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Recall: Distributed Applications Build With Messages
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on different machines 
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and two receivers cannot 

get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

R
eceive
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Recall: Endianness

• For a byte-address machine, which end of a 
machine-recognized object (e.g., int) does its byte-
address refer to?

• Big Endian: address is the most-significant bits
• Little Endian: address is the least-significant bits
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Dealing with Endianness between Hosts
• Decide on an “on-wire” endianness
• Convert from native endianness to “on-wire” endianness before sending out 

data (serialization/marshalling)
– uint32_t htonl(uint32_t) and uint16_t htons(uint16_t) convert from 

native endianness to network endianness (big endian)
• Convert from “on-wire” endianness to native endianness when receiving data 

(deserialization/unmarshalling)
– uint32_t ntohl(uint32_t) and uint16_t ntohs(uint16_t) convert from 

network endianness to native endianness (big endian)
• What “endianness” is the network?

– Big Endian
– Network macros (htonl(), htons(), ntohl(), and ntohs()) convert for you 

without you needing to know one way or another.
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What About Richer Objects?
• Consider word_count_t of Homework 0 and 1 …
• Each element contains:

– An int
– A pointer to a string (of some length)
– A pointer to the next element

• fprintf_words writes these as sequence of lines (character strings with \n) to a file 
• What if you wanted to write the whole list as a binary object (and read it back as one)?

– How do you represent the string?
– Does it make any sense to write the pointer?

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing objects, copying arguments passed by 

reference, etc.
– Also called “serialization”

• Unmarshaling involves
– Reconstructing the original object from its marshalled form at destination
– Also called “deserialization” 
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Data Serialization Formats (MANY!)
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Remote Procedure Call (RPC)
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive
– And must deal with machine representation by hand

• Another option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Idea: Make communication look like an ordinary function call
– Automate all of the complexity of translating between representations
– Client calls: 

remoteFileSystemRead("rutabaga");
– Translated automatically into call on server:

fileSysRead("rutabaga");
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RPC Details (1/3)
• Request-response message passing (under covers!)
• Equivalence with regular procedure call

– Parameters Request Message
– Result  Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box) 

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition language (IDL)”

» Contains, among other things, types of arguments/return
– Output: stub code in the appropriate source language

» Code for client to pack message, send it off, wait for result, unpack result and return to 
caller

» Code for server to unpack message, call procedure, pack results, send them off
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RPC Details (2/3)
• Cross-platform issues:

– What if client/server machines are different architectures/ languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded (avoids unnecessary 

conversions)

• How does client know which mbox (destination queue) to send to?
– Need to translate name of remote service into network endpoint (Remote 

machine, port, possibly other info)
– Binding: the process of converting a user-visible name into a network endpoint

» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime
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RPC Details (3/3)
• Dynamic Binding

– Most RPC systems use dynamic binding via name service
» Name service provides dynamic translation of service  mbox

– Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request
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Problems with RPC: Non-Atomic Failures
• Different failure modes in dist. system than on a single machine
• Consider many different types of failures

–User-level bug causes address space to crash
–Machine failure, kernel bug causes all processes on same 

machine to fail
–Some machine is compromised by malicious party

• Before RPC: whole system would crash/die
• After RPC: One machine crashes/compromised while others keep 

working
• Can easily result in inconsistent view of the world

–Did my cached data get written back or not?
–Did server do what I requested or not?

• Answer? Distributed transactions/Byzantine Commit
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• How do address spaces communicate with one another?
– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address spaces on different 
machines or the same machine

– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)

Cross-Domain Communication/Location Transparency
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Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces of software (client or 

server)
– Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can be on a separate machine 
from X server; Neither has to run on the machine with the frame buffer.

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure
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Network-Attached Storage and the CAP Theorem

• Consistency: 
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes partitioned

• Consistency, Availability, Partition-Tolerance (CAP) Theorem: Cannot have all three 
at same time

– Otherwise known as “Brewer’s Theorem”

Network
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Distributed File Systems

• Transparent access to files stored on a remote disk
• Mount remote files into your local file system

– Directory in local file system refers to remote files
– e.g., /users/jane/prog/foo.c on laptop actually refers to

/prog/foo.c on adj.cs.berkeley.edu
• Naming Choices:

– [Hostname,localname]: Filename includes server
» No location or migration transparency, except

through DNS remapping
– A global name space: Filename unique in “world”

» Can be served by any server

Network
Read File

Data
ServerClient

mount
coeus:/sue

mount
adj:/prog

mount
adj:/jane
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Enabling Design: VFS 
The System Call Interface

Process
Management

Memory
Management Filesystems Device

Control Networking

Architecture
Dependent

Code

Memory
Manager

Device
Control

Network
Subsystem

File System 
Types

Block
Devices

IF drivers

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

TTYs and
device access Connectivity
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length = read(input_fd, buffer, BUFFER_SIZE);

ssize_t read(int, void *, size_t) {
marshal args into registers
issue syscall
register result of syscall to rtn value

};

void syscall_handler (struct intr_frame *f) {
unmarshall call#, args from regs
dispatch : handlers[call#](args)
marshal results fo syscall ret

}

Exception UK, interrupt processing

ssize_t vfs_read(struct file *file, char __user *buf,         
size_t count, loff_t *pos) {

User Process/File System relationship
call device driver to do the work

}

User App:

User library:

Device Driver

Recall: Layers of I/O…

High Level I/O 
Low Level I/O 

Syscall

File System

I/O Driver

Application / Service



Lec 27.205/2/23 Kubiatowicz CS162 © UCB Spring 2023

Virtual Filesystem Switch

• VFS: Virtual abstraction similar to local file system
– Provides virtual superblocks, inodes, files, etc
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to be used for 

different types of file systems
– The API is to the VFS interface, rather than any specific type of file system



Lec 27.215/2/23 Kubiatowicz CS162 © UCB Spring 2023

VFS Common File Model in Linux

• Four primary object types for VFS:
– superblock object: represents a specific mounted filesystem
– inode object: represents a specific file
– dentry object: represents a directory entry 
– file object: represents open file associated with process

• There is no specific directory object (VFS treats directories as files)
• May need to fit the model by faking it

– Example: make it look like directories are files
– Example: make it look like have inodes, superblocks, etc.
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Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use Remote Procedure Calls (RPC) to translate file system calls into remote requests
– No local caching, but can be cache at server-side

• Advantage: Server provides consistent view of file system to multiple clients
• Problems?  Performance!

– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Server

Read (RPC)

Return (Data)

cache
Client

Client
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Client

cache
F1:V1F1:V2

Use of caching to reduce network load
Read (RPC)

Return (Data)
cache

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done locally, don’t need to do 
any network traffic…fast!

• Problems: 
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

V1
read(f1)V1
read(f1)V1

OK

read(f1)V1

read(f1)V2

Server
Client
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Dealing with Failures
• What if server crashes? Can client wait until it comes back and just 

continue making requests?
– Changes in server's cache but not in disk are lost

• What if there is shared state across RPC's?
– Client opens file, then does a seek
– Server crashes
– What if client wants to do another read?

• Similar problem: What if client removes a file but server crashes before 
acknowledgement?
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Stateless Protocol
• Stateless Protocol: A protocol in which all information required to service a 

request is included with the request
• Even better: Idempotent Operations – repeating an operation multiple 

times is same as executing it just once (e.g., storing to a mem addr.)
• Client: timeout expires without reply, just run the operation again (safe 

regardless of first attempt)

• Recall HTTP: Also a stateless protocol
– Include cookies with request to simulate a session
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Case Study: Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close calls + file descriptors
– VFS layer: distinguishes local from remote files

» Calls the NFS protocol procedures for remote requests
– NFS service layer: bottom layer of the architecture

» Implements the NFS protocol
• NFS Protocol: RPC for file operations on server

– XDR Serialization standard for data format independence
– Reading/searching a directory 
– manipulating links and directories 
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to server’s disk before 
results are returned to the client 

– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice changes! (more on this 

later)
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NFS Continued
• NFS servers are stateless; each request provides all arguments require for 

execution
– E.g. reads include information for entire operation, such as 
ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file – each operation stands on 
its own

• Idempotent: Performing requests multiple times has same effect as 
performing them exactly once

– Example: Server crashes between disk I/O and message send, client resend 
read, server does operation again

– Example: Read and write file blocks: just re-read or re-write file block – no other 
side effects

– Example: What about “remove”?  NFS does operation twice and second time 
returns an advisory error 

• Failure Model: Transparent to client system
– Is this a good idea?  What if you are in the middle of reading a file and server 

crashes? 
– Options (NFS Provides both):

» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know they are talking over 

network)
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NFS Architecture
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• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout it tunable 
parameter).

» Thus, when file is changed on one client, server is notified, but other clients use old 
version of file until timeout.

– What if multiple clients write to same file? 
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

cache

cache

F1:V1

F1:V2

Client

Server
Client

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)
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What about: Sharing Data, rather than Files ?
• Key:Value stores are used everywhere
• Native in many programming languages

– Associative Arrays in Perl
– Dictionaries in Python
– Maps in Go
– …

• What about a collaborative key-value store rather than message passing 
or file sharing?

• Can we make it scalable and reliable?
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Key Value Storage
Simple interface

• put(key, value);  // Insert/write "value" associated with key

• get(key);  // Retrieve/read value associated with key



Lec 27.325/2/23 Kubiatowicz CS162 © UCB Spring 2023

Why Key Value Storage?
• Easy to Scale

– Handle huge volumes of data (e.g., petabytes)
– Uniform items: distribute easily and roughly equally across many machines

• Simple consistency properties

• Used as a simpler but more scalable "database"
– Or as a building block for a more capable DB
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• Amazon:
– Key: customerID
– Value: customer profile (e.g., buying history, credit card, ..)

• Facebook, Twitter:
– Key: UserID
– Value: user profile (e.g., posting history, photos, friends, …)

• iCloud/iTunes:
– Key: Movie/song name
– Value: Movie, Song

Key Values: Examples 
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Key-value storage systems in real life
• Amazon

– DynamoDB: internal key value store used to power Amazon.com
(shopping cart)

– Simple Storage System (S3)

• BigTable/HBase/Hypertable: distributed, scalable data storage

• Cassandra: “distributed data management system” (developed by 
Facebook)

• Memcached: in-memory key-value store for small chunks of arbitrary 
data (strings, objects) 

• eDonkey/eMule: peer-to-peer sharing system

• …
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Key Value Store
• Also called Distributed Hash Tables (DHT)
• Main idea: simplify storage interface (i.e. put/get), then partition set of 

key-values across many machines
key, value

…
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Challenges

• Scalability: 
– Need to scale to thousands of machines 
– Need to allow easy addition of new machines

• Fault Tolerance: handle machine failures without losing data  and 
without degradation in performance

• Consistency: maintain data consistency in face of node failures and 
message losses 

• Heterogeneity (if deployed as peer-to-peer systems):
– Latency: 1ms to 1000ms
– Bandwidth: 32Kb/s to 100Mb/s

…
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Important Questions
• put(key, value): 

– where do you store a new (key, value) tuple?
• get(key): 

– where is the value associated with a given “key” stored?

• And, do the above while providing 
– Scalability
– Fault Tolerance
– Consistency
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How to solve the “where?”
• Hashing to map key space  location

– But what if you don’t know all the nodes that are participating?
– Perhaps they come and go …
– What if some keys are really popular?

• Lookup
– Hmm, won’t this be a bottleneck and single point of failure?
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Recursive Directory Architecture (put)
• Have a node maintain the mapping between keys and the machines 

(nodes) that store the values associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

put(K14, V14)
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Recursive Directory Architecture (get)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

get(K14)
V14

• Have a node maintain the mapping between keys and the machines 
(nodes) that store the values associated with the keys



Lec 27.415/2/23 Kubiatowicz CS162 © UCB Spring 2023

Iterative Directory Architecture (put) 
• Having the master relay the requests  recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
put(K14, V14)

N3
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Iterative Directory Architecture (get)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
get(K14)

V14
N3

• Having the master relay the requests  recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node
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Iterative vs. Recursive Query

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)
V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

V14
N3

Recursive Iterative

+ Faster, as directory server is typically close 
to storage nodes

+ Easier for consistency: directory can 
enforce an order for all puts and gets

- Directory is a performance bottleneck

+ More scalable, clients do more work
- Harder to enforce consistency
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Fault Tolerance
• Replicate value on several nodes
• Usually, place replicas on different racks in a datacenter to guard against 

rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14

put(K14, V14)
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Scalability
• Storage: use more nodes

• Number of requests: 
– Can serve requests from all nodes on which a value is stored in parallel
– Master can replicate a popular value on more nodes

• Master/directory scalability:
– Replicate it
– Partition it, so different keys are served by different masters/directories

» How do you partition? 
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Scaling Up Directory
• Challenge:

– Directory contains a number of entries equal to number of (key, value) 
tuples in the system

– Can be tens or hundreds of billions of entries in the system!
• Solution: Consistent Hashing

– Provides mechanism to divide [key,value] pairs amongst a (potentially 
large!) set of machines (nodes) on network

• Associate to each node a unique id in an uni-dimensional space 0..2m-1 
 Wraps around: Call this “the ring!”

– Partition this space across n machines
– Assume keys are in same uni-dimensional space
– Each [Key, Value] is stored at the node with the smallest ID larger than 

Key
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Key to Node Mapping Example
• Paritioning example with

m = 6  ID space: 0..63
– Node  8 maps keys [5,8]
– Node 15 maps keys [9,15]
– Node 20 maps keys [16, 20]
– …
– Node 4 maps keys [59, 4]

• For this example, the mapping 
[14, V14] maps to node with 
ID=15

– Node with smallest ID larger than 
14 (the key)

• In practice, m=256 or more!
– Uses cryptographically secure 

hash such as SHA-256 to 
generate the node IDs

14 V14

4

20

3235

8

15

44

58

63 0

“The Ring”
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Chord: Distributed Lookup (Directory) Service
• “Chord” is a Distributed Lookup Service

– Designed at MIT and here at Berkeley (Ion Stoica among others)
– Simplest and cleanest algorithm for distributed storage

» Serves as comparison point for other optims
• Import aspect of the design space:

– Decouple correctness from efficiency
– Combined Directory and Storage

• Properties 
– Correctness: 

» Each node needs to know about neighbors on ring (one predecessor and one 
successor)

» Connected rings will perform their task correctly
– Performance: 

» Each node needs to know about O(log(M)), where M is the total number of nodes
» Guarantees that a tuple is found in O(log(M)) steps

• Many other Structured, Peer-to-Peer lookup services: 
– CAN, Tapestry, Pastry, Bamboo, Kademlia, …
– Several designed here at Berkeley!
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Chord’s Lookup Mechanism: Routing!
• Each node maintains pointer to its 

successor 
• Route packet (Key, Value) to the 

node responsible for ID using 
successor pointers
– E.g., node=4 lookups for node 

responsible for Key=37 
• Worst-case (correct) lookup is O(n)

– But much better normal lookup time is 
O(log n)

– Dynamic performance optimization 
(finger table mechanism)

» More later!!!

4

20

3235

8

15

44

58

lookup(37)

node=44 is 
responsible 
for Key=37
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But what does this really mean??

ID: 4

ID: 44

ID: 8

ID: 20

ID: 35

ID: 58

ID: 15

ID: 32

• Node names intentionally scrambled WRT geography!
– Node IDs generated by secure hashes over metadata 

» Including things like the IP address
– This geographic scrambling spreads load and avoids hotspots

• Clients access distributed storage through any member of the network

4

20

3235

8

15

44

58

14 V14

63 0

Client

Client

Client

Client

Client

14 V14
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Stabilization Procedure
• Periodic operation performed by each node n to maintain its successor 

when new nodes join the system
– The primary Correctness constraint

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;      // if x better successor, update 
succ.notify(n); // n tells successor about itself

n.notify(n’)
if (pred = nil or n’    (pred, n))

pred = n’;       // if n’ is better predecessor, update
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Joining Operation

4

20

3235

8

15

44

58

50

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

• Node with id=50 
joins the ring

• Node 50 must know 
at least one node 
already in system

– Assume known 
node is 15



Lec 27.535/2/23 Kubiatowicz CS162 © UCB Spring 2023

Joining Operation

4

20

3235

8

15

44

58

50

join(50)

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

succ=58

• n=50 sends join(50)
to node 15

– Join propagated 
around ring!

• n=44 returns node 58
• n=50 updates its

successor to 58
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes 
stabilize()

• n’s successor (58)
returns x = 44
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes 
stabilize()

– x = 44
– succ = 58
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes 
stabilize()

– x = 44
– succ = 58

• n=50 sends to it’s 
successor (58) 
notify(50)
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• n=58 executes
notify(50)

– pred = 44
– n’ = 50

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

succ=58

n.notify(n’)
if (pred = nil or n’   (pred, n))

pred = n’
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

succ=58

pred=50
• n=58 executes

notify(50)
– pred = 44
– n’ = 50

• set pred = 50

n.notify(n’)
if (pred = nil or n’   (pred, n))

pred = n’
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

x=50

• n=44 executes 
stabilize()

• n’s successor (58) 
returns x=50
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=44 executes 
stabilize()

– x=50
– succ=58



Lec 27.615/2/23 Kubiatowicz CS162 © UCB Spring 2023

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=44 executes 
stabilize()

– x=50
– succ=58

• n=44 sets 
succ=50

succ=50
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

notify(44)

• n=44 executes 
stabilize()

• n=44 sends notify(44) 
to its successor
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)
if (pred = nil or n’    (pred, n))

pred = n’


succ=58

notify(44)

• n=50 executes 
notify(44)

– pred=nil
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

succ=58

notify(44)

pred=44

• n=50 executes 
notify(44)

– pred=nil
• n=50 sets pred=44

n.notify(n’)
if (pred = nil or n’   (pred, n))

pred = n’
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Joining Operation (cont’d)

4

20

3235

8

15

44

58

50succ=58

succ=50

pred=44

pred=50
• This completes the joining 

operation!
• The same stabilizing process 

will deal with failed nodes by 
reconnecting the ring

• What if 2 or more nodes in a 
row fail?

– Keep track of
more neighbors!

– Called the “leaf set”
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Achieving Efficiency: finger tables

80 + 2080 + 21
80 + 22

80 + 23

80 + 24

80 + 25
(80 + 26) mod 27 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=                          )2(mod2 min 

i   ft[i]
0  96
1  96
2  96
3  96
4  96
5  112
6  20

Finger Table at 80

32

4580

20
112

96



Lec 27.675/2/23 Kubiatowicz CS162 © UCB Spring 2023

Achieving Fault Tolerance for Lookup Service

• To improve robustness each node maintains the k (> 1) immediate 
successors instead of only one successor

– Again – called the “leaf set”
– In the pred() reply message, node A can send its k-1 successors to its 

predecessor B
– Upon receiving pred() message, B can update its successor list by 

concatenating the successor list received from A with its own list
• If k = log(M), lookup operation works with high probability even if half 

of nodes fail, where M is number of nodes in the system
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Storage Fault Tolerance
• Replicate tuples on 

successor nodes
• Example: replicate (K14, 

V14) on nodes 20 and 32

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14
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Storage Fault Tolerance
• If node 15 fails, no 

reconfiguration needed
– Still have two replicas 
– All lookups will be correctly 

routed after stabilization

• Will need to add a new 
replica on node 35

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14

14 V14
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Replication in Physical Space

ID: 4

ID: 44

ID: 8

ID: 20

ID: 35

ID: 58

ID: 15

ID: 32

• Replicating in Adjacent nodes of virtual space  Geographic 
Separation in physical space

– Avoids single-points of failure through randomness
– More nodes, more replication, more geographic spread

Client

Client

Client

Client

Client

14 V14

4

20

3235

8

15

44

58

14 V14

630

14 V14

14 V14

14 V14

14 V14
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Consistency
• Need to make sure that a value is replicated correctly
• How do you know a value has been replicated on every node? 

– Wait for acknowledgements from every node
• What happens if a node fails during replication?

– Pick another node and try again
• What happens if a node is slow?

– Slow down the entire put()? Pick another node?
• In general, with multiple replicas

– Slow puts and fast gets
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Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need to make sure that 

updates happen in the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’K14 V14’’



Lec 27.735/2/23 Kubiatowicz CS162 © UCB Spring 2023

Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need to make sure that 

updates happen in the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’) 
reach N1 & N3 in reverse  order!
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Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need to make sure that 

updates happen in the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’) 
reach N1 & N3 in reverse  order!

• What does get(K14) return?
• Undefined!



Lec 27.755/2/23 Kubiatowicz CS162 © UCB Spring 2023

Large Variety of Consistency Models
• Atomic consistency (linearizability): reads/writes (gets/puts) to replicas 

appear as if there was a single underlying replica (single system image)
– Think “one updated at a time”
– Transactions

• Eventual consistency: given enough time all updates will propagate 
through the system

– One of the weakest form of consistency; used by many systems in practice
– Must eventually converge on single value/key (coherence)

• And many others: causal consistency, sequential consistency, strong 
consistency, …
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Quorum Consensus
• Improve put() and get() operation performance

– In the presence of replication!
• Define a replica set of size N

– put() waits for acknowledgements from at least W replicas
» Different updates need to be differentiated by something monotonically increasing 

like a timestamp
» Allows us to replace old values with updated ones

– get() waits for responses from at least R replicas
– W+R > N

• Why does it work?
– There is at least one node that contains the update

• Why might you use W+R > N+1? 
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Quorum Consensus Example
• N=3, W=2, R=2
• Replica set for K14: {N1, N2, N4}
• Assume put() on N3 fails

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)
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Quorum Consensus Example
• Now, issuing get() to any two nodes out of three will return the answer

N1 N2 N3 N4

K14 V14K14 V14
get(K14)

nill
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DynamoDB Example: Service Level Agreements (SLA)

• Dynamo is Amazon’s storage system 
using “Chord” ideas

• Application can deliver its functionality in 
a bounded time: 

– Every dependency in the platform needs 
to deliver its functionality with even tighter 
bounds.

• Example: service guaranteeing that it will 
provide a response within 300ms for 
99.9% of its requests for a peak client 
load of 500 requests per second

• Contrast to services which focus on 
mean response time

Service-oriented architecture of 
Amazon’s platform
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Quantum Computing,
Shor’s Algorithm,

and the role of CAD design
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Use Quantum Mechanics to Compute?
• Weird but useful properties of quantum mechanics:

– Quantization: Only certain values or orbits are good
» Remember orbitals from chemistry???

– Superposition: Schizophrenic physical elements don’t quite know whether 
they are one thing or another

• All existing digital abstractions try to eliminate QM
– Transistors/Gates designed with classical behavior
– Binary abstraction: a “1” is a “1” and a “0” is a “0”

• Quantum Computing: 
Use of Quantization and Superposition to compute.

• Interesting results:
– Shor’s algorithm: factors in polynomial time!
– Grover’s algorithm: Finds items in unsorted database in time proportional to 

square-root of n.
– Materials simulation: exponential classically, linear-time QM
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Current “Arms Race” of Quantum Computing

• Big companies looking at Quantum Computing Seriously
– Google, IBM, Microsoft

• Current Goal: Quantum Supremacy
– Show that Quantum Computers faster than Classical ones
– “If a quantum processor can be operated with low enough error, it would be able to 

outperform a classical supercomputer on a well-defined computer science problem, an 
achievement known as quantum supremacy.”

Google: Superconducting 
Devices up 72-qubits

IBM: Superconducting
Devices up to 50 qubits
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Quantization: Use of “Spin”

• Particles like Protons have an intrinsic “Spin” when 
defined with respect to an external magnetic field

• Quantum effect gives “1” and “0”:
– Either spin is “UP” or “DOWN” nothing between

North

South

Spin ½ particle:
(Proton/Electron)

Representation:
|0> or |1>
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Kane Proposal II 
(First one didn’t quite work)

• Bits Represented by combination of proton/electron spin
• Operations performed by manipulating control gates

– Complex sequences of pulses perform NMR-like operations
• Temperature < 1° Kelvin!

Phosphorus
Impurity Atoms

Single Spin
Control Gates

Inter-bit 
Control Gates
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Now add Superposition!
• The bit can be in a combination of “1” and “0”:

– Written as:  = C0|0> + C1|1>
– The C’s are complex numbers!
– Important Constraint: |C0|2 + |C1|2 =1

• If measure bit to see what looks like, 
– With probability |C0|2 we will find |0> (say “UP”)
– With probability |C1|2 we will find |1> (say “DOWN”)

• Is this a real effect?  Options:
– This is just statistical – given a large number of protons, a fraction of them 

(|C0|2 ) are “UP” and the rest are down.
– This is a real effect, and the proton is really both things until you try to look at it

• Reality: second choice! 
– There are experiments to prove it!
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A register can have many values!
• Implications of superposition:

– An n-bit register can have 2n values simultaneously!
– 3-bit example:

= C000|000>+ C001|001>+ C010|010>+ C011|011>+ 
C100|100>+ C101|101>+ C110|110>+ C111|111>

• Probabilities of measuring all bits are set by coefficients:
– So, prob of getting |000> is |C000|2, etc.
– Suppose we measure only one bit (first):

» We get “0” with probability: P0=|C000|2+ |C001|2+ |C010|2+ |C011|2
Result: =    (C000|000>+ C001|001>+ C010|010>+ C011|011>)

» We get “1” with probability: P1=|C100|2+ |C101|2+ |C110|2+ |C111|2
Result: =    (C100|100>+ C101|101>+ C110|110>+ C111|111>)

• Problem: Don’t want environment to measure before ready!
– Solution: Quantum Error Correction Codes!
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Spooky action at a distance
• Consider the following simple 2-bit state:

= C00|00>+ C11|11>
– Called an “EPR” pair for “Einstein, Podolsky, Rosen”

• Now, separate the two bits:

• If we measure one of them, it instantaneously sets other one!
– Einstein called this a “spooky action at a distance”
– In particular, if we measure a |0> at one side, we get a |0> at the other (and vice versa)

• Teleportation
– Can “pre-transport” an EPR pair (say bits X and Y)
– Later to transport bit A from one side to the other we:

» Perform operation between A and X, yielding two classical bits
» Send the two bits to the other side
» Use the two bits to operate on Y
» Poof! State of bit A appears in place of Y

Light-Years?
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• Basic Computing Paradigm:
– Input is a register with superposition of many values 

» Possibly all 2n inputs equally probable!
– Unitary transformations compute on coefficients

» Must maintain probability property (sum of squares = 1)
» Looks like doing computation on all 2n inputs simultaneously!

– Output is one result attained by measurement
• If do this poorly, just like probabilistic computation:

– If 2n inputs equally probable, may be 2n outputs equally probable.
– After measure, like picked random input to classical function!
– All interesting results have some form of “fourier transform” computation being 

done in unitary transformation

Unitary 
Transformations

Input
Complex

State
Measure

Output
Classical
Answer

Model: Operations on coefficients + measurements
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Shor’s Factoring Algorithm
• The Security of RSA Public-key cryptosystems depends on the 

difficulty of factoring a number N=pq (product of two primes)
– Classical computer: sub-exponential time factoring
– Quantum computer: polynomial time factoring

• Shor’s Factoring Algorithm (for a quantum computer)
1) Choose random x : 2  x  N-1.
2) If gcd(x,N)  1, Bingo!
3) Find smallest integer r : xr  1 (mod N)
4) If r is odd, Repeat at Step 1
5) If r is even, a  x r/2 (mod N)  (a-1)(a+1) = kN
6) If a  N-1(mod N) GOTO 1
7) ELSE gcd(a ± 1,N) is a non trivial factor of N.

Hard

Easy
Easy

Easy
Easy
Easy
Easy
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Finding r with xr  1 (mod N)

• Finally: Perform measurement
– Find out r with high probability
– Get |y>|aw’> where y is of form k/r and w’ is related


k

/
\k /

\xk
k

/
\k /

\1

 /
\

/
\x

y
r yw

0w 

w1r

 ( ) /
\x

r
0

r r
1 k

0w 
w

1r
Quantum
Fourier

Transform
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Quantum Computing Architectures
• Why study quantum computing?

– Interesting, says something about physics
» Failure to build   quantum mechanics wrong?

– Mathematical Exercise (perfectly good reason)
– Hope that it will be practical someday:

» Shor’s factoring, Grover’s search, Design of Materials
» Quantum Co-processor included in your Laptop?

• To be practical, will need to hand quantum computer design off to classical 
designers

– Baring Adiabatic algorithms, will probably need 100s to 1000s (millions?) of working 
logical Qubits 
1000s to millions of physical Qubits working together

– Current chips: ~1 billion transistors!
• Large number of components is realm of architecture

– What are optimized structures of quantum algorithms when they are mapped to a 
physical substrate? 

– Optimization not possible by hand
» Abstraction of elements to design larger circuits
» Lessons of last 30 years of VLSI design: USE CAD
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• Quantum Circuit model – graphical representation
– Time Flows from left to right
– Single Wires: persistent Qubits, Double Wires: classical bits

» Qubit – coherent combination of 0 and 1:   = |0 + |1
– Universal gate set: Sufficient to form all unitary transformations

• Example: Syndrome Measurement (for 3-bit code)
– Measurement (meter symbol)

produces classical bits
• Quantum CAD 

– Circuit expressed as netlist
– Computer manpulated circuits

and implementations

Quantum Circuit Model
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• Quantum State Fragile  encode all Qubits
– Uses many resources: e.g. 3-level [[7,1,3]] 

code 343 physical Qubits/logical Qubit)!
• Still need to handle operations (fault-tolerantly)

– Some set of gates are simply “transversal:”
» Perform identical gate between each physical bit of logical encoding

– Others (like T gate for [[7,1,3]] code) cannot be handled transversally
» Can be performed fault-tolerantly by preparing appropriate ancilla

• Finally, need to perform periodical error correction
– Correct after every(?): Gate, Long distance movement, Long Idle Period
– Correction reducing entropy  Consumes Ancilla bits

• Observation:   90% of QEC gates are used for ancilla production
 70-85% of all gates are used for ancilla production

Adding Quantum ECC

H

T

Not Transversal!

n-physical Qubits
per logical Qubit H

TX

Encoded
/8 (T)
Ancilla

SXT:

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

QEC
Ancilla

Correct
Errors

Correct

Syndrom
e

Com
putation
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MEMs-Based Ion Trap Devices
• Ion Traps: One of the more promising quantum computer 

implementation technologies 
– Built on Silicon

» Can bootstrap the vast infrastructure that currently exists in the 
microchip industry

– Seems to be on a “Moore’s Law” like scaling curve
» Many researchers working on this problem

– Some optimistic researchers speculate about room temperature
• Properties:

– Has a long-distance Wire
» So-called “ballistic movement”

– Seems to have relatively long decoherence times
– Seems to have relatively low error rates for:

» Memory, Gates, Movement
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Electrode Control

• Qubits are atomic ions (e.g. Be+)
– State is stored in hyperfine levels
– Ions suspended in channels between 

electrodes
• Quantum gates performed by lasers 

(either one or two bit ops)
– Only at certain trap locations
– Ions move between laser sites to 

perform gates
• Classical control

– Gate (laser) ops
– Movement (electrode) ops

• Complex pulse sequences to cause 
Ions to migrate

• Care must be taken to avoid 
disturbing state

• Demonstrations in the Lab
– NIST, MIT, Michigan, many others

Quantum Computing with Ion Traps

Gate Location

Qubit Ions

Electrodes

Courtesy of Chuang group, MIT
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An Abstraction of Ion Traps
• Basic block abstraction: Simplify Layout

• Evaluation of layout through simulation
– Yields Computation Time and Probability of Success

• Simple Error Model: Depolarizing Errors
– Errors for every Gate Operation and Unit of Waiting
– Ballistic Movement Error: Two error Models

1. Every Hop/Turn has probability of error
2. Only Accelerations cause error

in/out ports

straight 3-way 4-way turn gate locations
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H
H
H

q0
q1
q2
q3
q4
q5
q6

Q
ub

its

Time

Ion Trap Physical Layout

• Input: Gate level quantum circuit
– Bit lines
– 1-qubit gates
– 2-qubit gates

• Output:
– Layout of channels
– Gate locations
– Initial locations of ions
– Movement/gate schedule
– Control for schedule

q0

q3

q4

q5
q6

q1

q2
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Classical Control
Teleportation Network

Vision of Quantum Circuit Design

Schematic Capture
(Graphical Entry)

Quantum Assembly
(QASM)

OR

QEC Insertion
Partitioning

Layout
Network Insertion

Error Analysis
…

Optimization

CAD Tool
Implementation

Custom Layout and
Scheduling
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Important Measurement Metrics
• Traditional CAD Metrics:

– Area
» What is the total area of a circuit?
» Measured in macroblocks (ultimately m2 or similar)

– Latency (Latencysingle)
» What is the total latency to compute circuit once
» Measured in seconds (or s)

– Probability of Success (Psuccess)
» Not common metric for classical circuits
» Account for occurrence of errors and error correction

• Quantum Circuit Metric: ADCR 
– Area-Delay to Correct Result: Probabilistic Area-Delay metric

– ADCR = Area  E(Latency) =

– ADCRoptimal: Best ADCR over all configurations
• Optimization potential: Equipotential designs

– Trade Area for lower latency
– Trade lower probability of success for lower latency

success

single

P
LatencyArea
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Normal 
Monte Carlo:

n times

• First, generate a physical instance of circuit
– Encode the circuit in one or more QEC codes
– Partition and layout circuit: Highly dependant of layout heuristics!

» Create a physical layout and scheduling of bits
» Yields area and communication cost

• Then, evaluate probability of success
– Technique that works well for depolarizing errors: Monte Carlo

» Possible error points: Operations, Idle Bits, Communications
– Vectorized Monte Carlo: n experiments with one pass
– Need to perform hybrid error analysis for larger circuits

» Smaller modules evaluated via vector Monte Carlo
» Teleportation infrastructure evaluated via fidelity of EPR bits

• Finally – Compute ADCR for particular result

How to evaluate a circuit?

Vector
Monte Carlo:
single pass
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Comparison of 1024-bit adders

• 1024-bit Quantum Adder Architectures
– Ripple-Carry (QRCA)
– Carry-Lookahead (QCLA)

• Carry-Lookahead is better in all architectures
• QEC Optimization improves ADCR by order of magnitude in 

some circuit configurations

ADCRoptimal for 
1024-bit QCLA

ADCRoptimal for 
1024-bit QRCA and QCLA
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• Error Correction is not predominant use of area
– Only 20-40% of area devoted to QEC ancilla
– For Optimized Qalypso QCLA, 70% of operations for QEC ancilla 

generation, but only about 20% of area
• T-Ancilla generation is major component

– Often overlooked
• Networking is significant portion of area when allowed to  

optimize for ADCR (30%)
– CQLA and QLA variants didn’t really allow for much flexibility 

Area Breakdown for Adders
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Investigating 1024-bit Shor’s

• Full Layout of all Elements
– Use of 1024-bit Quantum Adders
– Optimized error correction
– Ancilla optimization and Custom Network Layout

• Statistics:
– Unoptimized version: 1.351015 operations
– Optimized Version 1000X smaller
– QFT is only 1% of total execution time
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1024-bit Shor’s Continued

• Circuits too big to compute Psuccess
– Working on this problem

• Fastest Circuit: 6108 seconds ~ 19 years
– Speedup by classically computing recursive squares?

• Smallest Circuit: 7659 mm2

– Compare to previous estimate of 0.9 m2 = 9105 mm2
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Summary (1/2)
• Remote Procedure Call (RPC): Call procedure on remote machine or in remote domain

– Provides same interface as procedure
– Automatic packing and unpacking of arguments without user programming (in stub)
– Adapts automatically to different hardware and software architectures at remote end

• Key-Value Store:
– Two operations

» put(key, value)
» value = get(key)

– Challenges
» Fault Tolerance  replication
» Scalability  serve get()’s in parallel; replicate/cache hot tuples
» Consistency  quorum consensus to improve put() performance

• Distributed File System: 
– Transparent access to files stored on a remote disk
– Caching for performance

• Chord:
– Highly scalable distributed lookup protocol
– Each node needs to know about O(log(M)), where m is the total number of nodes
– Guarantees that a tuple is found in O(log(M)) steps
– Highly resilient: works with high probability even if half of nodes fail
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Summary (2/2)
• Quantum Computing

– Computing using interesting properties of Physics
– Achieving Quantum Supremacy: Proof that Quantum Computers are more 

powerful than Classical Ones
» Not there yet!

• Most interesting Applications of Quantum Computing:
– Materials Simulation
– Optimization problems
– Machine learning?
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Thank you!

• Thanks for all your great questions!
• Good Bye!  You have all been great!

intro


