CS162 Operating Systems and Systems Programming Lecture 25

Distributed Decision Making, Networking and TCP/IP

April 20th, 2023

Prof. John Kubiatowicz

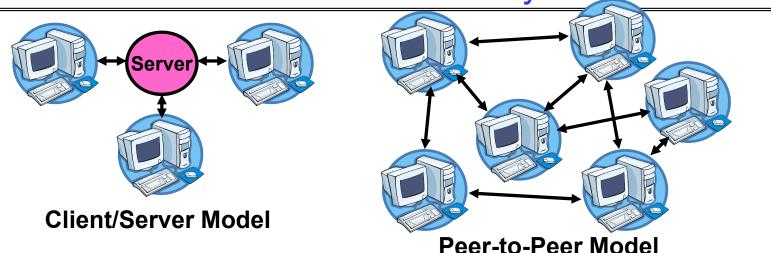
http://cs162.eecs.Berkeley.edu

The world is a large distributed system

- Microprocessors in everything

Vast infrastructure behind them

Sensor Nets

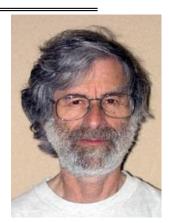


Scalable, Reliable, Secure Services

Databases
Information Collection
Remote Storage
Online Games
Commerce

. . .

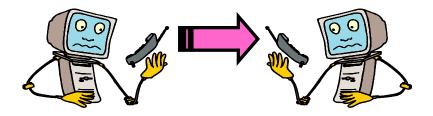
Centralized vs Distributed Systems

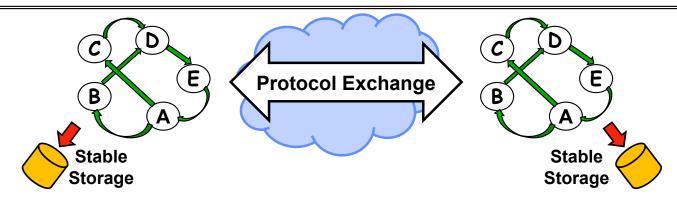

- Centralized System: major functions performed by a single physical computer
 - Originally, everything on single computer
 - Later: client/server model
- Distributed System: physically separate computers working together on task
 - Early model: multiple servers working together
 - » Probably in the same room or building
 - » Often called a "cluster"
 - Later models: peer-to-peer/wide-spread collaboration

Distributed Systems: Motivation/Issues/Promise

- Why do we want distributed systems?
 - Cheaper and easier to build lots of simple computers
 - Easier to add power incrementally
 - Users can have complete control over some components
 - Collaboration: much easier for users to collaborate through network resources (such as network file systems)
- The promise of distributed systems:
 - Higher availability: one machine goes down, use another
 - Better durability: store data in multiple locations
 - More security: each piece easier to make secure

Distributed Systems: Reality


- Reality has been disappointing
 - Worse availability: depend on every machine being up
 - » Lamport: "A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable."
 - Worse reliability: can lose data if any machine crashes
 - Worse security: anyone in world can break into system
- Coordination is more difficult
 - Must coordinate multiple copies of shared state information
 - What would be easy in a centralized system becomes a lot more difficult
- Trust/Security/Privacy/Denial of Service
 - Many new variants of problems arise as a result of distribution
 - Can you trust the other members of a distributed application enough to even perform a protocol correctly?
 - Corollary of Lamport's quote: "A distributed system is one where you can't do work because some computer you didn't even know existed is successfully coordinating an attack on my system!"


Leslie Lamport

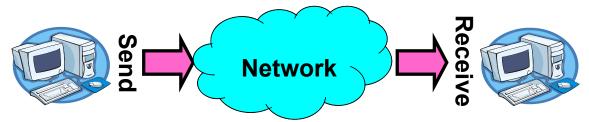
Distributed Systems: Goals/Requirements

- Transparency: the ability of the system to mask its complexity behind a simple interface
- Possible transparencies:
 - Location: Can't tell where resources are located
 - Migration: Resources may move without the user knowing
 - Replication: Can't tell how many copies of resource exist
 - Concurrency: Can't tell how many users there are
 - Parallelism: System may speed up large jobs by splitting them into smaller pieces
 - Fault Tolerance: System may hide various things that go wrong
- Transparency and collaboration require some way for different processors to communicate with one another

How do entities communicate? A Protocol!

- A protocol is an agreement on how to communicate, including:
 - Syntax: how a communication is specified & structured
 - » Format, order messages are sent and received
 - Semantics: what a communication means
 - » Actions taken when transmitting, receiving, or when a timer expires
- Described formally by a state machine
 - Often represented as a message transaction diagram
 - Can be a partitioned state machine: two parties synchronizing duplicate sub-state machines between them
 - Stability in the face of failures!

Examples of Protocols in Human Interactions


Telephone

```
    (Pick up / open up the phone)
    Listen for a dial tone / see that you have service
    Dial
    Should hear ringing ...
    Callee: "Hello?"
    Caller: "Hi, it's Anthony...."
        Or: "Hi, it's me" (← what's that about?)
    Caller: "Hey, do you think ... blah blah blah ..." pause
```

- Callee: "Yeah, blah blah blah ..." pause
 Caller: Bye
- 3. Callee: Bye
- 4. Hang up

Distributed Applications

- How do you actually program a distributed application?
 - Need to synchronize multiple threads, running on different machines
 - » No shared memory, so cannot use test&set

- One Abstraction: send/receive messages
 - » Already atomic: no receiver gets portion of a message and two receivers cannot get same message
- Interface:
 - Mailbox (mbox): temporary holding area for messages
 - » Includes both destination location and queue
 - Send(message,mbox)
 - » Send message to remote mailbox identified by mbox
 - Receive(buffer,mbox)
 - » Wait until mbox has message, copy into buffer, and return
 - » If threads sleeping on this mbox, wake up one of them

Using Messages: Send/Receive behavior

- When should send (message, mbox) return?
 - When receiver gets message? (i.e. ack received)
 - When message is safely buffered on destination?
 - Right away, if message is buffered on source node?
- Actually two questions here:
 - When can the sender be sure that receiver actually received the message?
 - When can sender reuse the memory containing message?
- Mailbox provides 1-way communication from T1→T2
 - T1→buffer→T2
 - Very similar to producer/consumer
 - » Send = V, Receive = P
 - » However, can't tell if sender/receiver is local or not!

Messaging for Producer-Consumer Style

Using send/receive for producer-consumer style:

```
Producer:
int msg1[1000];
while(1) {
    prepare message;
    send(msg1,mbox);
}

Consumer:
int buffer[1000];
while(1) {
    receive(buffer,mbox);
    process message;
}

Receive
Message
```

- No need for producer/consumer to keep track of space in mailbox: handled by send/receive
 - This is one of the roles of the window in TCP: window is size of buffer on far end
 - Restricts sender to forward only what will fit in buffer

Messaging for Request/Response communication

- What about two-way communication?
 - Request/Response
 - » Read a file stored on a remote machine
 - » Request a web page from a remote web server
 - Also called: client-server
 - » Client ≡ requester, Server ≡ responder
 - » Server provides "service" (file storage) to the client

```
    Example: File service

                                                Request
       Client: (requesting the file)
                                                File
         char response[1000];
         send ("read rutabaga", server mbox);
         receive (response, client mbox);
                                                  Get
                                                  Response
       Server: (responding with the file)
         char command[1000], answer[1000];
                                               Receive
         receive (command, server mbox);
                                               Request
         decode command;
         read file into answer;
                                              Send
         send(answer, client mbox);
                                              Response
                          Kubiatowicz CS162 © UCB Sprin
```

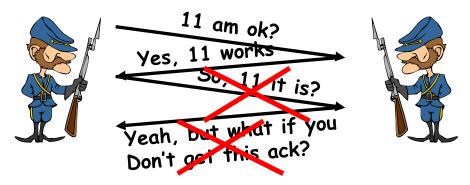
4/20/23

Administrivia

- Midterm 3: Next Thursday!
 - No class on day of midterm
 - Three double-sided pages of notes
 - Watch for Ed post about where you should go: we have multiple exam rooms
 - Confict request form due Thursday!
- All material up to next Tuesday's lecture is fair game
- Final deadlines during RRR week:
 - Yes, there will be office hour watch for specifics

Distributed Consensus Making

- Consensus problem
 - All nodes propose a value
 - Some nodes might crash and stop responding
 - Eventually, all remaining nodes decide on the same value from set of proposed values
- Distributed Decision Making
 - Choose between "true" and "false"
 - Or Choose between "commit" and "abort"
- Equally important (but often forgotten!): make it durable!
 - How do we make sure that decisions cannot be forgotten?
 - » This is the "D" of "ACID" in a regular database
 - In a global-scale system?
 - » What about erasure coding or massive replication?
 - » Like BlockChain applications!


General's Paradox

- General's paradox:
 - Constraints of problem:
 - » Two generals, on separate mountains
 - » Can only communicate via messengers
 - » Messengers can be captured
 - Problem: need to coordinate attack
 - » If they attack at different times, they all die
 - » If they attack at same time, they win
 - Named after Custer, who died at Little Big Horn because he arrived a couple of days too early

General's Paradox (con't)

- Can messages over an unreliable network be used to guarantee two entities do something simultaneously?
 - Remarkably, "no", even if all messages get through

- No way to be sure last message gets through!
- In real life, use radio for simultaneous (out of band) communication
- So, clearly, we need something other than simultaneity!

Two-Phase Commit

- Since we can't solve the General's Paradox
 (i.e. simultaneous action), let's solve a related problem
- Distributed transaction: Two or more machines agree to do something, or not do it, atomically
 - No constraints on time, just that it will eventually happen!
- Two-Phase Commit protocol: Developed by Turing award winner Jim Gray
 - (first Berkeley CS PhD, 1969)
 - Many important DataBase breakthroughs also from Jim Gray

Jim Gray

Two-Phase Commit Protocol

- Persistent stable log on each machine: keep track of whether commit has happened
 - If a machine crashes, when it wakes up it first checks its log to recover state of world at time of crash

Prepare Phase:

- The global coordinator requests that all participants will promise to commit or rollback the transaction
- Participants record promise in log, then acknowledge
- If anyone votes to abort, coordinator writes "Abort" in its log and tells everyone to abort; each records "Abort" in log

Commit Phase:

- After all participants respond that they are prepared, then the coordinator writes
 "Commit" to its log
- Then asks all nodes to commit; they respond with ACK
- After receive ACKs, coordinator writes "Got Commit" to log
- Log used to guarantee that all machines either commit or don't

2PC Algorithm

- One coordinator
- N workers (replicas)
- High level algorithm description:
 - Coordinator asks all workers if they can commit
 - If all workers reply "VOTE-COMMIT", then coordinator broadcasts "GLOBAL-COMMIT"
 Otherwise coordinator broadcasts "GLOBAL-ABORT"
 - Workers obey the GLOBAL messages
- Use a persistent, stable log on each machine to keep track of what you are doing
 - If a machine crashes, when it wakes up it first checks its log to recover state of world at time of crash

Two-Phase Commit: Setup

- One machine (coordinator) initiates the protocol
- It asks every machine to vote on transaction
- Two possible votes:
 - Commit
 - Abort
- Commit transaction only if unanimous approval

Two-Phase Commit: Preparing

Worker Agrees to Commit

- Machine has guaranteed that it will accept transaction
- Must be recorded in log so machine will remember this decision if it fails and restarts

Worker Agrees to Abort

- Machine has guaranteed that it will never accept this transaction
- Must be recorded in log so machine will remember this decision if it fails and restarts

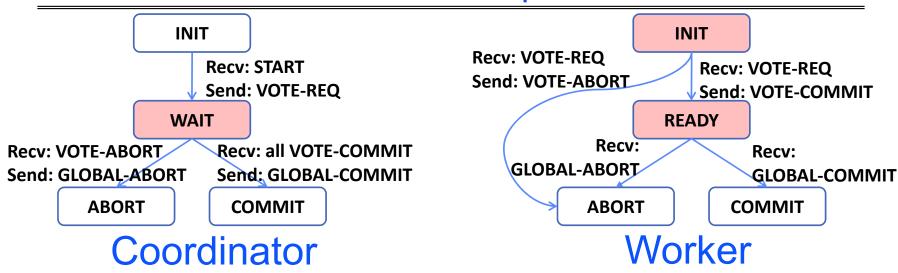
Two-Phase Commit: Finishing

Commit Transaction

- Coordinator learns all machines have agreed to commit
- Record decision to commit in local log
- Apply transaction, inform voters

Abort Transaction

- Coordinator learns at least one machine has voted to abort
- Record decision to abort in local log
- Do not apply transaction, inform voters


Two-Phase Commit: Finiship

- nave agreate conflict

 in local local local partitions at least one reishing the voted to about

 Record decision to apply transfer with the state of the state of

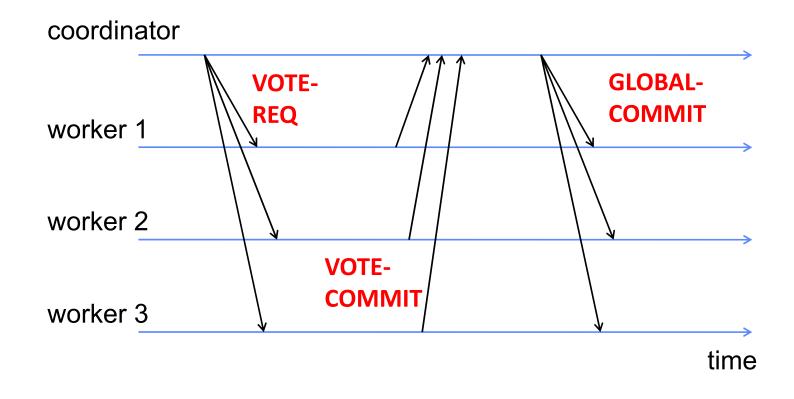
State Machine Description of 2PC

- Two Phase Commit (2PC) can be described with interacting state machines
- Coordinator only waits for votes in "WAIT" state
 - In WAIT, if doesn't receive N votes, it times out and sends GLOBAL-ABORT
- Worker waits for VOTE-REQ in INIT
 - Worker can time out and abort (coordinator handles it)
- Worker waits for GLOBAL-* message in READY
 - Coordinator fails ⇒ workers BLOCK waiting for coordinator to recover and send GLOBAL_* message

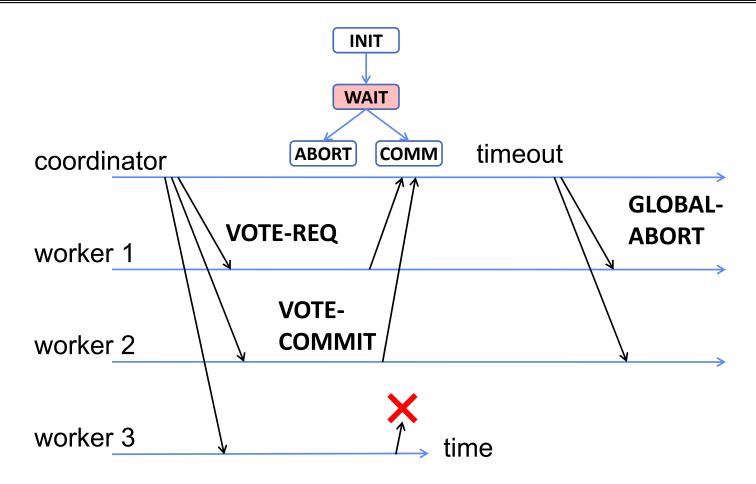
Detailed Algorithm

Coordinator Algorithm

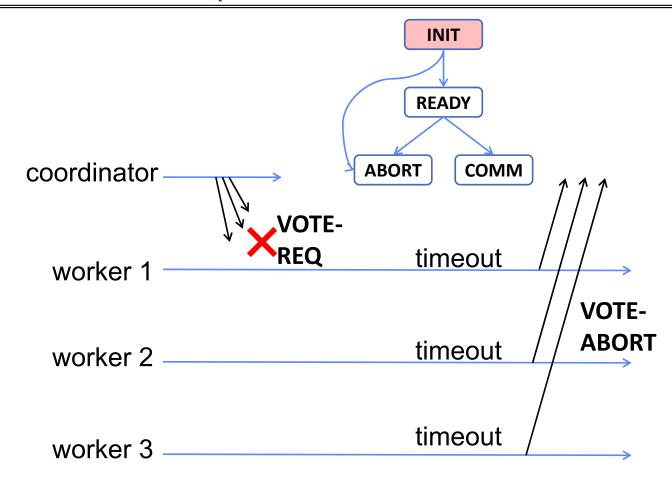
Coordinator sends **VOTE-REQ** to all workers

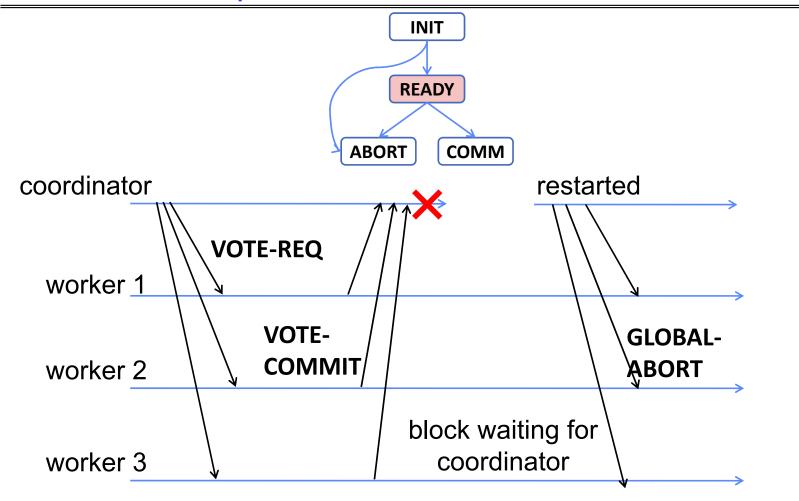

- If receive VOTE-COMMIT from all N workers, send GLOBAL-COMMIT to all workers
- If don't receive VOTE-COMMIT from all N workers, send GLOBAL-ABORT to all workers

Worker Algorithm


- Wait for VOTE-REQ from coordinator
- If ready, send VOTE-COMMIT to coordinator
- If not ready, send VOTE-ABORT to coordinator
 - And immediately abort

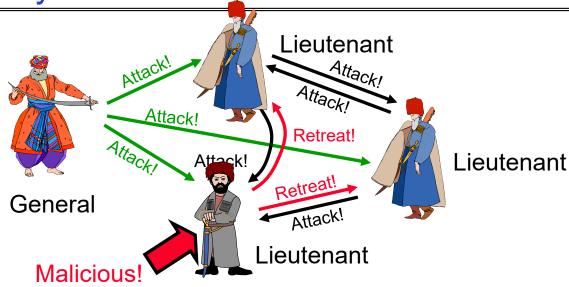
- If receive GLOBAL-COMMIT then commit
- If receive GLOBAL-ABORT then abort


Failure Free Example Execution


Example of Worker Failure

Example of Coordinator Failure #1

Example of Coordinator Failure #2


Durability

- All nodes use stable storage to store current state
 - stable storage is non-volatile storage (e.g. backed by disk) that guarantees atomic writes.
 - -E.g.: SSD, NVRAM
- Upon recovery, nodes can restore state and resume:
 - Coordinator aborts in INIT, WAIT, or ABORT
 - Coordinator commits in COMMIT
 - Worker aborts in INIT, ABORT
 - Worker commits in COMMIT
 - Worker "asks" Coordinator in READY

Alternatives to 2PC

- Three-Phase Commit: One more phase, allows nodes to fail or block and still make progress.
- PAXOS: An alternative used by Google and others that does not have 2PC blocking problem
 - Develop by Leslie Lamport (Turing Award Winner)
 - No fixed leader, can choose new leader on fly, deal with failure
 - Some think this is extremely complex!
- RAFT: PAXOS alternative from John Osterhout (Stanford)
 - Simpler to describe complete protocol
- What happens if one or more of the nodes is malicious?
 - Malicious: attempting to compromise the decision making
 - Use a more hardened decision making process:
 Byzantine Agreement and Block Chains

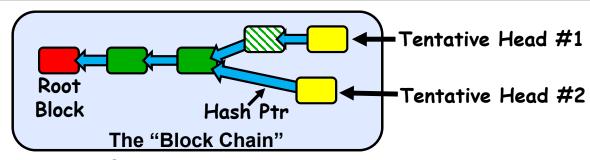
Byzantine General's Problem

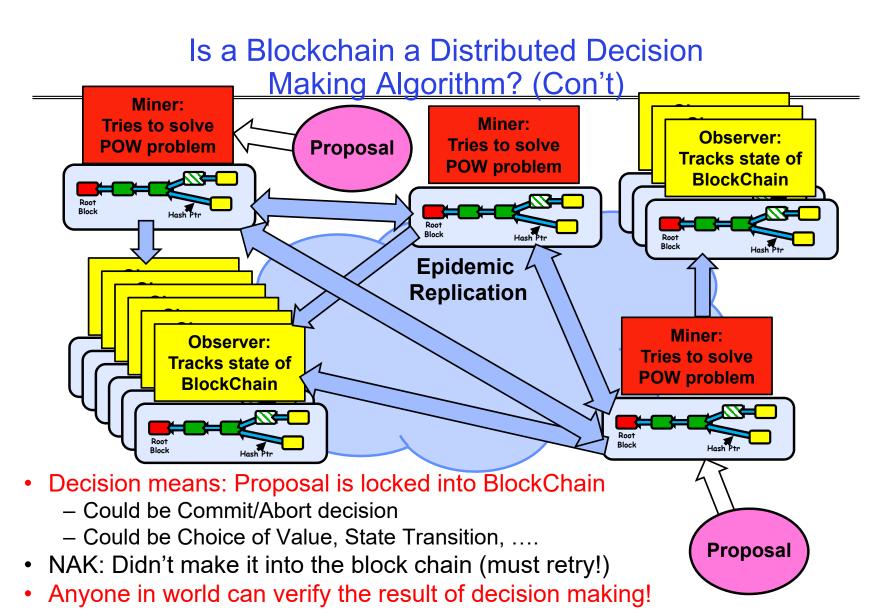


- Byazantine General's Problem (n players):
 - One General and n-1 Lieutenants
 - Some number of these (f) can be insane or malicious
- The commanding general must send an order to his n-1 lieutenants such that the following Integrity Constraints apply:
 - IC1: All loyal lieutenants obey the same order
 - IC2: If the commanding general is loyal, then all loyal lieutenants obey the order he sends

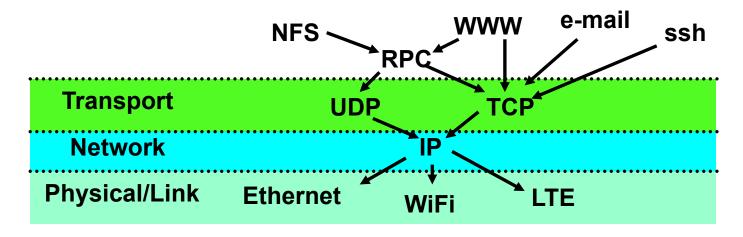
Byzantine General's Problem (con't)

Impossibility Results:


Cannot solve Byzantine General's Problem with n=3 because one malicious player can

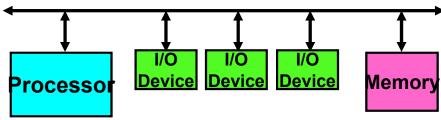

- With f faults, need n > 3f to solve problem
- Various algorithms exist to solve problem
 - Original algorithm has #messages exponential in n
 - Newer algorithms have message complexity O(n²)
 - » One from MIT, for instance (Castro and Liskov, 1999)
- Use of BFT (Byzantine Fault Tolerance) algorithm
 - Allow multiple machines to make a coordinated decision even if some subset of them (< n/3) are malicious

Is a BlockChain a Distributed Decision Making Algorithm?



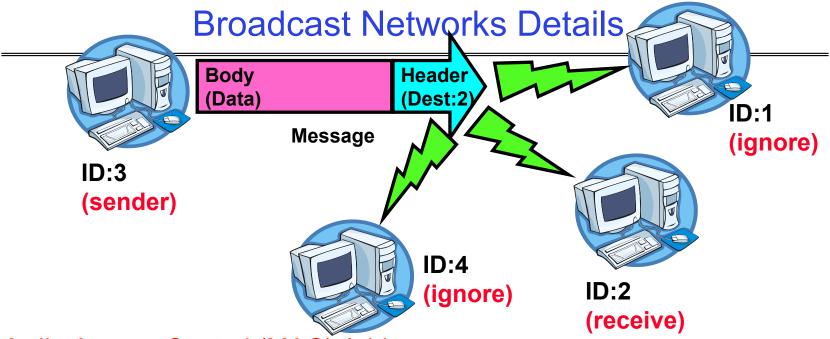
- BlockChain: a chain of blocks connected by hashes to root block
 - The Hash Pointers are unforgeable (assumption)
 - The Chain has no branches except perhaps for heads
 - Blocks are considered "authentic" part of chain when they have authenticity info in them
- How is the head chosen?
 - Some consensus algorithm
 - In many BlockChain algorithms (e.g. BitCoin, Ethereum), the head is chosen by solving hard problem
 - » This is the job of "miners" who try to find "nonce" info that makes hash over block have specified number of zero bits in it
 - » The result is a "Proof of Work" (POW)
 - » Selected blocks above (green) have POW in them and can be included in chains
 - Longest chain wins

Network Protocols


- Networking protocols: many levels
 - Physical level: mechanical and electrical network (e.g., how are 0 and 1 represented)
 - Link level: packet formats/error control (for instance, the CSMA/CD protocol)
 - Network level: network routing, addressing
 - Transport Level: reliable message delivery
- Protocols on today's Internet:

Broadcast Networks

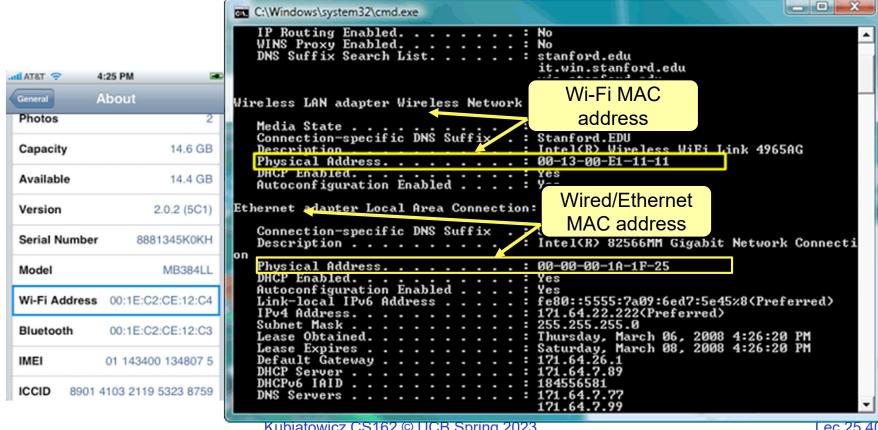
Broadcast Network: Shared Communication Medium



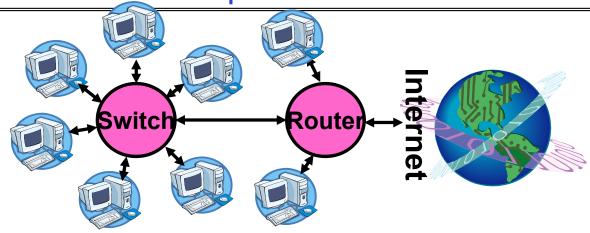
- Shared Medium can be a set of wires
 - » Inside a computer, this is called a bus
 - » All devices simultaneously connected to devices

- Originally, Ethernet was a broadcast network
 - » All computers on local subnet connected to one another
- More examples (wireless: medium is air): cellular phones (GSM, CDMA, and LTE), WiFi

- Media Access Control (MAC) Address:
 - 48-bit physical address for hardware interface
 - Every device (in the world!?) has a unique address
- Delivery: When you broadcast a packet, how does a receiver know who it is for? (packet goes to everyone!)
 - Put header on front of packet: [Destination MAC Addr | Packet]
 - Everyone gets packet, discards if not the target
 - In Ethernet, this check is done in hardware
 - » No OS interrupt if not for particular destination


Carrier Sense, Multiple Access/Collision Detection

- Ethernet (early 80's): first practical local area network
 - It is the most common LAN for UNIX, PC, and Mac
 - Use wire instead of radio, but still broadcast medium
- Key advance was in arbitration called CSMA/CD: Carrier sense, multiple access/collision detection
 - Carrier Sense: don't send unless idle
 - » Don't mess up communications already in process
 - Collision Detect: sender checks if packet trampled.
 - » If so, abort, wait, and retry.
 - Backoff Scheme: Choose wait time before trying again
- How long to wait after trying to send and failing?
 - What if everyone waits the same length of time? Then, they all collide again at some time!
 - Must find way to break up shared behavior with nothing more than shared communication channel
- Adaptive randomized waiting strategy:
 - Adaptive and Random: First time, pick random wait time with some initial mean.
 If collide again, pick random value from bigger mean wait time. Etc.
 - Randomness is important to decouple colliding senders
 - Scheme figures out how many people are trying to send!


MAC Address: Unique Physical Address of Interface

- Can easily find MAC addr. on your machine/device:
 - E.g., ifconfig (Linux, Mac OS X), ipconfig (Windows)

Point-to-point networks

- Why have a shared bus at all? Why not simplify and only have point-topoint links + routers/switches?
 - Originally wasn't cost-effective, now hardware is cheap!
- Point-to-point network: a network in which every physical wire is connected to only two computers
- Switch: a bridge that transforms a shared-bus (broadcast) configuration into a point-to-point network
 - Adaptively figures out which ports have which MAC addresses
- Router: a device that acts as a junction between physical networks to transfer data packets among them
 - Routes between switching domains using (for instance)
 IP addresses

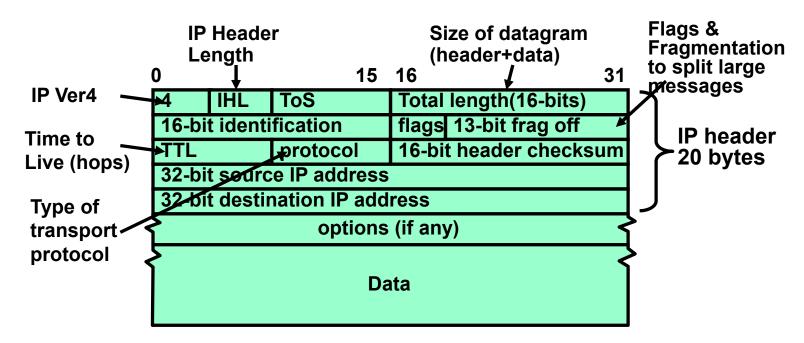
The Internet Protocol (IP)

Application Present. Session Transport Network

> Datalink Physical

- Internet Protocol: Internet's network layer
- Service it provides: "Best-Effort" Packet Delivery
 - Tries it's "best" to deliver packet to its destination
 - Packets may be lost
 - Packets may be corrupted
 - Packets may be delivered out of order
- IP Is a Datagram service!
 - Routes across many physical switching domains (subnets)

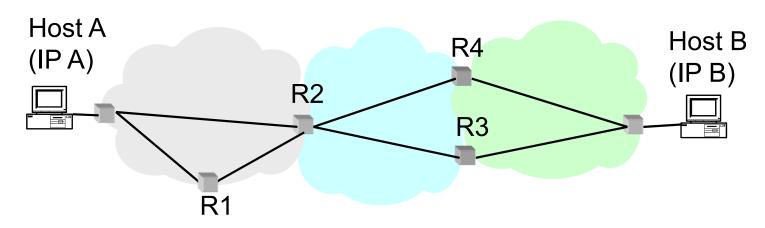
IPv4 Address Space


- IP Address: a 32-bit integer used as destination of IP packet
 - Often written as four dot-separated integers, with each integer from 0—255 (thus representing 8x4=32 bits)
 - Example CS file server is: $169.229.60.83 \equiv 0 \times A9E53C53$
- Internet Host: a computer connected to the Internet
 - Host has one or more IP addresses used for routing
 - » Some of these may be private and unavailable for routing
 - Not every computer has a unique IP address
 - » Groups of machines may share a single IP address
 - » In this case, machines have private addresses behind a "Network Address Translation" (NAT) gateway
- Subnet: network connecting hosts with related IP addresses
 - A subnet is identified by 32-bit value, with the bits which differ set to zero, followed by a slash and a mask
 - » Example: 128.32.131.0/24 designates a subnet in which all the addresses look like 128.32.131.XX
 - » Same subnet: 128.32.131.0/255.255.255.0
 - Mask: The number of matching prefix bits
 - » Expressed as a single value (e.g., 24) or a set of ones in a 32-bit value (e.g., 255.255.255.0)
 - Often routing within subnet is by MAC address (smart switches)

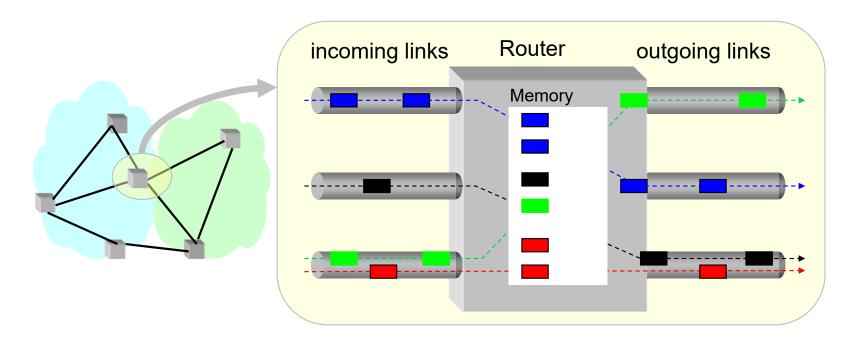
Address Ranges in IPv4

- IP address space divided into prefix-delimited ranges:
 - Class A: NN.0.0.0/8
 - » NN is 1–126 (126 of these networks)
 - » 16,777,214 IP addresses per network
 - » 10.xx.yy.zz is private
 - » 127.xx.yy.zz is loopback
 - Class B: NN.MM.0.0/16
 - » NN is 128–191, MM is 0-255 (16,384 of these networks)
 - » 65,534 IP addresses per network
 - » 172.[16-31].xx.yy are private
 - Class C: NN.MM.LL.0/24
 - » NN is 192–223, MM and LL 0-255 (2,097,151 of these networks)
 - » 254 IP addresses per networks
 - » 192.168.xx.yy are private
- Address ranges are often owned by organizations
 - Can be further divided into subnets

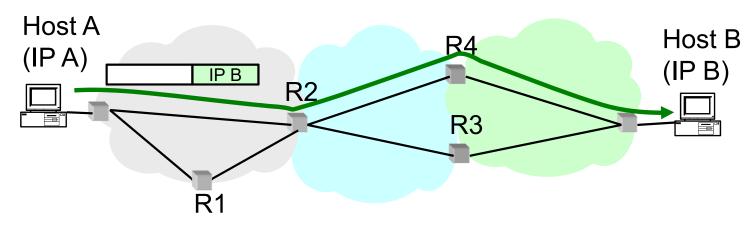
IPv4 Packet Format


IP Packet Format:

- IP Datagram: an unreliable, unordered, packet sent from source to destination
 - Function of network deliver datagrams!


Wide Area Network

- Wide Area Network (WAN): network that covers a broad area (e.g., city, state, country, entire world)
 - E.g., Internet is a WAN
- WAN connects multiple physical (datalink) layer networks (LANs)
- Datalink layer networks are connected by routers
 - Different LANs can use different communication technology (e.g., wireless, cellular, optics, wired)


Routers

- Forward each packet received on an incoming link to an outgoing link based on packet's destination IP address (towards its destination)
- Store & forward: packets are buffered before being forwarded
- Forwarding table: mapping between IP address and the output link

Packet Forwarding

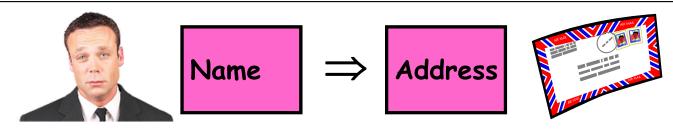
- Upon receiving a packet, a router
 - read the IP destination address of the packet
 - consults its forwarding table → output port
 - forwards packet to corresponding output port
- Default route (for subnets without explicit entries)
 - Forward to more authoritative router

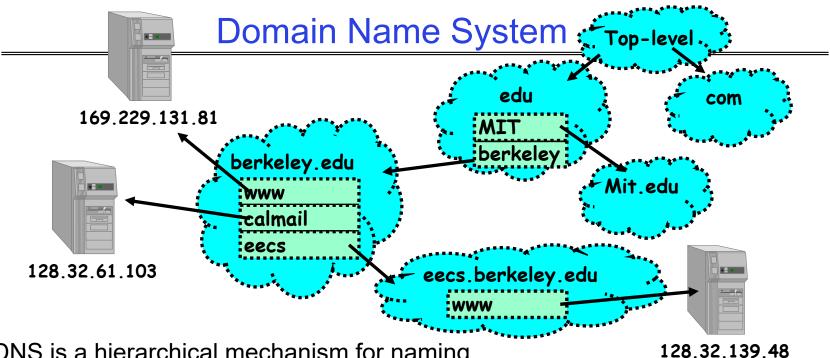
IP Addresses vs. MAC Addresses

- Why not use MAC addresses for routing?
 - Doesn't scale
- Analogy
 - MAC address → SSN
 - IP address → (unreadable) home address
- MAC address: uniquely associated with device for the entire lifetime of the device
- IP address: changes as the device location changes
 - Your notebook IP address at school is different from home

4/20/23

IP Addresses vs. MAC Addresses


- Why does packet forwarding using IP addr. scale?
- Because IP addresses can be aggregated
 - E.g., all IP addresses at UC Berkeley start with 0xA9E5, i.e., any address of form 0xA9E5**** belongs to Berkeley
 - Thus, a router in NY needs to keep a single entry for all hosts at Berkeley
 - If we were using MAC addresses the NY router would need to maintain an entry for every Berkeley host!!
- Analogy:
 - Give this letter to person with SSN: 123-45-6789 vs.
 - Give this letter to "John Smith, 123 First Street, LA, US"


Setting up Routing Tables

- How do you set up routing tables?
 - Internet has no centralized state!
 - » No single machine knows entire topology
 - » Topology constantly changing (faults, reconfiguration, etc.)
 - Need dynamic algorithm that acquires routing tables
 - » Ideally, have one entry per subnet or portion of address
 - » Could have "default" routes that send packets for unknown subnets to a different router that has more information
- Possible algorithm for acquiring routing table
 - Routing table has "cost" for each entry
 - » Includes number of hops to destination, congestion, etc.
 - » Entries for unknown subnets have infinite cost
 - Neighbors periodically exchange routing tables
 - » If neighbor knows cheaper route to a subnet, replace your entry with neighbors entry (+1 for hop to neighbor)
- In reality:
 - Internet has networks of many different scales
 - Different algorithms run at different scales

Naming in the Internet

- How to map human-readable names to IP addresses?
 - E.g. www.berkeley.edu \Rightarrow 128.32.139.48
 - E.g. www.google.com ⇒ different addresses depending on location, and load
- Why is this necessary?
 - IP addresses are hard to remember
 - IP addresses change:
 - » Say, Server 1 crashes gets replaced by Server 2
 - » Or google.com handled by different servers
- Mechanism: Domain Naming System (DNS)

- DNS is a hierarchical mechanism for naming
 - Name divided in domains, right to left: www.eecs.berkeley.edu
- Each domain owned by a particular organization
 - Top level handled by ICANN (Internet Corporation for Assigned Numbers and Names)
 - Subsequent levels owned by organizations
- Resolution: series of queries to successive servers
- Caching: queries take time, so results cached for period of time

How Important is Correct Resolution?

- If attacker manages to give incorrect mapping:
 - Can get someone to route to server, thinking that they are routing to a different server
 - » Get them to log into "bank" give up username and password
- Is DNS Secure?
 - Definitely a weak link
 - » What if "response" returned from different server than original query?
 - » Get person to use incorrect IP address!
 - Attempt to avoid substitution attacks:
 - » Query includes random number which must be returned
- In July 2008, hole in DNS security located!
 - Dan Kaminsky (security researcher) discovered an attack that broke DNS globally
 - » One person in an ISP convinced to load particular web page, then all users of that ISP end up pointing at wrong address
 - High profile, highly advertised need for patching DNS
 - » Big press release, lots of mystery
 - » Security researchers told no speculation until patches applied


Network Layering

- Layering: building complex services from simpler ones
 - Each layer provides services needed by higher layers by utilizing services provided by lower layers
- The physical/link layer is pretty limited
 - Packets are of limited size (called the "Maximum Transfer Unit or MTU: often 200-1500 bytes in size)
 - Routing is limited to within a physical link (wire) or perhaps through a switch
- Our goal in the following is to show how to construct a secure, ordered, message service routed to anywhere:

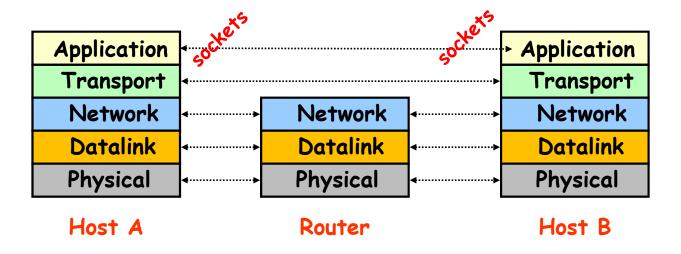
Physical Reality: Packets	Abstraction: Messages
Limited Size (MTU)	Arbitrary Size
Unordered (sometimes)	Ordered
Unreliable	Reliable
Machine-to-machine	Process-to-process
Only on local area net	Routed anywhere
Asynchronous	Synchronous
Insecure	Secure

Recall: IPv4 Packet Format

IP Packet Format:

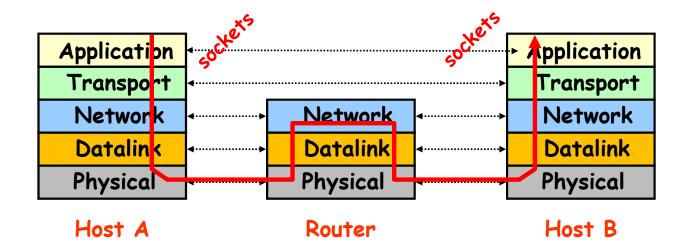
- IP Datagram: an unreliable, unordered, packet sent from source to destination
 - Function of network deliver datagrams!

Building a messaging service on IP

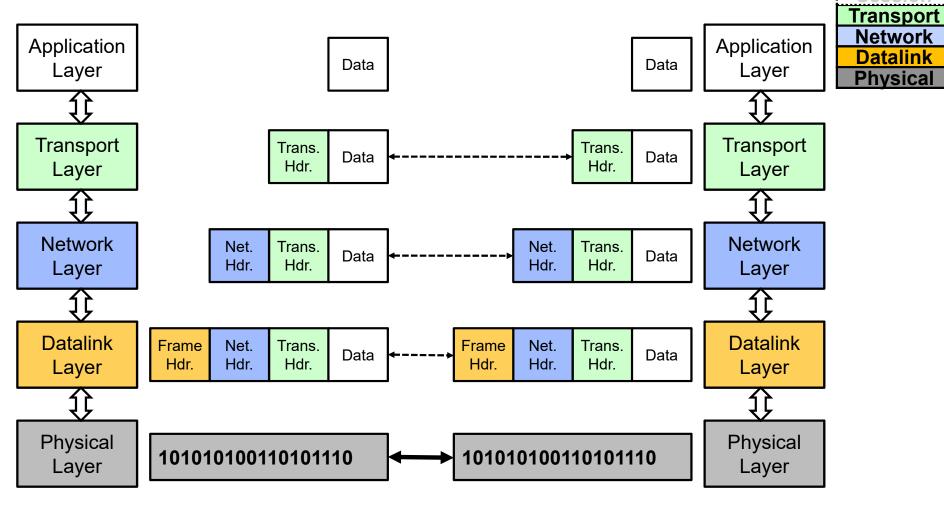

- Process to process communication
 - Basic routing gets packets from machine → machine
 - What we really want is routing from process
 →process
 - » Add "ports", which are 16-bit identifiers
 - » A communication channel (connection) defined by 5 items: [source addr, source port, dest addr, dest port, protocol]
- For example: The Unreliable Datagram Protocol (UDP)
 - Layered on top of basic IP (IP Protocol 17)
 - » Datagram: an unreliable, unordered, packet sent from source user → dest user (Call it UDP/IP)

IP Header (20 bytes)	
16-bit source port	16-bit destination port
16-bit UDP length	16-bit UDP checksum
UDP Data	

- Important aspect: low overhead!
 - » Often used for high-bandwidth video streams
 - » Many uses of UDP considered "anti-social" none of the "well-behaved" aspects of (say) TCP/IP


Internet Architecture: Five Layers

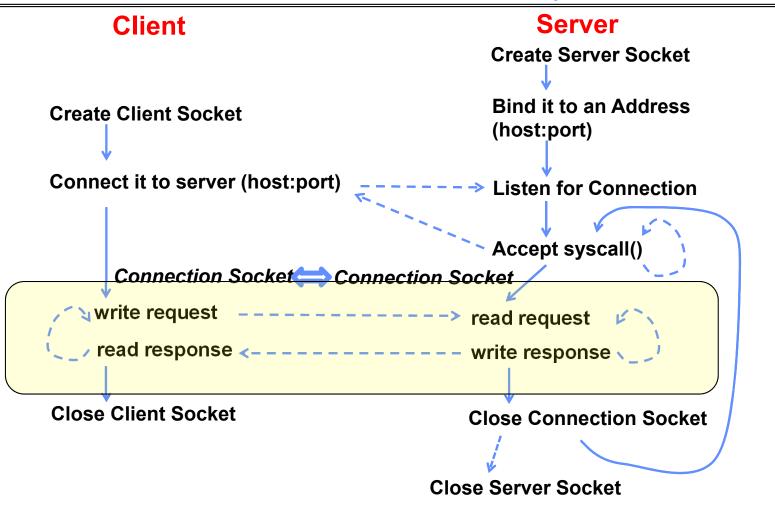
- Lower three layers implemented everywhere
- Top two layers implemented only at hosts



Internet Architecture: Five Layers

- Communication goes down to physical network
- Then from network peer to peer
- Then up to relevant layer

Layering Analogy: Packets in Envelopes


Application

Internet Transport Protocols

- Application Present.
- Transport Network
- Datalink
- Physical

- Datagram service (UDP): IP Protocol 17
 - No-frills extension of "best-effort" IP
 - Multiplexing/Demultiplexing among processes
- Reliable, in-order delivery (TCP): IP Protocol6
 - Connection set-up & tear-down
 - Discarding corrupted packets (segments)
 - Retransmission of lost packets (segments)
 - Flow control
 - Congestion control
- Other examples:
 - DCCP (33), Datagram Congestion Control Protocol
 - RDP (26), Reliable Data Protocol
 - SCTP (132), Stream Control Transmission Protocol

Recall: Sockets in concept

Summary (1/3)

- A protocol is an agreement on how to communicate, including:
 - Syntax: how a communication is specified & structured
 - » Format, order messages are sent and received
 - Semantics: what a communication means
 - » Actions taken when transmitting, receiving, or when a timer expires
- Consensus problem
 - All nodes propose a value
 - Some nodes might crash and stop responding
 - Eventually, all remaining nodes decide on the same value from set of proposed values
- Two-phase commit: a form of distributed decision making
 - First, make sure everyone guarantees they will commit if asked (prepare)
 - Next, ask everyone to commit

Summary (2/3)

- Byzantine General's Problem: distributed decision making with malicious failures
 - One general, n-1 lieutenants: some number of them may be malicious (often "f" of them)
 - All non-malicious lieutenants must come to same decision
 - If general not malicious, lieutenants must follow general
 - Only solvable if $n \ge 3f+1$
- BlockChain protocols
 - Cryptographically-driven ordering protocol
 - Could be used for distributed decision making

Summary (3/3)

- Internet Protocol (IP): Datagram packet delivery
 - Used to route messages through routes across globe
 - 32-bit addresses, 16-bit ports
- DNS: System for mapping from names⇒IP addresses
 - Hierarchical mapping from authoritative domains
 - Recent flaws discovered
- Next time: TCP: Reliable byte stream between two processes on different machines over Internet (read, write, flush)
 - Uses window-based acknowledgement protocol
 - Congestion-avoidance dynamically adapts sender window to account for congestion in network