
CS162
Operating Systems and
Systems Programming

Lecture 26

Networking and TCP/IP (Con’t), DNS, RPC,
Distributed File Systems

April 25th, 2023
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 26.24/25/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: Distributed Consensus Making
• Consensus problem

– All nodes propose a value
– Some nodes might crash and stop responding
– Eventually, all remaining nodes decide on the same value from set of proposed

values
• Distributed Decision Making

– Choose between “true” and “false”
– Or Choose between “commit” and “abort”

• Equally important (but often forgotten!): make it durable!
– How do we make sure that decisions cannot be forgotten?

» This is the “D” of “ACID” in a regular database
– In a global-scale system?

» What about erasure coding or massive replication?
» Like BlockChain applications!

Lec 26.34/25/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: Wide Area Network
• Wide Area Network (WAN): network that covers a broad area (e.g.,

city, state, country, entire world)
– E.g., Internet is a WAN

• WAN connects multiple Local Area Networks (LANs)
• Datalink layer networks are connected by routers

– Different LANs can use different communication technology (e.g.,
wireless, cellular, optics, wired)

Host A
(IP A)

Host B
(IP B)

R2
R3

R4

R1

LAN
LAN

LAN

Lec 26.44/25/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: Routers
• Forward each packet received on an incoming link to an

outgoing link based on packet’s destination IP address
(towards its destination)

• Store & forward: packets are buffered before being forwarded
• Forwarding table: mapping between IP address and the output link

incoming links outgoing linksRouter

Memory

Lec 26.54/25/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: Packet Forwarding
• Upon receiving a packet, a router

– read the IP destination address of the packet
– consults its forwarding table output port
– forwards packet to corresponding output port

• Default route (for subnets without explicit entries)
– Forward to more authoritative router

Host A
(IP A)

Host B
(IP B)

R2
R3

R4

R1

IP B

LAN
LAN

LAN

Lec 26.64/25/23 Kubiatowicz CS162 © UCB Spring 2023

Setting up Routing Tables
• How do you set up routing tables?

– Internet has no centralized state!
» No single machine knows entire topology
» Topology constantly changing (faults, reconfiguration, etc.)

– Need dynamic algorithm that acquires routing tables
» Ideally, have one entry per subnet or portion of address
» Could have “default” routes that send packets for unknown subnets to a different

router that has more information
• Possible algorithm for acquiring routing table

– Routing table has “cost” for each entry
» Includes number of hops to destination, congestion, etc.
» Entries for unknown subnets have infinite cost

– Neighbors periodically exchange routing tables
» If neighbor knows cheaper route to a subnet, replace your entry with neighbors entry

(+1 for hop to neighbor)
• In reality:

– Internet has networks of many different scales
– Different algorithms run at different scales (e.g. BGP globally, OSPF locally,…)

Lec 26.74/25/23 Kubiatowicz CS162 © UCB Spring 2023

Naming in the Internet

• How to map human-readable names to IP addresses?
– E.g. www.berkeley.edu 128.32.139.48
– E.g. www.google.com different addresses depending on location, and load

• Why is this necessary?
– IP addresses are hard to remember
– IP addresses change:

» Say, Server 1 crashes gets replaced by Server 2
» Or – google.com handled by different servers

• Mechanism: Domain Naming System (DNS)

Name Address

Lec 26.84/25/23 Kubiatowicz CS162 © UCB Spring 2023

Domain Name System

• DNS is a hierarchical mechanism for naming
– Name divided in domains, right to left: www.eecs.berkeley.edu

• Each domain owned by a particular organization
– Top level handled by ICANN (Internet Corporation for Assigned Numbers and Names)
– Subsequent levels owned by organizations

• Resolution: series of queries to successive servers
• Caching: queries take time, so results cached for period of time

Top-level

comedu

Mit.edu

169.229.131.81

128.32.61.103

128.32.139.48

berkeley.edu
www
calmail
eecs

berkeley
MIT

eecs.berkeley.edu
www

Lec 26.94/25/23 Kubiatowicz CS162 © UCB Spring 2023

How Important is Correct Resolution?
• If attacker manages to give incorrect mapping:

– Can get someone to route to server, thinking that they are routing to a different server
» Get them to log into “bank” – give up username and password

• Is DNS Secure?
– Definitely a weak link

» What if “response” returned from different server than original query?
» Get person to use incorrect IP address!

– Attempt to avoid substitution attacks:
» Query includes random number which must be returned

• In July 2008, hole in DNS security located!
– Dan Kaminsky (security researcher) discovered an attack that broke DNS globally

» One person in an ISP convinced to load particular web page, then all users of that ISP
end up pointing at wrong address

– High profile, highly advertised need for patching DNS
» Big press release, lots of mystery
» Security researchers told no speculation until patches applied

Lec 26.104/25/23 Kubiatowicz CS162 © UCB Spring 2023

Network Layering
• Layering: building complex services from simpler ones

– Each layer provides services needed by higher layers by utilizing services
provided by lower layers

• The physical/link layer is pretty limited
– Packets are of limited size (called the “Maximum Transfer Unit or MTU: often

200-1500 bytes in size)
– Routing is limited to within a physical link (wire) or perhaps through a switch

• Our goal in the following is to show how to construct a secure, ordered,
message service routed to anywhere:

Physical Reality: Packets Abstraction: Messages

Limited Size (MTU) Arbitrary Size
Unordered (sometimes) Ordered

Unreliable Reliable
Machine-to-machine Process-to-process

Only on local area net Routed anywhere
Asynchronous Synchronous

Insecure Secure

Lec 26.114/25/23 Kubiatowicz CS162 © UCB Spring 2023

Building a messaging service
• Handling Arbitrary Sized Messages:

– Must deal with limited physical packet size
– Split big message into smaller ones (called fragments)

» Must be reassembled at destination
– Checksum computed on each fragment or whole message

• Internet Protocol (IP): Provides way to send datagrams to arbitrary destination
– Deliver messages unreliably (“best effort”) from one machine in Internet to another
– Since intermediate links may have limited size, must be able to fragment/reassemble

packets on demand
– Includes 256 different “sub-protocols” build on top of IP

» Examples: ICMP(1), TCP(6), UDP (17), IPSEC(50,51)

Lec 26.124/25/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: IPv4 Packet Format
• IP Packet Format:

• IP Datagram: an unreliable, unordered, packet sent from source to destination
– Function of network – deliver datagrams!

16-bit identification
ToS4

13-bit frag off
Total length(16-bits)

protocolTTL 16-bit header checksum
32-bit source IP address
32-bit destination IP address

IHL
flags

options (if any)

Data

0 15 16 31
IP Ver4

IP Header
Length

Size of datagram
(header+data)

Flags &
Fragmentation
to split large
messages

Time to
Live (hops)

Type of
transport
protocol

IP header
20 bytes

Lec 26.134/25/23 Kubiatowicz CS162 © UCB Spring 2023

Building a messaging service on IP
• Process to process communication

– Basic routing gets packets from machinemachine
– What we really want is routing from processprocess

» Add “ports”, which are 16-bit identifiers
» A communication channel (connection) defined by 5 items:

[source addr, source port, dest addr, dest port, protocol]
• For example: The Unreliable Datagram Protocol (UDP)

– Layered on top of basic IP (IP Protocol 17)
– Datagram: an unreliable, unordered, packet sent from source user dest user (Call it UDP/IP)

– Important aspect: low overhead!
» Often used for high-bandwidth video streams
» Many uses of UDP considered “anti-social” – none of the “well-behaved” aspects of (say) TCP/IP

UDP Data

16-bit UDP length 16-bit UDP checksum
16-bit source port 16-bit destination port

IP Header
(20 bytes)

Lec 26.144/25/23 Kubiatowicz CS162 © UCB Spring 2023

Administrivia
• Midterm 3: This Thursday!

– No class on Thursday. I’ll have special office hours during class time.
– Three double-sided pages of notes
– Watch for Ed post about where you should go: we have multiple exam rooms

• All material up to today’s lecture is fair game
• Final deadlines during RRR week:

– Yes, there will be office hour – watch for specifics
• Also – we have a special lecture (just for fun) next Tuesday

– During normal class time!

Lec 26.154/25/23 Kubiatowicz CS162 © UCB Spring 2023

Administrivia (Con’t)
• You need to know your units as CS/Engineering students!
• Units of Time: “s”: Second, “min”: 60s, “h”: 3600s, (of course)

– Millisecond: 1ms 10-3 s
– Microsecond: 1s 10-6 s
– Nanosecond: 1ns: 10-9 s
– Picosecond: 1ps 10-12 s

• Integer Sizes: “b” ”bit”, “B” “byte” == 8 bits, “W””word”==? (depends. Could be 16b, 32b, 64b)
• Units of Space (memory), sometimes called the “binary system”

– Kilo: 1KB 1KiB 1024 bytes == 210 bytes == 1024 1.0×103

– Mega: 1MB 1MiB (1024)2 bytes == 220 bytes == 1,048,576 1.0×106

– Giga: 1GB 1GiB (1024)3 bytes == 230 bytes == 1,073,741,824 1.1×109

– Tera: 1TB 1TiB (1024)4 bytes == 240 bytes == 1,099,511,627,776 1.1×1012

– Peta: 1PB 1PiB (1024)5 bytes == 250 bytes == 1,125,899,906,842,624 1.1 × 1015

– Exa: 1EB 1EiB (1024)6 bytes == 260 bytes == 1,152,921,504,606,846,976 1.2 × 1018

• Units of Bandwidth, Space on disk/etc, Everything else…, sometimes called the “decimal system”
– Kilo: 1KB/s 103 bytes/s, 1KB 103 bytes
– Mega: 1MB/s 106 bytes/s, 1MB 106 bytes
– Giga: 1GB/s 109 bytes/s, 1GB 109 bytes
– Tera: 1TB/s 1012 bytes/s, 1TB 1012 bytes
– Peta: 1PB/s 1015 bytes/s, 1PB 1015 bytes
– Exa: 1EB/s 1018 bytes/s, 1EB 1018 bytes

Lec 26.164/25/23 Kubiatowicz CS162 © UCB Spring 2023

Internet Architecture: Five Layers
• Lower three layers implemented everywhere
• Top two layers implemented only at hosts

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host BRouter

Lec 26.174/25/23 Kubiatowicz CS162 © UCB Spring 2023

Internet Architecture: Five Layers
• Communication goes down to physical network
• Then from network peer to peer
• Then up to relevant layer

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host BRouter

Lec 26.184/25/23 Kubiatowicz CS162 © UCB Spring 2023

101010100110101110
Physical

Layer
Physical

Layer
Physical

Layer
Physical

Layer 101010100110101110

Datalink
Layer

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.

Datalink
Layer

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.Data Data

Network
Layer

Trans.
Hdr.

Net.
Hdr.

Network
Layer

Trans.
Hdr.

Net.
Hdr.Data Data

Transport
Layer

Trans.
Hdr.

Transport
Layer

Trans.
Hdr.Data Data

Data
Application

Layer
Application

Layer Data

Layering Analogy: Packets in Envelopes
Transport
Network
Datalink
Physical

Session
Present.

Application

Lec 26.194/25/23 Kubiatowicz CS162 © UCB Spring 2023

Internet Transport Protocols
• Datagram service (UDP): IP Protocol 17

– No-frills extension of “best-effort” IP
– Multiplexing/Demultiplexing among processes

• Reliable, in-order delivery (TCP): IP Protocol 6
– Connection set-up & tear-down
– Discarding corrupted packets (segments)
– Retransmission of lost packets (segments)
– Flow control/Congestion control

• Other examples:
– DCCP (33), Datagram Congestion Control Protocol
– RDP (26), Reliable Data Protocol
– SCTP (132), Stream Control Transmission Protocol

Transport
Network
Datalink
Physical

Session
Present.

Application

Lec 26.204/25/23 Kubiatowicz CS162 © UCB Spring 2023

Server #2
External IP:
11.33.40.5

Server #1
External IP:

142.251.42.36

Public InternetClient #2
Internal IP:
192.168.1.10

Client #1
Internal IP:
192.168.1.4

Private Network
(192.168.xx.xx)

Firewall
External IP:
128.32.5.3

Network Address Translation: Transport-Level IP Sharing
• Network Address Translation (NAT): Allow multiple clients to share Public IP

– Translate connections with Private IP addresses to Public IP Address (of firewall)
• Allocate unique (client) port at firewall to distinguish different connections

TCP Connection #1:
[192.168.1.4, Port: 6543,
142.251.42.36, Port: 80]

TCP Connection #1:
[128.32.5.3, Port: 4340,
142.251.42.36, Port: 80]

TCP Connection #2:
[192.168.1.4, Port: 8977,

11.33.40.5, Port: 80]

TCP Connection #2:
[128.32.5.3, Port: 4341,
11.33.40.5, Port: 80]

Lec 26.214/25/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: Sockets in concept
Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept syscall()
Connection SocketConnection Socket

read request

Lec 26.224/25/23 Kubiatowicz CS162 © UCB Spring 2023

Reliable Message Delivery: the Problem
• All physical networks can garble and/or drop packets

– Physical media: packet not transmitted/received
» If transmit close to maximum rate, get more throughput – even if some packets get lost
» If transmit at lowest voltage such that error correction just starts correcting errors, get

best power/bit
– Congestion: no place to put incoming packet

» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two host try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender send faster than receiver can process?

• Reliable Message Delivery on top of Unreliable Packets
– Need some way to make sure that packets actually make it to receiver

» Every packet received at least once
» Every packet received at most once

– Can combine with ordering: every packet received by process at destination exactly
once and in order

Lec 26.234/25/23 Kubiatowicz CS162 © UCB Spring 2023

Transmission Control Protocol (TCP)

• Transmission Control Protocol (TCP)
– TCP (IP Protocol 6) layered on top of IP
– Reliable byte stream between two processes on different machines over Internet

(read, write, flush)
• TCP Details

– Fragments byte stream into packets, hands packets to IP
» IP may also fragment by itself

– Uses window-based acknowledgement protocol (to minimize state at sender and
receiver)

» “Window” reflects storage at receiver – sender shouldn’t overrun receiver’s buffer space
» Also, window should reflect speed/capacity of network – sender shouldn’t overload

network
– Automatically retransmits lost packets
– Adjusts rate of transmission to avoid congestion

» A “good citizen”

Router Router
Stream in: Stream out:

..zyxwvuts gfedcba

Lec 26.244/25/23 Kubiatowicz CS162 © UCB Spring 2023

Problem: Dropped Packets
• All physical networks can garble or drop packets

– Physical hardware problems (bad wire, bad signal)
• Therefore, IP can garble or drop packets

– It doesn't repair this itself (end-to-end principle!)
• Building reliable message delivery

– Confirm that packets aren't garbled
– Confirm that packets arrive exactly once

Lec 26.254/25/23 Kubiatowicz CS162 © UCB Spring 2023

Using Acknowledgements

• How to ensure transmission of packets?
– Detect garbling at receiver via checksum, discard if bad
– Receiver acknowledges (by sending “ACK”) when packet received properly at

destination
– Timeout at sender: if no ACK, retransmit

• Some questions:
– If the sender doesn’t get an ACK, does that mean the receiver didn’t get the

original message?
» No

– What if ACK gets dropped? Or if message gets delayed?
» Sender doesn’t get ACK, retransmits, Receiver gets message twice, ACK each

BA BA

Timeout

Lec 26.264/25/23 Kubiatowicz CS162 © UCB Spring 2023

Stop-and-Wait (No Packet Loss)

• Send; wait for ACK; repeat
• Round Trip Time (RTT): time it

takes a packet to travel from
sender to receiver and back

– One-way latency (𝑑): one way
delay from sender and receiver

• For symmetric latency,
𝑅𝑇𝑇 2𝑑

ACK 1

Time

Sender Receiver
1

2

ACK 2

3

RTT

RTT

d

Lec 26.274/25/23 Kubiatowicz CS162 © UCB Spring 2023

Stop-and-Wait (No Packet Loss)

• How fast can you send data?
• Little’s Law applied to the network:

𝑛 𝐵 ⋅ RTT
• For Stop-and-Wait, 𝑛 1 packet

• So bandwidth is 1 packet per RTT
– Depends only on latency, not

network capacity (!)

ACK 1

Time

Sender Receiver
1

2

ACK 2

3

RTT

RTT

d

Lec 26.284/25/23 Kubiatowicz CS162 © UCB Spring 2023

Stop-and-Wait (No Packet Loss)

• So bandwidth is 1 packet per RTT
– Depends only on latency,

not network capacity (!)

• Suppose RTT = 100 ms and
1 packet is 1500 Bytes

• Throughput = /
 /

= 120 Kbps

• Very inefficient if we have a 100 Mbps link!

ACK 1

Time

Sender Receiver
1

2

ACK 2

3

RTT

RTT

d

Lec 26.294/25/23 Kubiatowicz CS162 © UCB Spring 2023

Stop-and-Wait with Packet Loss

• Loss recovery relies on timeouts
• How to choose a good timeout?

– Too short – lots of duplication
– Too long – packet loss is really

disruptive!
• How to deal with duplication?

– Retransmission certainly opens up
the possibility for copies of packets

ACK 1

Time

Sender Receiver
1

RTT

timeout 1

Lec 26.304/25/23 Kubiatowicz CS162 © UCB Spring 2023

• Solution: put sequence number in message to identify re-transmitted packets
– Receiver checks for duplicate number’s; Discard if detected

• Requirements:
– Sender keeps copy of unACK’d messages

» Easy: only need to buffer small number of messages
– Receiver tracks possible duplicate messages

» Hard: when ok to forget about received message?
• Alternating-bit protocol:

– Send one message at a time; don’t send
next message until ACK received

– Sender keeps last message; receiver tracks
sequence number of last message received

• Pros: simple, small overhead
• Con: doesn’t work if network can delay

or duplicate messages arbitrarily

How to Deal with Message Duplication?

Sender Receiver

Lec 26.314/25/23 Kubiatowicz CS162 © UCB Spring 2023

Advantages of Moving Away From Stop-and-Wait
• Larger space of acknowledgements

– Pipelining: don’t wait for ACK before sending
next packet

• ACKs serve dual purpose:
– Reliability: Confirming packet received
– Ordering: Packets can be reordered at destination

• How much data is in flight now?
– Bytes in-flight: Wsend = RTT × B
– Here B is in “bytes/second”
– Wsend Sender’s “Window Size”
– Packets in flight = (Wsend / packet size)

• How long does the sender have to keep the
packets around?

• How long does the receiver have to keep the
packets’ data?

• What if sender is sending packets faster than the
receiver can process the data?

Time

Sender Receiver

RTT
d

Lec 26.324/25/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: Communication Between Processes

• Data written by A is held in memory until B reads it
• Queue has a fixed capacity

– Writing to the queue blocks if the queue if full
– Reading from the queue blocks if the queue is empty

• POSIX provides this abstraction in the form of pipes

write(wfd, wbuf, wlen);

n = read(rfd,rbuf, rmax);

Process
A

Process
A Process

B
Process

B
In-Memory

Queue

Lec 26.334/25/23 Kubiatowicz CS162 © UCB Spring 2023

Host 1

Buffering in a TCP Connection

• A single TCP connection needs four in-memory queues:
– Send buffer: add data on write syscall, remove data when ACK received
– Receive buffer: add data when packets received, remove data on read syscall

Process
A

Process
A

Send Queue

Receive
Queue

Host 2
Process

B
Process

B

Receive
Queue

Send Queue

Separate pair
of queues per
TCP
connection

Data (Packets)

Data (Packets)

Lec 26.344/25/23 Kubiatowicz CS162 © UCB Spring 2023

Host 1

Window Size: Space in Receive Queue

• A host’s window size for a TCP connection is how much remaining space
it has in its receive queue

• A host advertises its window size in every TCP packet it sends!
• Sender never sends more than receiver’s advertised window size

Process
A

Process
A

Send Queue

Receive
Queue

Host 2
Process

B
Process

B

Receive
Queue

Send Queue

Separate pair of
queues per TCP
connection

Data (Packets)

Data (Packets)

Lec 26.354/25/23 Kubiatowicz CS162 © UCB Spring 2023

Sliding Window Protocol

• TCP sender knows receiver’s window size, and aims never to exceed it
• But packets that it previously send may arrive, filling the window size!

Rule: TCP sender ensures that:
Number of Sent but UnACKed Bytes < Receiver’s Advertised Window Size

• Can send new packets as long as sent-but-unacked packets haven’t already
filled the advertised window size

Lec 26.364/25/23 Kubiatowicz CS162 © UCB Spring 2023

Sliding Window (No Packet Loss)

• Example:Window
size (𝑤) = 3 packets

• Window size to fill
link is given by:
𝑤 𝐵 ⋅ RTT

• Bpkt Packets/sec
• Little’s Law once

again!

• For TCP, window is
in bytes, not packets

Time

Sender Receiver

1{1}
2{1, 2}
3{1, 2, 3}
4{2, 3, 4}
5{3, 4, 5}

Unacked
packets that
sender sent

Out-of-seq packets
in receiver’s window

{}

6{4, 5, 6}
.
.
.

.

.

.

{}
{}

Lec 26.374/25/23 Kubiatowicz CS162 © UCB Spring 2023

TCP Windows and Sequence Numbers: PER BYTE!

• Sender has three regions:
– Sequence regions

» sent and ACK’d
» sent and not ACK’d
» not yet sent

– Window (colored region) adjusted by sender
• Receiver has three regions:

– Sequence regions
» received and ACK’d (given to application)
» received and buffered
» not yet received (or discarded because out of order)

Sequence Numbers

Sent
not ACK’d

Sent
ACK’d

Not yet
sent Sender

Not yet
received

Received
Given to app

Received
Buffered Receiver

Lec 26.384/25/23 Kubiatowicz CS162 © UCB Spring 2023

Seq:190
Size:40

Window-Based Acknowledgements (TCP)

Seq:230 A:190/210

Seq:260 A:190/210

Seq:300 A:190/210

Seq:190 A:340/60

Seq:340 A:380/20

Seq:380 A:400/0

A:100/300

Seq:100 A:140/260

Seq:140 A:190/210

100 Seq:100
Size:40

140 Seq:140
Size:50

190 Seq:230
Size:30

230 260 Seq:260
Size:40

300 Seq:300
Size:40

340 Seq:340
Size:40

380 Seq:380
Size:20

400

Retransmit!

Lec 26.394/25/23 Kubiatowicz CS162 © UCB Spring 2023

• Too much data trying to flow through some part of the network

• IP’s solution: Drop packets
• What happens to TCP connection?

– Lots of retransmission – wasted work and wasted bandwidth (when bandwidth
is scarce)

Congestion

Lec 26.404/25/23 Kubiatowicz CS162 © UCB Spring 2023

Congestion Avoidance
• Congestion

– How long should timeout be for re-sending messages?
» Too long wastes time if message lost
» Too short retransmit even though ACK will arrive shortly

– Stability problem: more congestion ACK is delayed unnecessary timeout
more traffic more congestion

» Closely related to window size at sender: too big means putting too much data into
network

• How does the sender’s window size get chosen?
– Must be less than receiver’s advertised buffer size
– Try to match the rate of sending packets with the rate that the slowest link can

accommodate
– Sender uses an adaptive algorithm to decide size of N

» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until acknowledgements start being

delayed/lost
• TCP solution: “slow start” (start sending slowly)

– If no timeout, slowly increase window size (throughput) by 1 for each ACK received
– Timeout congestion, so cut window size in half
– “Additive Increase, Multiplicative Decrease”

Lec 26.414/25/23 Kubiatowicz CS162 © UCB Spring 2023

Congestion Management

• TCP artificially restricts the window
size if it sees packet loss

• Careful control loop to make sure:
1. We don’t send too fast and

overwhelm the network
2. We utilize most of the bandwidth the

network has available
– In general, these are conflicting goals!

Lec 26.424/25/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: Connection Setup over TCP/IP

• 5-Tuple identifies each
connection:

1. Source IP Address
2. Destination IP Address
3. Source Port Number
4. Destination Port Number
5. Protocol (always TCP here)

socket
ServerClient

Server
Socket

new
socket

Connection
socketconnection

• Often, Client Port “randomly”
assigned

– Done by OS during client socket setup
• Server Port often “well known”

– 80 (web), 443 (secure web), 25
(sendmail), etc

– Well-known ports from 0—1023

Lec 26.434/25/23 Kubiatowicz CS162 © UCB Spring 2023

Establishing TCP Service
• Open connection: 3-way handshaking

– Need to establish bidirectional communication, including sequence numbers

• Reliable byte stream transfer from (IPa, TCP_Port1) to (IPb, TCP_Port2)
– Indication if connection fails: Reset

• Close (tear-down) connection

Lec 26.444/25/23 Kubiatowicz CS162 © UCB Spring 2023

Sockets in concept
Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept syscall()
Connection SocketConnection Socket

read request

Lec 26.454/25/23 Kubiatowicz CS162 © UCB Spring 2023

Open Connection: 3-Way Handshake

• Server calls listen() to
wait for a new
connection

• Client calls connect()
providing server’s IP
address and port
number

• Each side sends SYN
packet proposing an
initial sequence number
(one for each sender)
and ACKs the other

Client (initiator)

connect()
listen()

accept()
dequeues
connection

allocate
buffer space,
connection
enqueued

tim
e

Server

Lec 26.464/25/23 Kubiatowicz CS162 © UCB Spring 2023

Sockets in concept
Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept syscall()
Connection SocketConnection Socket

read request

Lec 26.474/25/23 Kubiatowicz CS162 © UCB Spring 2023

Close Connection: 4-Way Teardown

• Connection is not
closed until both
sides agree

FIN
FIN ACK

FIN
FIN ACK

Host 1 Host 2

Can retransmit FIN
ACK if it is lost tim

eo
ut

OS deallocates
connection state

close()

close()

OS
deallocates
connection
state

data
OS discards data (no

socket to give it to)

Any calls to
read() return 0• If multiple FDs on

Host 1 refer to
this connection,
all of them must
be closed

• Same for close()
call on Host 2

Lec 26.484/25/23 Kubiatowicz CS162 © UCB Spring 2023

Recall: Distributed Applications Build With Messages
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on different machines
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and two receivers cannot

get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

R
eceive

Lec 26.494/25/23 Kubiatowicz CS162 © UCB Spring 2023

Question: Data Representation
• An object in memory has a machine-specific binary representation

– Threads within a single process have the same view of what’s in memory
– Easy to compute offsets into fields, follow pointers, etc.

• In the absence of shared memory, externalizing an object requires us to turn
it into a sequential sequence of bytes

– Serialization/Marshalling: Express an object as a sequence of bytes
– Deserialization/Unmarshalling: Reconstructing the original object from its

marshalled form at destination

Lec 26.504/25/23 Kubiatowicz CS162 © UCB Spring 2023

Simple Data Types
uint32_t x;
• Suppose I want to write a x to a file

• First, open the file: FILE* f = fopen(“foo.txt”, “w”);
• Then, I have two choices:

1. fprintf(f, “%lu”, x);
2. fwrite(&x, sizeof(uint32_t), 1, f);

» Or equivalently, write(fd, &x, sizeof(uint32_t)); (perhaps with a loop to be safe)

• Neither one is “wrong” but sender and receiver should be consistent!

Lec 26.514/25/23 Kubiatowicz CS162 © UCB Spring 2023

Machine Representation
• Consider using the machine representation:

– fwrite(&x, sizeof(uint32_t), 1, f);

• How do we know if the recipient represents x in the same way?
– For pipes, is this a problem?
– What about for sockets?

Lec 26.524/25/23 Kubiatowicz CS162 © UCB Spring 2023

Endianness

• For a byte-address machine, which end of a
machine-recognized object (e.g., int) does its byte-
address refer to?

• Big Endian: address is the most-significant bits
• Little Endian: address is the least-significant bits

Lec 26.534/25/23 Kubiatowicz CS162 © UCB Spring 2023

What Endian is the Internet?

• Big Endian
• Network byte order
• Vs. “host byte order”

Lec 26.544/25/23 Kubiatowicz CS162 © UCB Spring 2023

Dealing with Endianness
• Decide on an “on-wire” endianness
• Convert from native endianness to “on-wire” endianness before sending

out data (serialization/marshalling)
– uint32_t htonl(uint32_t) and uint16_t htons(uint16_t) convert

from native endianness to network endianness (big endian)

• Convert from “on-wire” endianness to native endianness when receiving
data (deserialization/unmarshalling)
– uint32_t ntohl(uint32_t) and uint16_t ntohs(uint16_t) convert

from network endianness to native endianness (big endian)

Lec 26.554/25/23 Kubiatowicz CS162 © UCB Spring 2023

What About Richer Objects?
• Consider word_count_t of Homework 0 and 1 …
• Each element contains:

– An int
– A pointer to a string (of some length)
– A pointer to the next element

• fprintf_words writes these as a sequence of lines (character strings with \n)
to a file stream

• What if you wanted to write the whole list as a binary object (and read it back
as one)?

– How do you represent the string?
– Does it make any sense to write the pointer?

Lec 26.564/25/23 Kubiatowicz CS162 © UCB Spring 2023

Data Serialization Formats

• JSON and XML are commonly used in web applications
• Lots of ad-hoc formats

Lec 26.574/25/23 Kubiatowicz CS162 © UCB Spring 2023

Data Serialization Formats

Lec 26.584/25/23 Kubiatowicz CS162 © UCB Spring 2023

Remote Procedure Call (RPC)
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive
– And must deal with machine representation by hand

• Another option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Idea: Make communication look like an ordinary function call
– Automate all of the complexity of translating between representations
– Client calls:

remoteFileSystemRead("rutabaga");
– Translated automatically into call on server:

fileSysRead("rutabaga");

Lec 26.594/25/23 Kubiatowicz CS162 © UCB Spring 2023

Client (caller)

r = f(v1, v2);

Server (callee)

res_t f(a1, a2)

call

return receive

return

call

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

send

receive

send

Server
Stub

unbundle
args

RPC Concept

Lec 26.604/25/23 Kubiatowicz CS162 © UCB Spring 2023

Client (caller)

r = f(v1, v2);

Server (callee)

res_t f(a1, a2)

call

return receive

return

call

bundle
ret vals

unbundle
ret vals

send

receive

Machine A

Machine B

Packet
Handler

Packet
Handler

N
etw

orkN
et

w
or

k

Server
Stub

unbundle
args

send

Server
Stub

unbundle
args

RPC Information Flow

Client
Stub

bundle
args

Lec 26.614/25/23 Kubiatowicz CS162 © UCB Spring 2023

RPC Implementation
• Request-response message passing (under covers!)
• “Stub” provides glue on client/server

– Client stub is responsible for “marshalling” arguments and “unmarshalling” the
return values

– Server-side stub is responsible for “unmarshalling” arguments and “marshalling”
the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing objects, copying arguments

passed by reference, etc.

Lec 26.624/25/23 Kubiatowicz CS162 © UCB Spring 2023

RPC Details (1/3)
• Equivalence with regular procedure call

– Parameters Request Message
– Result Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box)

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition language (IDL)”

» Contains, among other things, types of arguments/return
– Output: stub code in the appropriate source language

» Code for client to pack message, send it off, wait for result, unpack result and return to
caller

» Code for server to unpack message, call procedure, pack results, send them off

Lec 26.634/25/23 Kubiatowicz CS162 © UCB Spring 2023

RPC Details (2/3)
• Cross-platform issues:

– What if client/server machines are different architectures/ languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded (avoids unnecessary

conversions)

• How does client know which mbox (destination queue) to send to?
– Need to translate name of remote service into network endpoint (Remote

machine, port, possibly other info)
– Binding: the process of converting a user-visible name into a network endpoint

» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

Lec 26.644/25/23 Kubiatowicz CS162 © UCB Spring 2023

RPC Details (3/3)
• Dynamic Binding

– Most RPC systems use dynamic binding via name service
» Name service provides dynamic translation of service mbox

– Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request

Lec 26.654/25/23 Kubiatowicz CS162 © UCB Spring 2023

Problems with RPC: Non-Atomic Failures
• Different failure modes in dist. system than on a single machine
• Consider many different types of failures

–User-level bug causes address space to crash
–Machine failure, kernel bug causes all processes on same

machine to fail
–Some machine is compromised by malicious party

• Before RPC: whole system would crash/die
• After RPC: One machine crashes/compromised while others keep

working
• Can easily result in inconsistent view of the world

–Did my cached data get written back or not?
–Did server do what I requested or not?

• Answer? Distributed transactions/Byzantine Commit

Lec 26.664/25/23 Kubiatowicz CS162 © UCB Spring 2023

Problems with RPC: Performance
• RPC is not performance transparent:

– Cost of Procedure call « same-machine RPC « network RPC
– Overheads: Marshalling, Stubs, Kernel-Crossing, Communication

• Programmers must be aware that RPC is not free
– Caching can help, but may make failure handling complex

Lec 26.674/25/23 Kubiatowicz CS162 © UCB Spring 2023

• How do address spaces communicate with one another?
– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address spaces on different
machines or the same machine

– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)

Cross-Domain Communication/Location Transparency

Lec 26.684/25/23 Kubiatowicz CS162 © UCB Spring 2023

Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces of software (client or

server)
– Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can be on a separate machine
from X server; Neither has to run on the machine with the frame buffer.

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure

Lec 26.694/25/23 Kubiatowicz CS162 © UCB Spring 2023

Network-Attached Storage and the CAP Theorem

• Consistency:
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes partitioned

• Consistency, Availability, Partition-Tolerance (CAP) Theorem: Cannot have all three
at same time

– Otherwise known as “Brewer’s Theorem”

Network

Lec 26.704/25/23 Kubiatowicz CS162 © UCB Spring 2023

Distributed File Systems

• Transparent access to files stored on a remote disk
• Mount remote files into your local file system

– Directory in local file system refers to remote files
– e.g., /users/jane/prog/foo.c on laptop actually refers to

/prog/foo.c on adj.cs.berkeley.edu
• Naming Choices:

– [Hostname,localname]: Filename includes server
» No location or migration transparency, except

through DNS remapping
– A global name space: Filename unique in “world”

» Can be served by any server

Network
Read File

Data
ServerClient

mount
coeus:/sue

mount
adj:/prog

mount
adj:/jane

Lec 26.714/25/23 Kubiatowicz CS162 © UCB Spring 2023

Enabling Design: VFS
The System Call Interface

Process
Management

Memory
Management Filesystems Device

Control Networking

Architecture
Dependent

Code

Memory
Manager

Device
Control

Network
Subsystem

File System
Types

Block
Devices

IF drivers

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

TTYs and
device access Connectivity

Lec 26.724/25/23 Kubiatowicz CS162 © UCB Spring 2023

length = read(input_fd, buffer, BUFFER_SIZE);

ssize_t read(int, void *, size_t) {
marshal args into registers
issue syscall
register result of syscall to rtn value

};

void syscall_handler (struct intr_frame *f) {
unmarshall call#, args from regs
dispatch : handlers[call#](args)
marshal results fo syscall ret

}

Exception UK, interrupt processing

ssize_t vfs_read(struct file *file, char __user *buf,
size_t count, loff_t *pos) {

User Process/File System relationship
call device driver to do the work

}

User App:

User library:

Device Driver

Recall: Layers of I/O…

High Level I/O
Low Level I/O

Syscall

File System

I/O Driver

Application / Service

Lec 26.734/25/23 Kubiatowicz CS162 © UCB Spring 2023

Virtual Filesystem Switch

• VFS: Virtual abstraction similar to local file system
– Provides virtual superblocks, inodes, files, etc
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to be used for

different types of file systems
– The API is to the VFS interface, rather than any specific type of file system

Lec 26.744/25/23 Kubiatowicz CS162 © UCB Spring 2023

VFS Common File Model in Linux

• Four primary object types for VFS:
– superblock object: represents a specific mounted filesystem
– inode object: represents a specific file
– dentry object: represents a directory entry
– file object: represents open file associated with process

• There is no specific directory object (VFS treats directories as files)
• May need to fit the model by faking it

– Example: make it look like directories are files
– Example: make it look like have inodes, superblocks, etc.

Lec 26.754/25/23 Kubiatowicz CS162 © UCB Spring 2023

Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use Remote Procedure Calls (RPC) to translate file system calls into remote requests
– No local caching, but can be cache at server-side

• Advantage: Server provides consistent view of file system to multiple clients
• Problems? Performance!

– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Server

Read (RPC)

Return (Data)

cache
Client

Client

Lec 26.764/25/23 Kubiatowicz CS162 © UCB Spring 2023

Client

cache
F1:V1F1:V2

Use of caching to reduce network load
Read (RPC)

Return (Data)
cache

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done locally, don’t need to do
any network traffic…fast!

• Problems:
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

V1
read(f1)V1
read(f1)V1

OK

read(f1)V1

read(f1)V2

Server
Client

Lec 26.774/25/23 Kubiatowicz CS162 © UCB Spring 2023

Dealing with Failures
• What if server crashes? Can client wait until it comes back and just

continue making requests?
– Changes in server's cache but not in disk are lost

• What if there is shared state across RPC's?
– Client opens file, then does a seek
– Server crashes
– What if client wants to do another read?

• Similar problem: What if client removes a file but server crashes before
acknowledgement?

Lec 26.784/25/23 Kubiatowicz CS162 © UCB Spring 2023

Stateless Protocol
• Stateless Protocol: A protocol in which all information required to service a

request is included with the request
• Even better: Idempotent Operations – repeating an operation multiple

times is same as executing it just once (e.g., storing to a mem addr.)
• Client: timeout expires without reply, just run the operation again (safe

regardless of first attempt)

• Recall HTTP: Also a stateless protocol
– Include cookies with request to simulate a session

Lec 26.794/25/23 Kubiatowicz CS162 © UCB Spring 2023

Case Study: Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close calls + file descriptors
– VFS layer: distinguishes local from remote files

» Calls the NFS protocol procedures for remote requests
– NFS service layer: bottom layer of the architecture

» Implements the NFS protocol
• NFS Protocol: RPC for file operations on server

– XDR Serialization standard for data format independence
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to server’s disk before
results are returned to the client

– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice changes! (more on this

later)

Lec 26.804/25/23 Kubiatowicz CS162 © UCB Spring 2023

NFS Continued
• NFS servers are stateless; each request provides all arguments require for

execution
– E.g. reads include information for entire operation, such as
ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file – each operation stands on
its own

• Idempotent: Performing requests multiple times has same effect as
performing them exactly once

– Example: Server crashes between disk I/O and message send, client resend
read, server does operation again

– Example: Read and write file blocks: just re-read or re-write file block – no other
side effects

– Example: What about “remove”? NFS does operation twice and second time
returns an advisory error

• Failure Model: Transparent to client system
– Is this a good idea? What if you are in the middle of reading a file and server

crashes?
– Options (NFS Provides both):

» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know they are talking over

network)

Lec 26.814/25/23 Kubiatowicz CS162 © UCB Spring 2023

NFS Architecture

Lec 26.824/25/23 Kubiatowicz CS162 © UCB Spring 2023

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout it tunable
parameter).

» Thus, when file is changed on one client, server is notified, but other clients use old
version of file until timeout.

– What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

cache

cache

F1:V1

F1:V2

Client

Server
Client

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)

Lec 26.834/25/23 Kubiatowicz CS162 © UCB Spring 2023

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the same as if all

processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new copy; otherwise, could get

partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time

Lec 26.844/25/23 Kubiatowicz CS162 © UCB Spring 2023

NFS Pros and Cons
• NFS Pros:

– Simple, Highly portable
• NFS Cons:

– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic

Lec 26.854/25/23 Kubiatowicz CS162 © UCB Spring 2023

Andrew File System
• Andrew File System (AFS, late 80’s) DCE DFS (commercial product)
• Callbacks: Server records who has copy of file

– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only after the file is

closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible immediately to other

programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file

Lec 26.864/25/23 Kubiatowicz CS162 © UCB Spring 2023

Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch new version from server on

next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask everyone “who has which
files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache more files can be cached locally
– Callbacks server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

Lec 26.874/25/23 Kubiatowicz CS162 © UCB Spring 2023

Summary (1/2)
• TCP: Reliable byte stream between two processes on different machines over

Internet (read, write, flush)
– Uses window-based acknowledgement protocol
– Congestion-avoidance dynamically adapts sender window to account for congestion

in network
• Remote Procedure Call (RPC): Call procedure on remote machine or in remote

domain
– Provides same interface as procedure
– Automatic packing and unpacking of arguments without user programming (in stub)
– Adapts automatically to different hardware and software architectures at remote end

Lec 26.884/25/23 Kubiatowicz CS162 © UCB Spring 2023

Summary (2/2)
• Distributed File System:

– Transparent access to files stored on a remote disk
– Caching for performance

• VFS: Virtual File System layer (Or Virtual Filesystem Switch)
– Provides mechanism which gives same system call interface for different types of

file systems
• Cache Consistency: Keeping client caches consistent with one another

– If multiple clients, some reading and some writing, how do stale cached copies get
updated?

– NFS: check periodically for changes
– AFS: clients register callbacks to be notified by server of changes

