT T 1] Inodetable
» Garbage collection: once a change is applied, remove its entry from the log - Write inode entry to point to block(s)
« Write dirent to point to inode D"te.cmry
+ Linux took original FFS-like file system (ext2) and added a journal to get ext3! o entries
— Some options: whether or not to write all data to journal or just metadata
* Other examples: NTFS, Apple HFS+/apfs, Linux XFS, JFS, ext4
4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.45 4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.46
Creating a File (With Journaling) After Commit, Eventually Replay Transaction
’ F!nd free .data block(s) ; * All accesses to the file system first looks in
* Find free inode entry B ' Free the log —_—— Free
+ Find dirent insertion point HII . space — Actual on-disk data structure might be stale . space
:D Dath blocks d Dath blocks
* [log] Write map (i.e., mark used)] |] Inode table « Eventually, copy changes to disk and | [[[] Inode table
* [log] Write inode entry to point to block(s) discard transaction from the log]
. : ; ; ; Directory Directory
[log] Write dirent to point to inode ontries] entries
tail head tail tall tail head
J’ ?"’ T
done pending = € done pending = g
1=l] 1|
Log: in non-volatile storage (Flash or on Disk) Log: in non-volatile storage (Flash of on Disk)
4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.47 4/18/2023 Kubiatowicz CS162 © UCB Spring 2023 Lec 24.48

Crash Recovery: Discard Partial Transactions

« Upon recovery, scan the log S W
| Free
« Detect transaction start with no commit space
Di dql . IDrg?gblocks
¢ Discard log entries .
9 [[T 11 1] Inode table
* Disk remains unchanged .
Directory
entries

tall

J\/

done

pending @H AT x

Log: in non-volatile storage (Flash or on Disk)

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Lec 24.49

4/18/2023

Crash Recovery: Keep Complete Transactions

+ Scan log, find start S w
T | Free
) . . space
» Find matching commit Mmap
Data blocks
. [] [T 11 1] Inode table
* Redo it as usual
— Or just let it happen later Directory
entries

tall head

done

pending :Cg

IS
bl
o
Log: in non-volatile storage (Flash or on Disk)

Kubiatowicz CS162 © UCB Spring 2023 Lec 24.50

Journaling Summary

Why go through all this trouble?
» Updates atomic, even if we crash:
— Update either gets fully applied or discarded
— All physical operations treated as a logical unit

Isn’t this expensive?

* Yes! We're now writing all data twice (once to log, once to actual data
blocks in target file)

* Modern filesystems journal metadata updates only
— Record modifications to file system data structures
— But apply updates to a file’s contents directly

4/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Lec 24.51

4/18/2023

Summary

Buffer Cache: Memory used to cache kernel resources, including disk blocks
and name translations
— Can contain “dirty” blocks (blocks yet on disk)
Important system properties
— Availability: how often is the resource available?
— Durability: how well is data preserved against faults?
— Reliability: how often is resource performing correctly?
RAID: Redundant Arrays of Inexpensive Disks
— RAID1: mirroring, RAID5: Parity block

Copy-on-write provides richer function (versions) with much simpler recovery

— Little performance impact since sequential write to storage device is nearly free
Use of Log to improve Reliability
— Journaled file systems such as ext3, NTFS

Transactions over a log provide a general solution
— Commit sequence to durable log, then update the disk
— Log takes precedence over disk
— Replay committed transactions, discard partials

Kubiatowicz CS162 © UCB Spring 2023 Lec 24.52

