
CS162
Operating Systems and
Systems Programming

Lecture 7

Synchronization 2:
Concurrency (Con’t), Mutual Exclusion,

Lock Implementation, Atomic Operations
February 7th, 2023

Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Lec 7.22/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Use of Threads
• Version of program with Threads (loose syntax):

main() {
ThreadFork(ComputePI, “pi.txt”));
ThreadFork(PrintClassList, “classlist.txt”));

}

• What does ThreadFork() do?
– Start independent thread running given procedure

• What is the behavior here?
– Now, you would actually see the class list
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time

CPU1 CPU2

Lec 7.32/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Memory Footprint for Two-Threads
• If we stopped this program and examined it with a debugger,

we would see
– Two sets of CPU registers
– Two sets of Stacks

• Questions:
– How do we position stacks relative to each other?
– What maximum size should we choose for the stacks?
– What happens if threads violate this?
– How might you catch violations?
– What about n>2 threads?

Code

Global Data

Heap

Stack 1

Stack 2
Address Space

Lec 7.42/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: the Dispatch Loop
• Conceptually, the scheduling loop of the operating system looks as

follows:

Loop {
RunThread(); /* Needs to exit every now and then! */
ChooseNextThread();
SaveStateOfCPU(curTCB);
LoadStateOfCPU(newTCB);

}

• This is an infinite loop
– One could argue that this is all that the OS does

• Should we ever exit this loop???
– When would that be?

Lec 7.52/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Running a thread
Consider first portion: RunThread()

• How do I run a thread?
– Load its state (registers, PC, stack pointer) into CPU
– Load environment (virtual memory space, etc)
– Jump to the PC

• How does the dispatcher get control back?
– Internal events: thread returns control voluntarily
– External events: thread gets preempted

Lec 7.62/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Internal Events
• Blocking on I/O

– The act of requesting I/O implicitly yields the CPU
• Waiting on a “signal” from other thread

– Thread asks to wait and thus yields the CPU
• Thread executes a yield()

– Thread volunteers to give up CPU

computePI() {
while(TRUE) {

ComputeNextDigit();
yield();

}
}

Lec 7.72/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Stack for Yielding Thread

• How do we run a new thread?
run_new_thread() {

newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* Do any cleanup */

}
• How does dispatcher switch to a new thread?

– Save anything next thread may trash: PC, regs, stack pointer
– Maintain isolation for each thread

yield

ComputePI Stack grow
thrun_new_thread

kernel_yield
Trap to OS

switch

Lec 7.82/7/2023 Kubiatowicz CS162 © UCB Spring 2023

What Do the Stacks Look Like?
• Consider the following

code blocks:
proc A() {

B();

}
proc B() {

while(TRUE) {
yield();

}
}

• Suppose we have 2
threads:

– Threads S and T

Thread S

St
ac
k

gr
ow

th A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch

Thread S's switch returns to
Thread T's (and vice versa)

Lec 7.92/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Saving/Restoring state (often called “Context Switch)
Switch(tCur,tNew) {

/* Unload old thread */
TCB[tCur].regs.r7 = CPU.r7;

…
TCB[tCur].regs.r0 = CPU.r0;
TCB[tCur].regs.sp = CPU.sp;
TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

/* Load and execute new thread */
CPU.r7 = TCB[tNew].regs.r7;

…
CPU.r0 = TCB[tNew].regs.r0;
CPU.sp = TCB[tNew].regs.sp;
CPU.retpc = TCB[tNew].regs.retpc;
return; /* Return to CPU.retpc */

}
Lec 7.102/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Switch Details (continued)
• What if you make a mistake in implementing switch?

– Suppose you forget to save/restore register 32
– Get intermittent failures depending on when context switch occurred and whether

new thread uses register 32
– System will give wrong result without warning

• Can you devise an exhaustive test to test switch code?
– No! Too many combinations and inter-leavings

• Cautionary tale:
– For speed, Topaz kernel saved one instruction in switch()
– Carefully documented! Only works as long as kernel size < 1MB
– What happened?

» Time passed, People forgot
» Later, they added features to kernel (no one removes features!)
» Very weird behavior started happening

– Moral of story: Design for simplicity

Lec 7.112/7/2023 Kubiatowicz CS162 © UCB Spring 2023

How expensive is context switching?
• Switching between threads in same process similar to switching between threads in

different processes, but much cheaper:
– No need to change address space

• Some numbers from Linux:
– Frequency of context switch: 10-100ms
– Switching between processes: 3-4 μsec.
– Switching between threads: 100 ns

• Even cheaper: switch threads (using “yield”) in user-space!

Simple One-to-One
Threading Model Many-to-One Many-to-Many

What we are talking about
in Today’s lecture

Lec 7.122/7/2023 Kubiatowicz CS162 © UCB Spring 2023

run_new_thread

kernel_read
Trap to OS

switch

What happens when thread blocks on I/O?

• What happens when a thread requests a block of data
from the file system?

– User code invokes a system call
– Read operation is initiated
– Run new thread/switch

• Thread communication similar
– Wait for Signal/Join
– Networking

CopyFile

read

Stack grow
th

Lec 7.132/7/2023 Kubiatowicz CS162 © UCB Spring 2023

External Events
• What happens if thread never does any I/O, never

waits, and never yields control?
– Could the ComputePI program grab all resources and

never release the processor?
» What if it didn’t print to console?

– Must find way that dispatcher can regain control!

• Answer: utilize external events
– Interrupts: signals from hardware or software that stop

the running code and jump to kernel
– Timer: like an alarm clock that goes off every some

milliseconds

• If we make sure that external events occur frequently
enough, can ensure dispatcher runs

Lec 7.142/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Interrupt identity specified with ID line
– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt
– Software Interrupt Set/Cleared by Software

• CPU can disable all interrupts with internal flag
• Non-Maskable Interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

Interrupt M
ask

ControlSoftware
Interrupt NMI

CPU

Priority Encoder

Tim
er

Int Disable

Lec 7.152/7/2023 Kubiatowicz CS162 © UCB Spring 2023

...
add $r1,$r2,$r3
subi $r4,$r1,#4
slli $r4,$r4,#2

...

Raise priority
(set mask)

Reenable All Ints
Save registers
Dispatch to Handler


Transfer Network Packet

from hardware
to Kernel Buffers


Restore registers
Clear current Int
Disable All Ints
Restore priority

(clear Mask)
RTI

“In
te

rru
pt

 H
an

dl
er

”

Example: Network Interrupt

• An interrupt is a hardware-invoked context switch
– No separate step to choose what to run next
– Always run the interrupt handler immediately

Ex
te

rn
al

 In
te

rru
pt

Pipeline Flush
...

lw $r2,0($r4)
lw $r3,4($r4)
add $r2,$r2,$r3
sw 8($r4),$r2

...

Lec 7.162/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Use of Timer Interrupt to Return Control
• Solution to our dispatcher problem

– Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:

TimerInterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

Stack grow
th

Lec 7.172/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Administrivia
• Midterm Thursday 2/16

– No class on day of midterm
– 7-9PM

• Project 1 Design Document due next Friday 2/10
• Project 1 Design reviews upcoming

– High-level discussion of your approach
» What will you modify?
» What algorithm will you use?
» How will things be linked together, etc.
» Do not need final design (complete with all semicolons!)

– You will be asked about testing
» Understand testing framework
» Are there things you are doing that are not tested by tests we give you?

• Do your own work!
– Please do not try to find solutions from previous terms
– We will be on the look out for anyone doing this…today

Lec 7.182/7/2023 Kubiatowicz CS162 © UCB Spring 2023

ThreadFork(): Create a New Thread

• ThreadFork() is a user-level procedure that creates a
new thread and places it on ready queue

• Arguments to ThreadFork()
– Pointer to application routine (fcnPtr)
– Pointer to array of arguments (fcnArgPtr)
– Size of stack to allocate

• Implementation
– Sanity check arguments
– Enter Kernel-mode and Sanity Check arguments again
– Allocate new Stack and TCB
– Initialize TCB and place on ready list (Runnable)

Lec 7.192/7/2023 Kubiatowicz CS162 © UCB Spring 2023

How do we initialize TCB and Stack?
• Initialize Register fields of TCB

– Stack pointer made to point at stack
– PC return address  OS (asm) routine ThreadRoot()
– Two arg registers (a0 and a1) initialized to fcnPtr and fcnArgPtr,

respectively
• Initialize stack data?

– Minimal initialization setup return to go to beginning of ThreadRoot()
» Important part of stack frame is in registers for RISC-V (ra)
» X86: need to push a return address on stack

– Think of stack frame as just before body of ThreadRoot() really gets started

ThreadRoot stub

Initial Stack
Stack grow

th
Lec 7.202/7/2023 Kubiatowicz CS162 © UCB Spring 2023

How does Thread get started?

• Eventually, run_new_thread() will select this TCB and
return into beginning of ThreadRoot()

– This really starts the new thread

St
ac

k
gr

ow
th A

B(while)

yield

run_new_thread

switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

Lec 7.212/7/2023 Kubiatowicz CS162 © UCB Spring 2023

How does a thread get started?

• How do we make a new thread?
– Setup TCB/kernel thread to point at new user stack and ThreadRoot code
– Put pointers to start function and args in registers or top of stack

» This depends heavily on the calling convention (i.e. RISC-V vs x86)
• Eventually, run_new_thread() will select this TCB and return into beginning of ThreadRoot()

– This really starts the new thread

St
ac

k
gr

ow
th A

B(while)

yield

run_new_thread

switch

Other Thread

ThreadRoot stub
New Thread

SetupNewThread(tNew) {
…
TCB[tNew].regs.sp = newStackPtr;
TCB[tNew].regs.retpc = &ThreadRoot;
TCB[tNew].regs.r0 = fcnPtr
TCB[tNew].regs.r1 = fcnArgPtr

}

ThreadRoot

Lec 7.222/7/2023 Kubiatowicz CS162 © UCB Spring 2023

What does ThreadRoot() look like?
• ThreadRoot() is the root for the thread routine:

ThreadRoot(fcnPTR,fcnArgPtr) {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish();

}
• Startup Housekeeping

– Includes things like recording start time of thread
– Other statistics

• Stack will grow and shrink with
execution of thread

• Final return from thread returns into ThreadRoot() which calls ThreadFinish()
– ThreadFinish() wake up sleeping threads

ThreadRoot

Running Stack

Stack grow
th

Thread Code
*fcnPtr()

Lec 7.232/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Processes vs. Threads: One Core
Process 1

CPU
sched.

OS

CPU
(1 core)

1 thread
at a time

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…

• Switch overhead:
– Same process: low
– Different proc.: high

• Protection
– Same proc: low
– Different proc: high

• Sharing overhead
– Same proc: low
– Different proc: high

• Parallelism: no

CPU
state

CPU
state

CPU
state

CPU
state

Lec 7.242/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Processes vs. Threads: MultiCore
Process 1

CPU
sched.

OS

Core
1

4 threads
at a time

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…
CPU
state

CPU
state

CPU
state

CPU
state

Core
2

Core
3

Core
4

• Switch overhead:
– Same process: low
– Different proc.: high

• Protection
– Same proc: low
– Different proc: high

• Sharing overhead
– Same proc: low
– Different proc,

simultaneous core: medium
– Different proc,

offloaded core: high
• Parallelism: yes

Lec 7.252/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Simultaneous MultiThreading/Hyperthreading
• Hardware scheduling technique

– Superscalar processors can execute multiple
instructions that are independent.

– Hyperthreading duplicates register state to make a
second “thread,” allowing more instructions to run.

• Can schedule each thread as if were separate CPU
– But, sub-linear speedup!

• Original technique called “Simultaneous Multithreading”
– http://www.cs.washington.edu/research/smt/index.html
– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

Colored blocks show
instructions executed

Lec 7.262/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Processes vs. Threads: Hyper-Threading
Process 1

CPU
sched. OS

IO
state

Mem.

…

threads

Process N

IO
state

Mem.

…

threads

…

• Switch overhead
between hardware-
threads: very-low
(done in hardware)

• Contention for
ALUs/FPUs may hurt
performance

Core 1

CPU
Core 2 Core 3 Core 4

8 threads at
a time

hardware-threads
(hyperthreading)

CPU
state

CPU
state

CPU
state

CPU
state

Lec 7.272/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Threads vs Address Spaces: Options

• Most operating systems have either
– One or many address spaces
– One or many threads per address space

Mach, OS/2, Linux
Windows 10

Win NT to XP, Solaris,
HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early
Macintosh

Many

One

threads
Per AS:

ManyOne

of

 a
dd

r
sp

ac
es

:

Lec 7.282/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Goals for Rest of Today
• Challenges and Pitfalls of Concurrency
• Synchronization Operations/Critical Sections
• How to build a lock?
• Atomic Instructions

Lec 7.292/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Multiprocessing vs Multiprogramming
• Some Definitions:

– Multiprocessing  Multiple CPUs
– Multiprogramming  Multiple Jobs or Processes
– Multithreading  Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and interleaving:

FIFO, Random, …
– Dispatcher can choose to run each thread to completion or

time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

Lec 7.302/7/2023 Kubiatowicz CS162 © UCB Spring 2023

ATM Bank Server

• ATM server problem:
– Service a set of requests
– Do so without corrupting database
– Don’t hand out too much money

Lec 7.312/7/2023 Kubiatowicz CS162 © UCB Spring 2023

ATM bank server example
• Suppose we wanted to implement a server process to handle requests

from an ATM network:
BankServer() {

while (TRUE) {
ReceiveRequest(&op, &acctId, &amount);
ProcessRequest(op, acctId, amount);

}
}
ProcessRequest(op, acctId, amount) {

if (op == deposit) Deposit(acctId, amount);
else if …

}
Deposit(acctId, amount) {

acct = GetAccount(acctId); /* may use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
• How could we speed this up?

– More than one request being processed at once
– Event driven (overlap computation and I/O)
– Multiple threads (multi-proc, or overlap comp and I/O)

Lec 7.322/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Event Driven Version of ATM server
• Suppose we only had one CPU

– Still like to overlap I/O with computation
– Without threads, we would have to rewrite in event-driven style

• Example
BankServer() {

while(TRUE) {
event = WaitForNextEvent();
if (event == ATMRequest)

StartOnRequest();
else if (event == AcctAvail)

ContinueRequest();
else if (event == AcctStored)

FinishRequest();
}

}
– This technique is used for graphical programming

• Complication:
– What if we missed a blocking I/O step?
– What if we have to split code into hundreds of pieces which could be blocking?

Lec 7.332/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Can Threads Make This Easier?
• Threads yield overlapped I/O and computation without “deconstructing”

code into non-blocking fragments
– One thread per request

• Requests proceeds to completion, blocking as required:
Deposit(acctId, amount) {
acct = GetAccount(actId); /* May use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
• Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load r1, acct->balance

load r1, acct->balance
add r1, amount2
store r1, acct->balance

add r1, amount1
store r1, acct->balance

Lec 7.342/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Possible Executions

Lec 7.352/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Problem is at the Lowest Level
• Most of the time, threads are working on separate data, so

scheduling doesn’t matter:
Thread A Thread B

x = 1; y = 2;
• However, what about (Initially, y = 12):

Thread A Thread B
x = 1; y = 2;

x = y+1; y = y*2;
– What are the possible values of x?

• Or, what are the possible values of x below?
Thread A Thread B

x = 1; x = 2;
– X could be 1 or 2 (non-deterministic!)
– Could even be 3 for serial processors:

» Thread A writes 0001, B writes 0010 → scheduling order ABABABBA yields 3!
Lec 7.362/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Atomic Operations
• To understand a concurrent program, we need to know what the underlying

indivisible operations are!
• Atomic Operation: an operation that always runs to completion or not at all

– It is indivisible: it cannot be stopped in the middle and state cannot be modified
by someone else in the middle

– Fundamental building block – if no atomic operations, then have no way for
threads to work together

• On most machines, memory references and assignments (i.e. loads and
stores) of words are atomic

– Consequently – weird example that produces “3” on previous slide can’t happen
• Many instructions are not atomic

– Double-precision floating point store often not atomic
– VAX and IBM 360 had an instruction to copy a whole array

Lec 7.372/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Another Concurrent Program Example
• Two threads, A and B, compete with each other

– One tries to increment a shared counter
– The other tries to decrement the counter

Thread A Thread B
i = 0; i = 0;
while (i < 10) while (i > ‐10)

i = i + 1; i = i – 1;
printf(“A wins!”); printf(“B wins!”);

• Assume that memory loads and stores are atomic, but
incrementing and decrementing are not atomic

• Who wins? Could be either
• Is it guaranteed that someone wins? Why or why not?
• What if both threads have their own CPU running at same

speed? Is it guaranteed that it goes on forever?

Lec 7.382/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Hand Simulation Multiprocessor Example
• Inner loop looks like this:

Thread A Thread B
r1=0 load r1, M[i]

r1=0 load r1, M[i]
r1=1 add r1, r1, 1

r1=-1 sub r1, r1, 1
M[i]=1 store r1, M[i]

M[i]=-1 store r1, M[i]
• Hand Simulation:

– And we’re off. A gets off to an early start
– B says “hmph, better go fast” and tries really hard
– A goes ahead and writes “1”
– B goes and writes “-1”
– A says “HUH??? I could have sworn I put a 1 there”

• Could this happen on a uniprocessor? With Hyperthreads?
– Yes! Unlikely, but if you are depending on it not happening, it

will and your system will break…

Lec 7.392/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Definitions
• Synchronization: using atomic operations to ensure cooperation

between threads
– For now, only loads and stores are atomic
– We are going to show that its hard to build anything useful with only

reads and writes

• Mutual Exclusion: ensuring that only one thread does a particular
thing at a time

– One thread excludes the other while doing its task

• Critical Section: piece of code that only one thread can execute at
once. Only one thread at a time will get into this section of code

– Critical section is the result of mutual exclusion
– Critical section and mutual exclusion are two ways of describing the

same thing
Lec 7.402/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Locks
• Lock: prevents someone from doing something

– Lock() before entering critical section and before accessing
shared data

– Unlock() when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
• Locks need to be allocated and initialized:

– structure Lock mylock or pthread_mutex_t mylock;
– lock_init(&mylock) or mylock = PTHREAD_MUTEX_INITIALIZER;

• Locks provide two atomic operations:
– acquire(&mylock) – wait until lock is free; then mark it as busy

» After this returns, we say the calling thread holds the lock
– release(&mylock) – mark lock as free

» Should only be called by a thread that currently holds the lock
» After this returns, the calling thread no longer holds the lock

Lec 7.412/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Thread C

• Identify critical sections (atomic instruction sequences) and add locking:
Deposit(acctId, amount) {
acquire(&mylock) // Wait if someone else in critical section!
acct = GetAccount(actId);
acct‐>balance += amount;
StoreAccount(acct);
release(&mylock) // Release someone into critical section

}

• Must use SAME lock (mylock) with all of the methods (Withdraw, etc…)
– Shared with all threads!

Thread AThread B

Thread A

Fix banking problem with Locks!

Thread A Thread C

Thread B

Thread B

Critical Section

acquire(&mylock)

release(&mylock)
Critical Section

Threads serialized by lock
through critical section.
Only one thread at a time

Lec 7.422/7/2023 Kubiatowicz CS162 © UCB Spring 2023

• Threaded programs must work for all interleavings of thread
instruction sequences

– Cooperating threads inherently non-deterministic and non-reproducible
– Really hard to debug unless carefully designed!

• Example: Therac-25
– Machine for radiation therapy

» Software control of electron
accelerator and electron beam/
Xray production

» Software control of dosage
– Software errors caused the

death of several patients
» A series of race conditions on

shared variables and poor
software design

» “They determined that data entry speed during editing was the key factor
in producing the error condition: If the prescription data was edited at a
fast pace, the overdose occurred.”

Correctness Requirements

Lec 7.432/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Motivating Example: “Too Much Milk”
• Great thing about OS’s – analogy between

problems in OS and problems in real life
– Help you understand real life problems better
– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Lec 7.442/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Solve with a lock?
• Recall: Lock prevents someone from doing something

– Lock before entering critical section
– Unlock when leaving
– Wait if locked

» Important idea: all synchronization involves waiting
• For example: fix the milk problem by putting a key on the refrigerator

– Lock it and take key if you are going to go buy milk
– Fixes too much: roommate angry if only wants OJ

• Of Course – We don’t know how to make a lock yet
– Let’s see if we can answer this question!

Lec 7.452/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk: Correctness Properties
• Need to be careful about correctness of concurrent programs, since

non-deterministic
– Impulse is to start coding first, then when it doesn’t work, pull hair out
– Instead, think first, then code
– Always write down behavior first

• What are the correctness properties for the “Too much milk”
problem???

– Never more than one person buys
– Someone buys if needed

• First attempt: Restrict ourselves to use only atomic load and store
operations as building blocks

Lec 7.462/7/2023 Kubiatowicz CS162 © UCB Spring 2023

• Use a note to avoid buying too much milk:
– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove note;

}
}

Too Much Milk: Solution #1

Lec 7.472/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):

Thread A Thread B
if (noMilk) {

if (noMilk) {
if (noNote) {

if (noNote) {
leave Note;
buy Milk;
remove Note;

}
}

leave Note;
buy Milk;
remove Note;

}
}

Lec 7.482/7/2023 Kubiatowicz CS162 © UCB Spring 2023

• Use a note to avoid buying too much milk:
– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove note;

}
}

• Result?
– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and note but before buying

milk!
• Solution makes problem worse since fails intermittently

– Makes it really hard to debug…
– Must work despite what the dispatcher does!

Too Much Milk: Solution #1

Lec 7.492/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk: Solution #1½
• Clearly the Note is not quite blocking enough

– Let’s try to fix this by placing note first
• Another try at previous solution:

leave Note;
if (noMilk) {

if (noNote) {
buy milk;

}
}
remove Note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

Lec 7.502/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk Solution #2
• How about labeled notes?

– Now we can leave note before checking
• Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;
if (noNote B) { if (noNoteA) {

if (noMilk) { if (noMilk) {
buy Milk; buy Milk;

} }
} }
remove note A; remove note B;

• Does this work?
• Possible for neither thread to buy milk

– Context switches at exactly the wrong times can lead each to think that
the other is going to buy

• Really insidious:
– Extremely unlikely this would happen, but will at worse possible time
– Probably something like this in UNIX

Lec 7.512/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk Solution #2: problem!

• I’m not getting milk, You’re getting milk
• This kind of lockup is called “starvation!”

Lec 7.522/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y

do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– If no note B, safe for A to buy,
– Otherwise wait to find out what will happen

• At Y:
– If no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

Lec 7.532/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “leave note A” happens before “if (noNote A)”

Lec 7.542/7/2023 Kubiatowicz CS162 © UCB Spring 2023

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

• “leave note A” happens before “if (noNote A)”

Lec 7.552/7/2023 Kubiatowicz CS162 © UCB Spring 2023

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

Wait for
note B to
be removed

• “leave note A” happens before “if (noNote A)”

Lec 7.562/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”

Lec 7.572/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”

Lec 7.582/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”

Wait for
note B to
be removed

Lec 7.592/7/2023 Kubiatowicz CS162 © UCB Spring 2023

This Generalizes to Threads…

• Leslie Lamport’s “Bakery
Algorithm” (1974)

Lec 7.602/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Solution #3 discussion
• Our solution protects a single “Critical-Section” piece of code for each

thread:
if (noMilk) {

buy milk;
}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s got to be a better way!

– Have hardware provide higher-level primitives than atomic load & store
– Build even higher-level programming abstractions on this hardware support

Lec 7.612/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk: Solution #4?
• Recall our target lock interface:

– acquire(&milklock) – wait until lock is free, then grab
– release(&milklock) – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are waiting for the lock

and both see it’s free, only one succeeds to grab the lock
• Then, our milk problem is easy:

acquire(&milklock);
if (nomilk)

buy milk;
release(&milklock);

Lec 7.622/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Hardware

Higher-
level
API

Programs

Where are we going with synchronization?

• We are going to implement various higher-level synchronization
primitives using atomic operations

– Everything is pretty painful if only atomic primitives are load and
store

– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set
Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Lec 7.632/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Conclusion
• Every thread has both a user and kernel stack

– Showed more details about context-switching mechanisms
• Concurrent threads introduce problems when accessing shared data

– Programs must be insensitive to arbitrary interleavings
– Without careful design, shared variables can become completely inconsistent

• Important concept: Atomic Operations
– An operation that runs to completion or not at all
– These are the primitives on which to construct various synchronization primitives

• Showed a simple construction for a lock that uses interrupt disable mechanism
– Must be very careful not to waste/tie up machine resources

» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware mechanisms to protect
modifications of that variable

