CS162
Operating Systems and
Systems Programming

Lecture 3

Processes (con't),
System Calls, Fork,

January 24t 2023
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Four Fundamental OS Concepts

Thread: Execution Context
— Fully describes program state
— Program Counter, Registers, Execution Flags, Stack
Address space (with or w/o translation)
— Set of memory addresses accessible to program (for read or write)

— May be distinct from memory space of the physical machine
(in which case programs operate in a virtual address space)

* Process: an instance of a running program
— Protected Address Space + One or more Threads
» Dual mode operation / Protection
— Only the “system” has the ability to access certain resources

— Combined with translation, isolates programs from each other and
the OS from programs

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.2

Recall: OS Bottom Line: Run Programs

Executable OXFFF...
Program Source 0s
3 PR —
- a o =
o :(¢ :
° _°. S E
- — |nstruct|ons\ heap T 3
f00.C a.out data
. Eé(;gte OS “PCB”, address space, stack and instructions|
: i 0x000
* Load instruction and data segments of X
executable file into memory PC: —1
. Trar)sfer cor.1trol to program registers
» Provide services to program
Processor

» While protecting OS and program

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023

Lec3.3

Recall: Protected Address Space

» Program operates in an address space that is
distinct from the physical memory space of the

machine s &
9 &
S
§ ¥
b o 0x000...
S 5
S L
£ L
Processor . § $ Memory
Registers I
Page Table
<Frame Addr3
OxFFF...
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.4

Recall: Single and Multithreaded Processes

| code | | data ‘ ‘ files | ‘ code | | data | | files |
‘ stack | ‘registers| |registers| |registers|
‘ stack | | stack | | stack |

thread —> ; ; ; ;4—— thread

multithreaded process

single-threaded process

» Threads encapsulate concurrency: “Active” component

» Address spaces encapsulate protection: “Passive” part
— Keeps buggy program from trashing the system

* Why have multiple threads per address space?

Recall: Simple address translation with Base and Bound

— 0000...

Static Data _code
Addresses translated Static Data

0000...

heap |
N on-the-fly | heap]
Jotco.. =
Base Address

0010... 1000... -\ m 1000...

Program 0010... Static Data

ocress []
N

» Can the program touch OS?

* Can it touch other programs? FFFF...
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.5 1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.6
Simple B&B: User => Kernel Simple B&B: Interrupt
0000. -
Proc code Proc
2 - 2
Static Data
os os
| sk ||
sysmode lII sysmode -
[code |
Base [1000.... Base 1000 .
Bound | 1100... | hen || Bound 1100 ...
uPC WPC 0000 1234
L s ||
PC PC | IntrpVector[i]
regs regs
00FF... H
* How to + How to save
return to registers and []
system? set up system
stack?
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.7 1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.8

1/24/23

Simple B&B: Switch User Process

U

. . .
2
" Static bata
(O] =5

sysmode -

Static Data
[t]|

| oo]

* How to save
registers and
set up system
stack?

Kubiatowicz CS162 ©UCB Spring 2023

Lec 3.9

Simple B&B: “resume”

soun [EORONE | Frrr
[regs | b

* How to save

registers and
set up system

Static Data

| stak |

Static Data

|

heap

1/24/23

Running Many Programs

* We have the basic mechanism to
— switch between user processes and the kernel,
— the kernel can switch among user processes,
— Protect OS from user processes and processes from

each other

* Questions ???
— How do we represent user processes in the OS?
— How do we decide which user process to run?
— How do we pack up the process and set it aside?
— How do we get a stack and heap for the kernel?
— Aren’t we wasting are lot of memory?

Kubiatowicz CS162 ©UCB Spring 2023

Lec3.11

stack?
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.10
Multiplexing Processes: The Process Control Block
» Kernel represents each process as a process
tat
control block (PCB) preee—- abe
rocess number
— Status (running, ready, blocked, ...) pro p Cl; o
— Register state (when not ready) e 4
— Process ID (PID), User, Executable, Priority, ... registers
— Execution time, ...
— Memory space, translation, ... memory limits
« Kernel Scheduler maintains a data structure listiofopeniilos
containing the PCBs
— Give out CPU to different processes
—Thisis a POllcy Decision Process
* Give out non-CPU resources Control
— Memory/IO Block
— Another policy decision
Lec 3.12

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023

CPU Switch From Process A to Process B

Scheduler

process P, operating system process P,
i ieruptonsystamcal if (readyProcesses(PCBs)) {
peciing ‘u nextPCB = selectProcess (PCBs) ;
T3 save state into PCB, run(nextPCB) ;
. idle } else {
. run_idle_process() ;
o >
ridle interrupt or system call executing
D + Scheduling: Mechanism for deciding which
processes/threads receive the CPU
. idle * Lots of different scheduling policies provide ...
) — Faimess or
Raecting l[\é — Realtime guarantees or
User Mode Kernel/System Mode || User Mode — Latency optimization or ..
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.13 1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.14
Simultaneous |\/|ultiThreading/Hyperthreading Also recall: The World Is Parallel: Intel SkyLake (2017)
 Hardware schedu“ng fechnique A e Rt ?&gﬂﬁ{{; * Up to 28 Corgs, 56 Thr.eads
— 694 mm? die size (estimated)
- Superscalar processors can » Many different instructions
execute multiple instructions ol Sy ity Graphi
that are independent. F o C_ r:acurlty, hr.ap ics
. . z » Caches on chip:
- Hyperthreading duplicates 3 L2 28 MiB P
register state fo make a s Shared L3: 38.5 MiB
second “thread,” allowing g - (noanr-?nclus'ive)' !
more instructions fo run. **%» = — Directory-based cache coherence
+ Can SChedUIe each thread Thread 0 mThread 1 * Network: oy
as if were separate CPU Colored blocks show — On-chip Mgsh Interconpect
- But, sub-linear speedup! instructions executed — Fast off-chip network directlry
o) .)) supports 8-chips connected
* Original fechnique called "Simultaneous Multithreading” « DRAM/chips
- http://www.cs.washington.edu/research/smt/index.html —~Upto1.5TiB AORELENE PoweripellverySubsys
- SPARC, Pentium 4/Xeon ("Hyperthreading"), Power 5 — DDR4 memory
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.15 1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.16

Is Base and Bound a
Good-Enough Protection Mechanism?

* NO: Too simplistic for real systems
Inflexible/Wasteful:
— Must dedicate physical memory for potential future use
— (Think stack and heap!)
» Fragmentation:

— Kernel has to somehow fit whole processes into contiguous
block of memory

— After a while, memory becomes fragmented!
» Sharing:

— Very hard to share any data between Processes or between
Process and Kernel

— Need to communicate indirectly through the kernel...

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.17

Better: x86 — segments and stacks

Static Data

Processor Registers

s e] ¢s:
I m:

Start address, length

| stack ||

Static Data

and access rights T esp:
associated with each
segment
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.18

Better Alternative: Address Mapping

Code Code

Data Stack 1 Data
Heap Heap 1 Heap
Stack Code 1 Stack

Prog 1 Prog 2
Virtual Batopt Virtual
Address Address
Space 1 Space 2

[OS code \
Translation Map 1 OS data | Translation Map 2
OS heap &
Stacks
Physical Address Space
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.19

Administrivia: Getting started!
» Kubiatowicz Office Hours:
— Monday/Wednesday 2-3pm, in 673 Soda Hall
* Homework 0: Due Tomorrow!
— Get familiar with the cs162 tools
— configure your VM, submit via git
— Practice finding out information:
» How to use GDB? How to understand output of unix tools?
» We don’t assume that you already know everything!
» Learn to use “man” (command line), “help” (in gdb, etc), google

» Project 0: Started Yesterday!
— Learn about Pintos and how to modify and debug kernel
— Important for getting started on projects!

Should be going to sections now — Important information there
— Any section will do until groups assigned

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.20

Administrivia (Con’t)
» THIS Friday is Drop Deadline! HARD TO DROP LATER!
— If you know you are going to drop, do so now to leave room for others on waitlist!
— Why do we do this? So that groups aren’t left without members!
» Group sign up via autograder form next week
— Get finding groups of 4 people ASAP
— Priority for same section; if cannot make this work, keep same TA
— Remember: Your TA needs to see you in section!
* Midterm 1: 2/17
— 7-9PM in person
— We will say more about material when we get closer...
* Midterm 1 conflicts
— We will handle these conflicts after have final class roster
— Watch for queries by HeadTA to collect information

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.21

1/24/23

Recall: 3 types of Kernel Mode Transfer

» Syscall
— Process requests a system service, e.g., exit
— Like a function call, but “outside” the process
— Does not have the address of the system function to call
— Like a Remote Procedure Call (RPC) — for later
— Marshall the syscall id and args in registers and exec syscall
* Interrupt
— External asynchronous event triggers context switch
— eg. Timer, 1/O device
— Independent of user process
» Trap or Exception
— Internal synchronous event in process triggers context switch
— e.g., Protection violation (segmentation fault), Divide by zero,

Kubiatowicz CS162 ©UCB Spring 2023

Lec 3.22

Recall: User/Kernel (Privileged) Mode

{ \ J
[Y

Limited HW access Full HW access

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023

Lec3.23

1/24/23

Implementing Safe Kernel Mode Transfers

* Important aspects:
— Controlled transfer into kernel (e.g., syscall table)
— Separate kernel stack!

« Carefully constructed kernel code packs up the user process
state and sets it aside

— Details depend on the machine architecture
— More on this next time

» Should be impossible for buggy or malicious user program to
cause the kernel to corrupt itself!

Kubiatowicz CS162 ©UCB Spring 2023

Lec 3.24

Hardware support: Interrupt Control

* Interrupt processing not visible to the user process:
— Occurs between instructions, restarted transparently
— No change to process state
— What can be observed even with perfect interrupt processing?

+ Interrupt Handler invoked with interrupts ‘disabled’
— Re-enabled upon completion
— Non-blocking (run to completion, no waits)
— Pack up in a queue and pass off to an OS thread for hard work
» wake up an existing OS thread

Interrupt Controller

Control

v

Network -
* Interrupts invoked with interrupt lines from devices
* Interrupt controller chooses interrupt request to honor
— Interrupt identity specified with ID line
— Mask enables/disables interrupts
— Priority encoder picks highest enabled interrupt
— Software Interrupt Set/Cleared by Software
* CPU can disable all interrupts with internal flag
» Non-Maskable Interrupt line (NMI) can’t be disabled

NMI

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.25 1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.26
Interrupt Vector How do we take interrupts safely?
* Interrupt vector
Address and properties — Limited number of entry points into kernel
interrupt number (i) of each interrupt handler + Kernel interrupt stack
— Handler works regardless of state of user code
* Interrupt masking
S AN — Handler is non-blocking
+ Atomic transfer of control
— “Single instruction”-like to change:
intrpHandler_i () { » Program counter
)‘“' » Stack pointer
» Memory protection
» Kernel/user mode
L » Transparent restartable execution
* Where else do you see this dispatch pattern? “u .
ser program does not know interrupt occurred
— System Call
— Exceptions
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.27 1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.28

Need for Separate Kernel Stacks

Before
+ Kernel needs space to work
. User-level Registers Kernel
+ Cannot put anything on the user stack (Why?) Process
» Two-stack model }
)) code: SS: ESP code:
— OS thread has interrupt stack (located in kernel memory) plus User stack S
(located in user memory) foo r?l((’ EFLAGS handlﬁr(){
. . . " while(... pusha
— Syscall handler copies user args to kernel space before invoking specific X=x+1: fet;;ers‘
function (e.g., open) y=y2 EAX, EBX, }
runnin ready to run waiting for I/O
— Interrupts (???) e aas e }}
User Stack. procl procl procl
proc2 proc? :,’:;\ Exception
—L — — stack: Stack
user CPU user CPU
state state
Kernel Stack i syscall
handler
1/0 driver
% top half
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.29 1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.30
During Interrupt/System Call Recall: UNIX System Structure
User-level .
Process Registers Kernel App'i cations (the users)
User Mode T -
o shells and commanas
code: SS: ESP code: Standard Libs compilers and interpreters
CS:EIP system libraries
foo () { EFLAGS handler() { system-call interface to the kernel
while(..) { other pusha
X=X+1; registers: — signals terminal file system CPU scheduling
y=y-2; EAX, EBX, } Kernel Mode g) handling swapping block /O page replacement
} 2 character 1/O system system demand paging
} terminal drivers disk and tape drivers virtual memory
stack: Engarztlion kernel interface to the hardware
terminal controllers device controllers memory controllers
EgP Hardware terminals disks and tapes physical memory
EFLAGS
[«
EIP
error
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.31 1/24/23

Kubiatowicz CS162 ©UCB Spring 2023

Lec 3.32

1/24/23

A Narrow Waist

. Word ProcessinQN
Compilers eb Browsers

Web Servers — .
Application / Service

Portable OS Library 0s

User Mode

System Mode
Portable OS Kernel

Software Platform support, Device Driv:

Hardware x86 PowerPC

ARM
P

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac/ax SCSI Graphics Thunderbolt

Kubiatowicz CS162 ©UCB Spring 2023

Lec 3.33

Kernel System Call Handler

Vector through well-defined syscall entry points!
— Table mapping system call number to handler
Locate arguments
— In registers or on user (!) stack
Copy arguments
— From user memory into kernel memory
— Protect kernel from malicious code evading checks
Validate arguments
— Protect kernel from errors in user code
Copy results back
— Into user memory

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.34
Putting it together: web server Putting it together: web server
ST 4. parse request 9. format reply
buffer buffer
(_\ 5. file 8. kernel
write() read() copy
Req uest syscall wait syscall RTU
_— 11. kernel copy
/—\ Y =il from user buffer
to network buffel
. i A interrupt
l— interrupt 1 2. copy arriving [12. format outgoing 6. disk 37 disk data
\—’/ packet (DMA)| packet and DMA request | (DMA)
Reply
(retrieved by web server) HihET
Client Web Server Network Disk interface
N——— interface L
Request Reply
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.35 1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.36

Recall

: Processes

* How to manage process state?
— How to create a process?
— How to exit from a process?

* Remember: Everything outside of
the kernel is running in a process!

— Including the shell! (Homework 2)

* Processes are created and
managed... by processes!

| code || data || files ‘

| code H data H files |

registers stack

registers

registers

registers

thread —> ;

stack

stack

stack

:

:

;1—— thread|

single-threaded process

multithreaded process

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023

Lec 3.37

1/24/23

Bootstrapping

If processes are created by other processes, how does the first
process start?

First process is started by the kernel

— Often configured as an argument to the kernel before the kernel
boots

— Often called the “init” process

After this, all processes on the system are created by other
processes

Kubiatowicz CS162 ©UCB Spring 2023

Lec 3.38

Process Management API

» exit —terminate a process

» fork — copy the current process

» exec — change the program being run by the current process

» wait — wait for a process to finish

» kill — send a signal (interrupt-like notification) to another process

e sigaction — set handlers for signals

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023

Lec 3.39

1/24/23

Process Management API

exit — terminate a process
fork — copy the current process
exec — change the program being run by the current process

wait — wait for a process to finish

kill — send a signal (interrupt-like notification) to another process

sigaction — set handlers for signals

Kubiatowicz CS162 ©UCB Spring 2023

Lec 3.40

pid.c

#include <stdlib.h> Q: What if we let main return
#include <stdio.h>

#include <string.h> without ever calling exit?
#include <unistd.h> » The OS Library calls exit() for us!
#include <sys/types.h> » The entrypoint of the executable is
int main(int argc, char *argv[]) in the OS |ibrary
{ + OS library calls main
/* get current processes PID */ « If main returns, OS library calls exit
pid_t pid = getpid(); + You'll see this in Project 0: init.c
printf("My pid: %d\n", pid);
exit(0);
}

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.41

Process Management API

exit — terminate a process

fork — copy the current process

exec — change the program being run by the current process
wait — wait for a process to finish

kill — send a signal (interrupt-like notification) to another process

sigaction — set handlers for signals

Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.42

Creating Processes

e pid_t fork() — copy the current process
— New process has different pid
— New process contains a single thread
* Return value from fork(): pid (like an integer)
— When > 0:
» Running in (original) Parent process
» return value is pid of new child
— When =0:
» Running in new Child process
— When < 0:
» Errorl Must handle somehow
» Running in original process
 State of original process duplicated in both Parent and Child!
— Address Space (Memory), File Descriptors (covered later), etc...

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.43

forkl.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
pid_t cpid, mypid;
pid_t pid = getpid();
printf("Parent pid: %d\n", pid);
cpid = fork();
if (cpid > 0) {
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
} else if (cpid == @) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);
} else {
perror("Fork failed");

/* get current processes PID */

/* Parent Process */

}

} Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.44

forkl.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
pid_t cpid, mypid;
pid_t pid = getpid(); /* get current processes PID */
printf("Parent pid: %d\n", pid);

m cpid = fork();
if (cpid > 9) { /* Parent Process */

forkl.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
pid_t cpid, mypid;
pid_t pid = getpid(); /* get current processes PID */
printf("Parent pid: %d\n", pid);
cpid = fork();

if (cpid > 0) { /* Parent Process */
mypid = getpid(); .» mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid); printf("[%d] parent of [%d]\n", mypid, cpid);
} else if (cpid == @) { /* Child Process */ } else if (cpid == @) { /* Child Process */
mypid = getpid(); q mypid = getpid();
printf("[%d] child\n", mypid); printf("[%d] child\n", mypid);
} else { } else {
perror("Fork failed"); perror("Fork failed");
} }
1/24/23 } Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.45 1/24/23 } Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.46
fork_race.c Running Another Program
int i;) » With threads, we could call pthread_create to create a new thread
'.J;d?t ssld ;)fzrk(n Recall: a process consists of one or executing a separate function
if (cpid > . .
for (i = 0; i < 10; i++) { more threads executing in an address
?;‘:;:é;i’igf"t: *d\n®, 1); space + With processes, the equivalent would be spawning a new process
} ’ * Here, each process has a single thread executing a different program
} else if (cpid == @) { * These threads execute concurrently
for (i = 0; i > -10; i--) { .
printf("Child: %d\n", i); * How can we do this?
// sleep(1);
}
}
* What does this print?
* Would adding the calls to sieep() matter?
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.47 1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.48

Process Management API

» exit —terminate a process
« fork — copy the current process
e exec — change the program being run by

» wait — wait for a process to finish

the current process

» kill — send a signal (interrupt-like notification) to another process

e sigaction — set handlers for signals

fork3.c

cpid = fork();

if (cpid > @) {
tcpid = wait(&status);

} else if (cpid == 0) { /* Child Process */
char *args[] = {“1s”, “-1”, NULL};
execv(“/bin/1s”, args);

/* Parent Process */

/* execv doesn’t return when it works.
So, if we got here, it failed! */

perror(“execv”);
exit(1);
}

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.49 1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.50
Process Management Process Management API
child e exit —terminate a process
id=fork(); main() {
?f (pid=§3,; exec » fork — copy the current process
exec(..); .
fork els:)3 ¢ » exec — change the program being run by the current process
it(&stat } . . -
wait(&stat) e wait — wait for a process to finish
pid=fork(); P
if (pid==0) » kill — send a signal (interrupt-like notification) to another process
exec(..); . .
else e sigaction — set handlers for signals
wait(&stat) parent
\— pid=Ffork();
fork if (pid==0)
exec(..);
else wait
[wait(&stat)] >
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.51 1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.52

fork2.c — parent waits for child to finish

int status;
pid_t tcpid;

cpid = fork();
if (cpid > 9) {
mypid = getpid();

/* Parent Process */

printf("[%d] parent of [%d]\n", mypid, cpid);

tcpid = wait(&status);

printf("[%d] bye %d(%d)\n", mypid, tcpid, status);

-

else if (cpid == @) {
mypid = getpid();
printf("[%d] child\n", mypid);
exit(42);

}

/* Child Process */

Process Management API

exit — terminate a process

fork — copy the current process

exec — change the program being run by the current process

wait — wait for a process to finish

kill — send a signal (interrupt-like notification) to another process

sigaction — set handlers for signals

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.53 1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.54
inf_loop.c Common POSIX Signals
#include <stdlib.h> e SIGINT — control-C
#include <stdio.h> Q: What would happen if the process .
i . . e SIGTERM — default for kill shell command
:i:gﬁg: :zzigzpﬁim receives a SIGINT signal, but does 7 (default act
binclude <signal ho not register a signal handler? e SIGSTP — control-Z (default action: stop process)
A: The process dies!
void signal _callback_handler(int signum) { e SIGKILL, SIGSTOP — terminate/stop process
printf(“Caught signal!\n”); . . ’
exit(1); For each signal, there is a default — Can't be changed with sigaction
handler defined by the system — Why?
int main() { :
struct sigaction sa;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
sa.sa_handler = signal_callback_handler;
sigaction(SIGINT, &sa, NULL);
while (1) {}
}
1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.55 1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.56

Shell

* A shell is a job control system
— Allows programmer to create and manage a set of programs to do some task

* You will build your own shell in Homework 2...
— ... using fork and exec system calls to create new processes...
— ... and the File I/0 system calls we’ll see next time to link them together

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023

Lec 3.57

Process vs. Thread APIs

* Why have fork() and exec() system calls for processes, but just a
pthread_create() function for threads?

— Convenient to fork without exec: put code for parent and child in one
executable instead of multiple

— It will allow us to programmatically control child process’ state
» By executing code before calling exec () in the child
— We'll see this in the case of File I/O next time

» Windows uses CreateProcess() instead of fork()
— Also works, but a more complicated interface

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.58

Threads vs. Processes

* If we have two tasks to run concurrently, do we run them in separate
threads, or do we run them in separate processes?

* Depends on how much isolation we want
— Threads are lighter weight [why?]
— Processes are more strongly isolated

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023

Lec 3.59

Conclusion

* Process: execution environment with Restricted Rights
— Address Space with One or More Threads
— Owns memory (address space)
— Owns file descriptors, file system context, ...
— Encapsulate one or more threads sharing process resources
* Interrupts
— Hardware mechanism for regaining control from user
— Notification that events have occurred
— User-level equivalent: Signals
+ Native control of Process
— Fork, Exec, Wait, Signal

1/24/23 Kubiatowicz CS162 ©UCB Spring 2023 Lec 3.60

