
CS162
Operating Systems and
Systems Programming

Lecture 7

Synchronization 2:
Concurrency (Con’t), Mutual Exclusion,

Lock Implementation, Atomic Operations
February 7th, 2023

Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Lec 7.22/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Use of Threads
• Version of program with Threads (loose syntax):

main() {
ThreadFork(ComputePI, “pi.txt”));
ThreadFork(PrintClassList, “classlist.txt”));

}

• What does ThreadFork() do?
– Start independent thread running given procedure

• What is the behavior here?
– Now, you would actually see the class list
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time

CPU1 CPU2

Lec 7.32/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Memory Footprint for Two-Threads
• If we stopped this program and examined it with a debugger,

we would see
– Two sets of CPU registers
– Two sets of Stacks

• Questions:
– How do we position stacks relative to each other?
– What maximum size should we choose for the stacks?
– What happens if threads violate this?
– How might you catch violations?
– What about n>2 threads?

Code

Global Data

Heap

Stack 1

Stack 2
Address Space

Lec 7.42/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: the Dispatch Loop
• Conceptually, the scheduling loop of the operating system looks as

follows:

Loop {
RunThread(); /* Needs to exit every now and then! */
ChooseNextThread();
SaveStateOfCPU(curTCB);
LoadStateOfCPU(newTCB);

}

• This is an infinite loop
– One could argue that this is all that the OS does

• Should we ever exit this loop???
– When would that be?

Lec 7.52/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Running a thread
Consider first portion: RunThread()

• How do I run a thread?
– Load its state (registers, PC, stack pointer) into CPU
– Load environment (virtual memory space, etc)
– Jump to the PC

• How does the dispatcher get control back?
– Internal events: thread returns control voluntarily
– External events: thread gets preempted

Lec 7.62/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Internal Events
• Blocking on I/O

– The act of requesting I/O implicitly yields the CPU
• Waiting on a “signal” from other thread

– Thread asks to wait and thus yields the CPU
• Thread executes a yield()

– Thread volunteers to give up CPU

computePI() {
while(TRUE) {

ComputeNextDigit();
yield();

}
}

Lec 7.72/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Stack for Yielding Thread

• How do we run a new thread?
run_new_thread() {

newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* Do any cleanup */

}
• How does dispatcher switch to a new thread?

– Save anything next thread may trash: PC, regs, stack pointer
– Maintain isolation for each thread

yield

ComputePI Stack grow
thrun_new_thread

kernel_yield
Trap to OS

switch

Lec 7.82/7/2023 Kubiatowicz CS162 © UCB Spring 2023

What Do the Stacks Look Like?
• Consider the following

code blocks:
proc A() {

B();

}
proc B() {

while(TRUE) {
yield();

}
}

• Suppose we have 2
threads:

– Threads S and T

Thread S

St
ac
k

gr
ow

th A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch

Thread S's switch returns to
Thread T's (and vice versa)

Lec 7.92/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Saving/Restoring state (often called “Context Switch)
Switch(tCur,tNew) {

/* Unload old thread */
TCB[tCur].regs.r7 = CPU.r7;

…
TCB[tCur].regs.r0 = CPU.r0;
TCB[tCur].regs.sp = CPU.sp;
TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

/* Load and execute new thread */
CPU.r7 = TCB[tNew].regs.r7;

…
CPU.r0 = TCB[tNew].regs.r0;
CPU.sp = TCB[tNew].regs.sp;
CPU.retpc = TCB[tNew].regs.retpc;
return; /* Return to CPU.retpc */

}
Lec 7.102/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Switch Details (continued)
• What if you make a mistake in implementing switch?

– Suppose you forget to save/restore register 32
– Get intermittent failures depending on when context switch occurred and whether

new thread uses register 32
– System will give wrong result without warning

• Can you devise an exhaustive test to test switch code?
– No! Too many combinations and inter-leavings

• Cautionary tale:
– For speed, Topaz kernel saved one instruction in switch()
– Carefully documented! Only works as long as kernel size < 1MB
– What happened?

» Time passed, People forgot
» Later, they added features to kernel (no one removes features!)
» Very weird behavior started happening

– Moral of story: Design for simplicity

Lec 7.112/7/2023 Kubiatowicz CS162 © UCB Spring 2023

How expensive is context switching?
• Switching between threads in same process similar to switching between threads in

different processes, but much cheaper:
– No need to change address space

• Some numbers from Linux:
– Frequency of context switch: 10-100ms
– Switching between processes: 3-4 μsec.
– Switching between threads: 100 ns

• Even cheaper: switch threads (using “yield”) in user-space!

Simple One-to-One
Threading Model Many-to-One Many-to-Many

What we are talking about
in Today’s lecture

Lec 7.122/7/2023 Kubiatowicz CS162 © UCB Spring 2023

run_new_thread

kernel_read
Trap to OS

switch

What happens when thread blocks on I/O?

• What happens when a thread requests a block of data
from the file system?

– User code invokes a system call
– Read operation is initiated
– Run new thread/switch

• Thread communication similar
– Wait for Signal/Join
– Networking

CopyFile

read

Stack grow
th

Lec 7.132/7/2023 Kubiatowicz CS162 © UCB Spring 2023

External Events
• What happens if thread never does any I/O, never

waits, and never yields control?
– Could the ComputePI program grab all resources and

never release the processor?
» What if it didn’t print to console?

– Must find way that dispatcher can regain control!

• Answer: utilize external events
– Interrupts: signals from hardware or software that stop

the running code and jump to kernel
– Timer: like an alarm clock that goes off every some

milliseconds

• If we make sure that external events occur frequently
enough, can ensure dispatcher runs

Lec 7.142/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Interrupt identity specified with ID line
– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt
– Software Interrupt Set/Cleared by Software

• CPU can disable all interrupts with internal flag
• Non-Maskable Interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

Interrupt M
ask

ControlSoftware
Interrupt NMI

CPU

Priority Encoder

Tim
er

Int Disable

Lec 7.152/7/2023 Kubiatowicz CS162 © UCB Spring 2023

...
add $r1,$r2,$r3
subi $r4,$r1,#4
slli $r4,$r4,#2

...

Raise priority
(set mask)

Reenable All Ints
Save registers
Dispatch to Handler

Transfer Network Packet

from hardware
to Kernel Buffers

Restore registers
Clear current Int
Disable All Ints
Restore priority

(clear Mask)
RTI

“In
te

rru
pt

 H
an

dl
er

”

Example: Network Interrupt

• An interrupt is a hardware-invoked context switch
– No separate step to choose what to run next
– Always run the interrupt handler immediately

Ex
te

rn
al

 In
te

rru
pt

Pipeline Flush
...

lw $r2,0($r4)
lw $r3,4($r4)
add $r2,$r2,$r3
sw 8($r4),$r2

...

Lec 7.162/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Use of Timer Interrupt to Return Control
• Solution to our dispatcher problem

– Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:

TimerInterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

Stack grow
th

Lec 7.172/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Administrivia
• Midterm Thursday 2/16

– No class on day of midterm
– 7-9PM

• Project 1 Design Document due next Friday 2/10
• Project 1 Design reviews upcoming

– High-level discussion of your approach
» What will you modify?
» What algorithm will you use?
» How will things be linked together, etc.
» Do not need final design (complete with all semicolons!)

– You will be asked about testing
» Understand testing framework
» Are there things you are doing that are not tested by tests we give you?

• Do your own work!
– Please do not try to find solutions from previous terms
– We will be on the look out for anyone doing this…today

Lec 7.182/7/2023 Kubiatowicz CS162 © UCB Spring 2023

ThreadFork(): Create a New Thread

• ThreadFork() is a user-level procedure that creates a
new thread and places it on ready queue

• Arguments to ThreadFork()
– Pointer to application routine (fcnPtr)
– Pointer to array of arguments (fcnArgPtr)
– Size of stack to allocate

• Implementation
– Sanity check arguments
– Enter Kernel-mode and Sanity Check arguments again
– Allocate new Stack and TCB
– Initialize TCB and place on ready list (Runnable)

Lec 7.192/7/2023 Kubiatowicz CS162 © UCB Spring 2023

How do we initialize TCB and Stack?
• Initialize Register fields of TCB

– Stack pointer made to point at stack
– PC return address OS (asm) routine ThreadRoot()
– Two arg registers (a0 and a1) initialized to fcnPtr and fcnArgPtr,

respectively
• Initialize stack data?

– Minimal initialization setup return to go to beginning of ThreadRoot()
» Important part of stack frame is in registers for RISC-V (ra)
» X86: need to push a return address on stack

– Think of stack frame as just before body of ThreadRoot() really gets started

ThreadRoot stub

Initial Stack
Stack grow

th
Lec 7.202/7/2023 Kubiatowicz CS162 © UCB Spring 2023

How does Thread get started?

• Eventually, run_new_thread() will select this TCB and
return into beginning of ThreadRoot()

– This really starts the new thread

St
ac

k
gr

ow
th A

B(while)

yield

run_new_thread

switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

Lec 7.212/7/2023 Kubiatowicz CS162 © UCB Spring 2023

How does a thread get started?

• How do we make a new thread?
– Setup TCB/kernel thread to point at new user stack and ThreadRoot code
– Put pointers to start function and args in registers or top of stack

» This depends heavily on the calling convention (i.e. RISC-V vs x86)
• Eventually, run_new_thread() will select this TCB and return into beginning of ThreadRoot()

– This really starts the new thread

St
ac

k
gr

ow
th A

B(while)

yield

run_new_thread

switch

Other Thread

ThreadRoot stub
New Thread

SetupNewThread(tNew) {
…
TCB[tNew].regs.sp = newStackPtr;
TCB[tNew].regs.retpc = &ThreadRoot;
TCB[tNew].regs.r0 = fcnPtr
TCB[tNew].regs.r1 = fcnArgPtr

}

ThreadRoot

Lec 7.222/7/2023 Kubiatowicz CS162 © UCB Spring 2023

What does ThreadRoot() look like?
• ThreadRoot() is the root for the thread routine:

ThreadRoot(fcnPTR,fcnArgPtr) {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish();

}
• Startup Housekeeping

– Includes things like recording start time of thread
– Other statistics

• Stack will grow and shrink with
execution of thread

• Final return from thread returns into ThreadRoot() which calls ThreadFinish()
– ThreadFinish() wake up sleeping threads

ThreadRoot

Running Stack

Stack grow
th

Thread Code
*fcnPtr()

Lec 7.232/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Processes vs. Threads: One Core
Process 1

CPU
sched.

OS

CPU
(1 core)

1 thread
at a time

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…

• Switch overhead:
– Same process: low
– Different proc.: high

• Protection
– Same proc: low
– Different proc: high

• Sharing overhead
– Same proc: low
– Different proc: high

• Parallelism: no

CPU
state

CPU
state

CPU
state

CPU
state

Lec 7.242/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Processes vs. Threads: MultiCore
Process 1

CPU
sched.

OS

Core
1

4 threads
at a time

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…
CPU
state

CPU
state

CPU
state

CPU
state

Core
2

Core
3

Core
4

• Switch overhead:
– Same process: low
– Different proc.: high

• Protection
– Same proc: low
– Different proc: high

• Sharing overhead
– Same proc: low
– Different proc,

simultaneous core: medium
– Different proc,

offloaded core: high
• Parallelism: yes

Lec 7.252/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Simultaneous MultiThreading/Hyperthreading
• Hardware scheduling technique

– Superscalar processors can execute multiple
instructions that are independent.

– Hyperthreading duplicates register state to make a
second “thread,” allowing more instructions to run.

• Can schedule each thread as if were separate CPU
– But, sub-linear speedup!

• Original technique called “Simultaneous Multithreading”
– http://www.cs.washington.edu/research/smt/index.html
– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

Colored blocks show
instructions executed

Lec 7.262/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Processes vs. Threads: Hyper-Threading
Process 1

CPU
sched. OS

IO
state

Mem.

…

threads

Process N

IO
state

Mem.

…

threads

…

• Switch overhead
between hardware-
threads: very-low
(done in hardware)

• Contention for
ALUs/FPUs may hurt
performance

Core 1

CPU
Core 2 Core 3 Core 4

8 threads at
a time

hardware-threads
(hyperthreading)

CPU
state

CPU
state

CPU
state

CPU
state

Lec 7.272/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Threads vs Address Spaces: Options

• Most operating systems have either
– One or many address spaces
– One or many threads per address space

Mach, OS/2, Linux
Windows 10

Win NT to XP, Solaris,
HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early
Macintosh

Many

One

threads
Per AS:

ManyOne

of

 a
dd

r
sp

ac
es

:

Lec 7.282/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Goals for Rest of Today
• Challenges and Pitfalls of Concurrency
• Synchronization Operations/Critical Sections
• How to build a lock?
• Atomic Instructions

Lec 7.292/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Multiprocessing vs Multiprogramming
• Some Definitions:

– Multiprocessing Multiple CPUs
– Multiprogramming Multiple Jobs or Processes
– Multithreading Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and interleaving:

FIFO, Random, …
– Dispatcher can choose to run each thread to completion or

time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

Lec 7.302/7/2023 Kubiatowicz CS162 © UCB Spring 2023

ATM Bank Server

• ATM server problem:
– Service a set of requests
– Do so without corrupting database
– Don’t hand out too much money

Lec 7.312/7/2023 Kubiatowicz CS162 © UCB Spring 2023

ATM bank server example
• Suppose we wanted to implement a server process to handle requests

from an ATM network:
BankServer() {

while (TRUE) {
ReceiveRequest(&op, &acctId, &amount);
ProcessRequest(op, acctId, amount);

}
}
ProcessRequest(op, acctId, amount) {

if (op == deposit) Deposit(acctId, amount);
else if …

}
Deposit(acctId, amount) {

acct = GetAccount(acctId); /* may use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
• How could we speed this up?

– More than one request being processed at once
– Event driven (overlap computation and I/O)
– Multiple threads (multi-proc, or overlap comp and I/O)

Lec 7.322/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Event Driven Version of ATM server
• Suppose we only had one CPU

– Still like to overlap I/O with computation
– Without threads, we would have to rewrite in event-driven style

• Example
BankServer() {

while(TRUE) {
event = WaitForNextEvent();
if (event == ATMRequest)

StartOnRequest();
else if (event == AcctAvail)

ContinueRequest();
else if (event == AcctStored)

FinishRequest();
}

}
– This technique is used for graphical programming

• Complication:
– What if we missed a blocking I/O step?
– What if we have to split code into hundreds of pieces which could be blocking?

Lec 7.332/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Can Threads Make This Easier?
• Threads yield overlapped I/O and computation without “deconstructing”

code into non-blocking fragments
– One thread per request

• Requests proceeds to completion, blocking as required:
Deposit(acctId, amount) {
acct = GetAccount(actId); /* May use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
• Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load r1, acct->balance

load r1, acct->balance
add r1, amount2
store r1, acct->balance

add r1, amount1
store r1, acct->balance

Lec 7.342/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Possible Executions

Lec 7.352/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Problem is at the Lowest Level
• Most of the time, threads are working on separate data, so

scheduling doesn’t matter:
Thread A Thread B

x = 1; y = 2;
• However, what about (Initially, y = 12):

Thread A Thread B
x = 1; y = 2;

x = y+1; y = y*2;
– What are the possible values of x?

• Or, what are the possible values of x below?
Thread A Thread B

x = 1; x = 2;
– X could be 1 or 2 (non-deterministic!)
– Could even be 3 for serial processors:

» Thread A writes 0001, B writes 0010 → scheduling order ABABABBA yields 3!
Lec 7.362/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Atomic Operations
• To understand a concurrent program, we need to know what the underlying

indivisible operations are!
• Atomic Operation: an operation that always runs to completion or not at all

– It is indivisible: it cannot be stopped in the middle and state cannot be modified
by someone else in the middle

– Fundamental building block – if no atomic operations, then have no way for
threads to work together

• On most machines, memory references and assignments (i.e. loads and
stores) of words are atomic

– Consequently – weird example that produces “3” on previous slide can’t happen
• Many instructions are not atomic

– Double-precision floating point store often not atomic
– VAX and IBM 360 had an instruction to copy a whole array

Lec 7.372/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Another Concurrent Program Example
• Two threads, A and B, compete with each other

– One tries to increment a shared counter
– The other tries to decrement the counter

Thread A Thread B
i = 0; i = 0;
while (i < 10) while (i > ‐10)

i = i + 1; i = i – 1;
printf(“A wins!”); printf(“B wins!”);

• Assume that memory loads and stores are atomic, but
incrementing and decrementing are not atomic

• Who wins? Could be either
• Is it guaranteed that someone wins? Why or why not?
• What if both threads have their own CPU running at same

speed? Is it guaranteed that it goes on forever?

Lec 7.382/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Hand Simulation Multiprocessor Example
• Inner loop looks like this:

Thread A Thread B
r1=0 load r1, M[i]

r1=0 load r1, M[i]
r1=1 add r1, r1, 1

r1=-1 sub r1, r1, 1
M[i]=1 store r1, M[i]

M[i]=-1 store r1, M[i]
• Hand Simulation:

– And we’re off. A gets off to an early start
– B says “hmph, better go fast” and tries really hard
– A goes ahead and writes “1”
– B goes and writes “-1”
– A says “HUH??? I could have sworn I put a 1 there”

• Could this happen on a uniprocessor? With Hyperthreads?
– Yes! Unlikely, but if you are depending on it not happening, it

will and your system will break…

Lec 7.392/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Definitions
• Synchronization: using atomic operations to ensure cooperation

between threads
– For now, only loads and stores are atomic
– We are going to show that its hard to build anything useful with only

reads and writes

• Mutual Exclusion: ensuring that only one thread does a particular
thing at a time

– One thread excludes the other while doing its task

• Critical Section: piece of code that only one thread can execute at
once. Only one thread at a time will get into this section of code

– Critical section is the result of mutual exclusion
– Critical section and mutual exclusion are two ways of describing the

same thing
Lec 7.402/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Locks
• Lock: prevents someone from doing something

– Lock() before entering critical section and before accessing
shared data

– Unlock() when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
• Locks need to be allocated and initialized:

– structure Lock mylock or pthread_mutex_t mylock;
– lock_init(&mylock) or mylock = PTHREAD_MUTEX_INITIALIZER;

• Locks provide two atomic operations:
– acquire(&mylock) – wait until lock is free; then mark it as busy

» After this returns, we say the calling thread holds the lock
– release(&mylock) – mark lock as free

» Should only be called by a thread that currently holds the lock
» After this returns, the calling thread no longer holds the lock

Lec 7.412/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Thread C

• Identify critical sections (atomic instruction sequences) and add locking:
Deposit(acctId, amount) {
acquire(&mylock) // Wait if someone else in critical section!
acct = GetAccount(actId);
acct‐>balance += amount;
StoreAccount(acct);
release(&mylock) // Release someone into critical section

}

• Must use SAME lock (mylock) with all of the methods (Withdraw, etc…)
– Shared with all threads!

Thread AThread B

Thread A

Fix banking problem with Locks!

Thread A Thread C

Thread B

Thread B

Critical Section

acquire(&mylock)

release(&mylock)
Critical Section

Threads serialized by lock
through critical section.
Only one thread at a time

Lec 7.422/7/2023 Kubiatowicz CS162 © UCB Spring 2023

• Threaded programs must work for all interleavings of thread
instruction sequences

– Cooperating threads inherently non-deterministic and non-reproducible
– Really hard to debug unless carefully designed!

• Example: Therac-25
– Machine for radiation therapy

» Software control of electron
accelerator and electron beam/
Xray production

» Software control of dosage
– Software errors caused the

death of several patients
» A series of race conditions on

shared variables and poor
software design

» “They determined that data entry speed during editing was the key factor
in producing the error condition: If the prescription data was edited at a
fast pace, the overdose occurred.”

Correctness Requirements

Lec 7.432/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Motivating Example: “Too Much Milk”
• Great thing about OS’s – analogy between

problems in OS and problems in real life
– Help you understand real life problems better
– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Lec 7.442/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Solve with a lock?
• Recall: Lock prevents someone from doing something

– Lock before entering critical section
– Unlock when leaving
– Wait if locked

» Important idea: all synchronization involves waiting
• For example: fix the milk problem by putting a key on the refrigerator

– Lock it and take key if you are going to go buy milk
– Fixes too much: roommate angry if only wants OJ

• Of Course – We don’t know how to make a lock yet
– Let’s see if we can answer this question!

Lec 7.452/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk: Correctness Properties
• Need to be careful about correctness of concurrent programs, since

non-deterministic
– Impulse is to start coding first, then when it doesn’t work, pull hair out
– Instead, think first, then code
– Always write down behavior first

• What are the correctness properties for the “Too much milk”
problem???

– Never more than one person buys
– Someone buys if needed

• First attempt: Restrict ourselves to use only atomic load and store
operations as building blocks

Lec 7.462/7/2023 Kubiatowicz CS162 © UCB Spring 2023

• Use a note to avoid buying too much milk:
– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove note;

}
}

Too Much Milk: Solution #1

Lec 7.472/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):

Thread A Thread B
if (noMilk) {

if (noMilk) {
if (noNote) {

if (noNote) {
leave Note;
buy Milk;
remove Note;

}
}

leave Note;
buy Milk;
remove Note;

}
}

Lec 7.482/7/2023 Kubiatowicz CS162 © UCB Spring 2023

• Use a note to avoid buying too much milk:
– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove note;

}
}

• Result?
– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and note but before buying

milk!
• Solution makes problem worse since fails intermittently

– Makes it really hard to debug…
– Must work despite what the dispatcher does!

Too Much Milk: Solution #1

Lec 7.492/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk: Solution #1½
• Clearly the Note is not quite blocking enough

– Let’s try to fix this by placing note first
• Another try at previous solution:

leave Note;
if (noMilk) {

if (noNote) {
buy milk;

}
}
remove Note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

Lec 7.502/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk Solution #2
• How about labeled notes?

– Now we can leave note before checking
• Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;
if (noNote B) { if (noNoteA) {

if (noMilk) { if (noMilk) {
buy Milk; buy Milk;

} }
} }
remove note A; remove note B;

• Does this work?
• Possible for neither thread to buy milk

– Context switches at exactly the wrong times can lead each to think that
the other is going to buy

• Really insidious:
– Extremely unlikely this would happen, but will at worse possible time
– Probably something like this in UNIX

Lec 7.512/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk Solution #2: problem!

• I’m not getting milk, You’re getting milk
• This kind of lockup is called “starvation!”

Lec 7.522/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y

do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– If no note B, safe for A to buy,
– Otherwise wait to find out what will happen

• At Y:
– If no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

Lec 7.532/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “leave note A” happens before “if (noNote A)”

Lec 7.542/7/2023 Kubiatowicz CS162 © UCB Spring 2023

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

• “leave note A” happens before “if (noNote A)”

Lec 7.552/7/2023 Kubiatowicz CS162 © UCB Spring 2023

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

Wait for
note B to
be removed

• “leave note A” happens before “if (noNote A)”

Lec 7.562/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”

Lec 7.572/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”

Lec 7.582/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”

Wait for
note B to
be removed

Lec 7.592/7/2023 Kubiatowicz CS162 © UCB Spring 2023

This Generalizes to Threads…

• Leslie Lamport’s “Bakery
Algorithm” (1974)

Lec 7.602/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Solution #3 discussion
• Our solution protects a single “Critical-Section” piece of code for each

thread:
if (noMilk) {

buy milk;
}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s got to be a better way!

– Have hardware provide higher-level primitives than atomic load & store
– Build even higher-level programming abstractions on this hardware support

Lec 7.612/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk: Solution #4?
• Recall our target lock interface:

– acquire(&milklock) – wait until lock is free, then grab
– release(&milklock) – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are waiting for the lock

and both see it’s free, only one succeeds to grab the lock
• Then, our milk problem is easy:

acquire(&milklock);
if (nomilk)

buy milk;
release(&milklock);

Lec 7.622/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Hardware

Higher-
level
API

Programs

Where are we going with synchronization?

• We are going to implement various higher-level synchronization
primitives using atomic operations

– Everything is pretty painful if only atomic primitives are load and
store

– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set
Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Lec 7.632/7/2023 Kubiatowicz CS162 © UCB Spring 2023

Conclusion
• Every thread has both a user and kernel stack

– Showed more details about context-switching mechanisms
• Concurrent threads introduce problems when accessing shared data

– Programs must be insensitive to arbitrary interleavings
– Without careful design, shared variables can become completely inconsistent

• Important concept: Atomic Operations
– An operation that runs to completion or not at all
– These are the primitives on which to construct various synchronization primitives

• Showed a simple construction for a lock that uses interrupt disable mechanism
– Must be very careful not to waste/tie up machine resources

» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware mechanisms to protect
modifications of that variable

