
CS162
Operating Systems and
Systems Programming

Lecture 24

Filesystems 4: Buffering, Reliability, Transactions

April 18th, 2023
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 24.24/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: From Storage to File Systems
I/O API and

syscalls Variable-Size Buffer

File System Block
Logical Index,
Typically 4 KB

Hardware
Devices

Memory Address

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block Phys Index.,
4KB

Sector(s)Sector(s)

Erasure Page

Lec 24.34/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Slow access to
Data blocks of
fixed size!Hardware

Devices

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block Phys Index.,
4KB

Sector(s)Sector(s)

Erasure Page

Need for Cache Between FileSystem and Devices
I/O API and

syscalls Variable-Size Buffer

File System
(Block Based)

Logical Index,
Typically 4 KB

Memory Address

free free

Buffer Cache
(Block Based)

Not block-sized
or block-aligned
access

Reuse of inodes,
indirect blocks,
data blocks

Hardware
Devices

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block Phys Index.,
4KB

Sector(s)Sector(s)

Erasure Page

Speed up access
to file system
path and data

Apparent speed
and flexibility is
greater because
of Buffer Cache

Lec 24.44/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Buffer Cache: Motivation

• Kernel must copy disk blocks to memory (somewhere) to access their
contents and write them back if modified

– Could be data blocks, inodes, directory contents, etc.
– Possibly dirty (modified and not yet written back)

• Key Idea: Exploit locality by caching disk data in memory
– Name translations: Mapping from pathsinodes
– Disk blocks: Mapping from block addressdisk content

• Buffer Cache: Memory used to cache kernel resources, including disk
blocks and name translations

– Can contain “dirty” blocks (with modifications not on disk)

Blocks
Statefree free

Buffer Cache
(Block Based)

Lec 24.54/18/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Buffer Cache

• OS implements a
cache of disk
blocks for efficient
access to data,
directories,
inodes, freemap

Memory

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

Blocks
State free free

Lec 24.64/18/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Buffer Cache: open

• Directory lookup
repeat as needed:

– load block of
directory

– search for map

Memory

Blocks
State

Disk

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free freerddir

Data blocks

Lec 24.74/18/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Buffer Cache: open

• Directory lookup
repeat as needed:

– load block of
directory

– search for map
• Create reference

via open file
descriptor

Memory

Blocks
State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free inode

<name>:inumber

dir rd

Lec 24.84/18/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Buffer Cache: Read?

• Read Process
– From inode,

traverse index
structure to find
data block

– load data block
– copy all or part

to read data
buffer

Memory

Blocks
State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free

<name>:inumber

dir inode

Lec 24.94/18/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Buffer Cache: Write?

• Process similar to
read, but may
allocate new
blocks (update
free map), blocks
need to be written
back to disk;
inode?

Memory

Blocks
State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free

<name>:inumber

dir inode

Lec 24.104/18/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Buffer Cache: Eviction?

• Blocks being
written back to
disc go through a
transient state

Memory

Blocks
State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB
Reading

Writing

free

<name>:inumber

dir dirty inode

Lec 24.114/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Buffer Cache Discussion
• Implemented entirely in OS software

– Unlike memory caches and TLB
• Blocks go through transitional states between free and in-use

– Being read from disk, being written to disk
– Other processes can run, etc.

• Blocks are used for a variety of purposes
– inodes, data for dirs and files, freemap
– OS maintains pointers into them

• Termination – e.g., process exit – open, read, write
– Data flushed to disk if necessary

• Replacement – what to do when it fills up?

Lec 24.124/18/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Caching
• Replacement policy? LRU

– Can afford overhead full LRU implementation
– Advantages:

» Works very well for name translation
» Works well in general as long as memory is big enough to accommodate a host’s

working set of files.
– Disadvantages:

» Fails when some application scans through file system, thereby flushing the cache
with data used only once

» Example: find . –exec grep foo {} \;
• Other Replacement Policies?

– Some systems allow applications to request other policies
– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used

Lec 24.134/18/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Caching (con’t)
• Cache Size: How much memory should the OS allocate to the buffer cache

vs virtual memory?
– Too much memory to the file system cache won’t be able to run many

applications
– Too little memory to file system cache many applications may run slowly (disk

caching not effective)
– Solution: adjust boundary dynamically so that the disk access rates for paging

and file access are balanced

Lec 24.144/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Administrivia
• Midterm 3: Next Thursday!

– No class on day of midterm
– Three double-sided pages of notes
– Watch for Ed post about where you should go: we have multiple exam rooms
– Confict request form due Thursday!

• All material up to next Tuesday’s lecture is fair game

Lec 24.154/18/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Prefetching
• Read Ahead Prefetching: fetch sequential blocks early

– Key Idea: exploit fact that most common file access is sequential by prefetching
subsequent disk blocks ahead of current read request

– Elevator algorithm can efficiently interleave prefetches from concurrent
applications

• How much to prefetch?
– Too much prefetching imposes delays on requests by other applications
– Too little prefetching causes many seeks (and rotational delays) among

concurrent file requests

Lec 24.164/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Delayed Writes
• Buffer cache is a writeback cache (writes are termed “Delayed Writes”)

• write() copies data from user space to kernel buffer cache
– Quick return to user space

• read() is fulfilled by the cache, so reads see the results of writes
– Even if the data has not reached disk

• When does data from a write syscall finally reach disk?
– When the buffer cache is full (e.g., we need to evict something)
– When the buffer cache is flushed periodically (in case we crash)

Lec 24.174/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Delayed Writes (Advantages)
• Performance advantage: return to user quickly without writing to disk!

• Disk scheduler can efficiently order lots of requests
– Elevator Algorithm can rearrange writes to avoid random seeks

• Delay block allocation:
– May be able to allocate multiple blocks at same time for file, keep them contiguous

• Some files never actually make it all the way to disk
– Many short-lived files!

Lec 24.184/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Buffer Caching vs. Demand Paging
• Replacement Policy?

– Demand Paging: LRU is infeasible; use approximation (like NRU/Clock)
– Buffer Cache: LRU is OK

• Eviction Policy?
– Demand Paging: evict not-recently-used pages when memory is close to full
– Buffer Cache: write back dirty blocks periodically, even if used recently

» Why? To minimize data loss in case of a crash

Lec 24.194/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Dealing with Persistent State
• Buffer Cache: write back dirty blocks periodically, even if used recently

– Why? To minimize data loss in case of a crash
– Linux does periodic flush every 30 seconds

• Not foolproof! Can still crash with dirty blocks in the cache
– What if the dirty block was for a directory?

» Lose pointer to file’s inode (leak space)
» File system now in inconsistent state

Lec 24.204/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Important “ilities”
• Availability: the probability that the system can accept and process requests

– Measured in “nines” of probability: e.g. 99.9% probability is “3-nines of availability”
– Key idea here is independence of failures

• Durability: the ability of a system to recover data despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on pyramids was very durable,

but could not be accessed until discovery of Rosetta Stone

• Reliability: the ability of a system or component to perform its required
functions under stated conditions for a specified period of time (IEEE
definition)

– Usually stronger than simply availability: means that the system is not only “up”,
but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk crashes, other problems

Lec 24.214/18/2023 Kubiatowicz CS162 © UCB Spring 2023

HOW TO MAKE FILE SYSTEMS MORE
DURABLE?

Lec 24.224/18/2023 Kubiatowicz CS162 © UCB Spring 2023

How to Make File Systems more Durable?
• Disk blocks contain Reed-Solomon error correcting codes (ECC) to deal with

small defects in disk drive
– Can allow recovery of data from small media defects

• Make sure writes survive in short term
– Either abandon delayed writes or
– Use special, battery-backed RAM (called non-volatile RAM or NVRAM) for dirty blocks

in buffer cache

• Make sure that data survives in long term
– Need to replicate! More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is struck by lightning….
» Could put copies on servers in different continents…

Lec 24.234/18/2023 Kubiatowicz CS162 © UCB Spring 2023

RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its “shadow”
– For high I/O rate, high availability environments
– Most expensive solution: 100% capacity overhead

• Bandwidth sacrificed on write:
– Logical write = two physical writes
– Highest bandwidth when disk heads and rotation synchronized (challenging)

• Reads may be optimized
– Can have two independent reads to same data

• Recovery:
– Disk failure replace disk and copy data to new disk
– Hot Spare: idle disk attached to system for immediate replacement

recovery
group

Redundant Array of Inexpensive D
(developed here at Berkeley!)

Lec 24.244/18/2023 Kubiatowicz CS162 © UCB Spring 2023

• Data stripped across multiple disks
– Successive blocks stored on successive

(non-parity) disks
– Increased bandwidth over single disk

• Parity block (in green) constructed
by XORing data blocks in stripe

– P0=D0D1D2D3
– Can destroy any one disk and still

reconstruct data

• Suppose Disk 3 fails, then can reconstruct:
D2=D0D1D3P0

• Can spread information widely across internet for durability
– RAID algorithms work over geographic scale

RAID 5+: High I/O Rate Parity

Increasing
Logical
Disk

Addresses

Stripe Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Lec 24.254/18/2023 Kubiatowicz CS162 © UCB Spring 2023

RAID 6 and other Erasure Codes
• In general: RAIDX is an “erasure code”

– Must have ability to know which disks are bad
– Treat missing disk as an “Erasure”

• Today, disks so big that: RAID 5 not sufficient!
– Time to repair disk sooooo long, another disk might fail in process!
– “RAID 6” – allow 2 disks in replication stripe to fail
– Requires more complex erasure code, such as EVENODD code (see readings)

• More general option for general erasure code: Reed-Solomon codes
– Based on polynomials in GF(2k) (I.e. k-bit symbols)– 𝑚 data points define a degree 𝑚 polynomial; encoding is 𝑛 points on the polynomial
– Any 𝑚 points can be used to recover the polynomial; 𝑛 𝑚 failures tolerated

• Erasure codes not just for disk arrays. For example, geographic replication
– E.g., split data into 𝑚 4 chunks, generate 𝑛 16 fragments and distribute across

the Internet
– Any 4 fragments can be used to recover the original data --- very durable!

Lec 24.264/18/2023 Kubiatowicz CS162 © UCB Spring 2023

• Exploit law of large numbers for durability!
• 6 month repair, FBLPY with 4x increase in total size of data:

– Replication (4 copies): 0.03
– Fragmentation (16 of 64 fragments needed): 10-35

Fraction Blocks Lost
Per Year (FBLPY)

Use of Erasure Coding for High Durability/overhead ratio!

Lec 24.274/18/2023 Kubiatowicz CS162 © UCB Spring 2023

• Highly durable – hard to destroy all copies
• Highly available for reads

– Simple replication: read any copy
– Erasure coded: read m of n

• Low availability for writes
– Can’t write if any one replica is not up
– Or – need relaxed consistency model

• Reliability? – availability, security, durability, fault-tolerance

Replica/Frag #1

Replica/Frag #2

Replica/Frag #n

Higher Durability through Geographic Replication

Lec 24.284/18/2023 Kubiatowicz CS162 © UCB Spring 2023

HOW TO MAKE FILE SYSTEMS MORE
RELIABLE?

Lec 24.294/18/2023 Kubiatowicz CS162 © UCB Spring 2023

File System Reliability:
(Difference from Block-level reliability)

• What can happen if disk loses power or software crashes?
– Some operations in progress may complete
– Some operations in progress may be lost
– Overwrite of a block may only partially complete

• Having RAID doesn’t necessarily protect against all such failures
– No protection against writing bad state
– What if one disk of RAID group not written?

• File system needs durability (as a minimum!)
– Data previously stored can be retrieved (maybe after some recovery step),

regardless of failure

• But durability is not quite enough…!

Lec 24.304/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Storage Reliability Problem
• Single logical file operation can involve updates to multiple physical disk blocks

– inode, indirect block, data block, bitmap, …
– With sector remapping, single update to physical disk block can require multiple

(even lower level) updates to sectors

• At a physical level, operations complete one at a time
– Want concurrent operations for performance

• How do we guarantee consistency regardless of when crash occurs?

Lec 24.314/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Threats to Reliability
• Interrupted Operation

– Crash or power failure in the middle of a series of related updates may leave stored
data in an inconsistent state

– Example: transfer funds from one bank account to another
– What if transfer is interrupted after withdrawal and before deposit?

• Loss of stored data
– Failure of non-volatile storage media may cause previously stored data to

disappear or be corrupted

Lec 24.324/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Two Reliability Approaches
Careful Ordering and Recovery
• FAT & FFS + (fsck)
• Each step builds structure,
• Data block inode free directory
• Last step links it in to rest of FS
• Recover scans structure looking for

incomplete actions

Versioning and Copy-on-Write
• ZFS, …
• Version files at some granularity
• Create new structure linking back to

unchanged parts of old
• Last step is to declare that the new

version is ready

Lec 24.334/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Reliability Approach #1: Careful Ordering
• Sequence operations in a specific order

– Careful design to allow sequence to be interrupted safely

• Post-crash recovery
– Read data structures to see if there were any operations in progress
– Clean up/finish as needed

• Approach taken by
– FAT and FFS (fsck) to protect filesystem structure/metadata
– Many app-level recovery schemes (e.g., Word, emacs autosaves)

Lec 24.344/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Berkeley FFS: Create a File

Normal operation:
• Allocate data block
• Write data block
• Allocate inode
• Write inode block
• Update bitmap of free blocks

and inodes
• Update directory with file name
 inode number

• Update modify time for directory

Recovery:
• Scan inode table
• If any unlinked files (not in any

directory), delete or put in lost &
found dir

• Compare free block bitmap
against inode trees

• Scan directories for missing
update/access times

Time proportional to disk size

Lec 24.354/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Reliability Approach #2: Copy on Write File Layout

• Recall: multi-level index structure lets us find the data blocks of a file
• Instead of over-writing existing data blocks and updating the index structure:

– Create a new version of the file with the updated data
– Reuse blocks that don’t change much of what is already in place
– This is called: Copy On Write (COW)

• Seems expensive! But
– Updates can be batched
– Almost all disk writes can occur in parallel

• Approach taken in network file server appliances
– NetApp’s Write Anywhere File Layout (WAFL)
– ZFS (Sun/Oracle) and OpenZFS

Lec 24.364/18/2023 Kubiatowicz CS162 © UCB Spring 2023

COW with Smaller-Radix Blocks

• If file represented as a tree of blocks, just need
to update the leading fringe

Write

old version new version

Lec 24.374/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Example: ZFS and OpenZFS
• Variable sized blocks: 512 B – 128 KB
• Symmetric tree

– Know if it is large or small when we make the copy
• Store version number with pointers

– Can create new version by adding blocks and new pointers
• Buffers a collection of writes before creating a new version with them
• Free space represented as tree of extents in each block group

– Delay updates to freespace (in log) and do them all when block group is activated

Lec 24.384/18/2023 Kubiatowicz CS162 © UCB Spring 2023

More General Reliability Solutions
• Use Transactions for atomic updates

– Ensure that multiple related updates are performed atomically
– i.e., if a crash occurs in the middle, the state of the systems reflects either all or

none of the updates
– Most modern file systems use transactions internally to update filesystem

structures and metadata
– Many applications implement their own transactions

• Provide Redundancy for media failures
– Redundant representation on media (Error Correcting Codes)
– Replication across media (e.g., RAID disk array)

Lec 24.394/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Transactions
• Closely related to critical sections for manipulating shared data structures

• They extend concept of atomic update from memory to stable storage
– Atomically update multiple persistent data structures

• Many ad-hoc approaches
– FFS carefully ordered the sequence of updates so that if a crash occurred

while manipulating directory or inodes the disk scan on reboot would detect
and recover the error (fsck)

– Applications use temporary files and rename

Lec 24.404/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Key Concept: Transaction
• A transaction is an atomic sequence of reads and writes that takes the

system from consistent state to another.

• Recall: Code in a critical section appears atomic to other threads
• Transactions extend the concept of atomic updates from memory to

persistent storage

consistent state 1 consistent state 2
transaction

Lec 24.414/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Typical Structure
• Begin a transaction – get transaction id

• Do a bunch of updates
– If any fail along the way, roll-back
– Or, if any conflicts with other transactions, roll-back

• Commit the transaction

Lec 24.424/18/2023 Kubiatowicz CS162 © UCB Spring 2023

“Classic” Example: Transaction

UPDATE accounts SET balance = balance ‐ 100.00 WHERE
name = 'Alice';

UPDATE branches SET balance = balance ‐ 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Alice');

UPDATE accounts SET balance = balance + 100.00 WHERE
name = 'Bob';

UPDATE branches SET balance = balance + 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Bob');

BEGIN; ‐‐BEGIN TRANSACTION

COMMIT; ‐‐COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

Lec 24.434/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Concept of a log
• One simple action is atomic – write/append a basic item
• Use that to seal the commitment to a whole series of actions

G
et

 1
0$

 fr
om

 a
cc

ou
nt

 A

G
et

 7
$

fr
om

 a
cc

ou
nt

 B

G
et

 1
3$

 fr
om

 a
cc

ou
nt

 C

Pu
t 1

5$
 in

to
 a

cc
ou

nt
 X

Pu
t 1

5$
 in

to
 a

cc
ou

nt
 Y

St
ar

t T
ra

n
N

C
om

m
it

Tr
an

 N

Lec 24.444/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Transactional File Systems
• Better reliability through use of log

– Changes are treated as transactions
– A transaction is committed once it is written to the log

» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately, data preserved in the log

• Difference between “Log Structured” and “Journaled”
– In a Log Structured filesystem, data stays in log form
– In a Journaled filesystem, Log used for recovery

Lec 24.454/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Journaling File Systems
• Don’t modify data structures on disk directly
• Write each update as transaction recorded in a log

– Commonly called a journal or intention list
– Also maintained on disk (allocate blocks for it when formatting)

• Once changes are in the log, they can be safely applied to file system
– e.g. modify inode pointers and directory mapping

• Garbage collection: once a change is applied, remove its entry from the log

• Linux took original FFS-like file system (ext2) and added a journal to get ext3!
– Some options: whether or not to write all data to journal or just metadata

• Other examples: NTFS, Apple HFS+/apfs, Linux XFS, JFS, ext4

Lec 24.464/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Creating a File (No Journaling Yet)

• Find free data block(s)
• Find free inode entry
• Find dirent insertion point

• Write map (i.e., mark used)
• Write inode entry to point to block(s)
• Write dirent to point to inode

Data blocks

Free
space
map…

Inode table

Directory
entries

Lec 24.474/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Creating a File (With Journaling)

• Find free data block(s)
• Find free inode entry
• Find dirent insertion point

• [log] Write map (i.e., mark used)
• [log] Write inode entry to point to block(s)
• [log] Write dirent to point to inode

Data blocks

Free
space
map…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

Lec 24.484/18/2023 Kubiatowicz CS162 © UCB Spring 2023

After Commit, Eventually Replay Transaction

• All accesses to the file system first looks in
the log

– Actual on-disk data structure might be stale

• Eventually, copy changes to disk and
discard transaction from the log

Data blocks

Free
space
map…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

head

pendingdone

st
ar

t

co
m

m
it

tail tail tail tail tail

Lec 24.494/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Crash Recovery: Discard Partial Transactions

• Upon recovery, scan the log

• Detect transaction start with no commit

• Discard log entries

• Disk remains unchanged

Data blocks

Free
space
map…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

Lec 24.504/18/2023 Kubiatowicz CS162 © UCB Spring 2023

• Scan log, find start

• Find matching commit

• Redo it as usual
– Or just let it happen later

Data blocks

Free
space
map…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

Crash Recovery: Keep Complete Transactions

Lec 24.514/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Journaling Summary
Why go through all this trouble?
• Updates atomic, even if we crash:

– Update either gets fully applied or discarded
– All physical operations treated as a logical unit

Isn’t this expensive?
• Yes! We're now writing all data twice (once to log, once to actual data

blocks in target file)
• Modern filesystems journal metadata updates only

– Record modifications to file system data structures
– But apply updates to a file’s contents directly

Lec 24.524/18/2023 Kubiatowicz CS162 © UCB Spring 2023

Summary
• Buffer Cache: Memory used to cache kernel resources, including disk blocks

and name translations
– Can contain “dirty” blocks (blocks yet on disk)

• Important system properties
– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

• RAID: Redundant Arrays of Inexpensive Disks
– RAID1: mirroring, RAID5: Parity block

• Copy-on-write provides richer function (versions) with much simpler recovery
– Little performance impact since sequential write to storage device is nearly free

• Use of Log to improve Reliability
– Journaled file systems such as ext3, NTFS

• Transactions over a log provide a general solution
– Commit sequence to durable log, then update the disk
– Log takes precedence over disk
– Replay committed transactions, discard partials

