
CS162
Operating Systems and
Systems Programming

Lecture 8

Synchronization 3:
Locks, Semaphores, Monitors

February 9th, 2023
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 8.22/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Thread C

• Identify critical sections (atomic instruction sequences) and add locking:
Deposit(acctId, amount) {
acquire(&mylock) // Wait if someone else in critical section!
acct = GetAccount(actId);
acct‐>balance += amount;
StoreAccount(acct);
release(&mylock) // Release someone into critical section

}

• Must use SAME lock (mylock) with all of the methods (Withdraw, etc…)
– Shared with all threads!

Thread AThread B

Thread A

Recall: Fix banking problem with Locks!

Thread A Thread C

Thread B

Thread B

Critical Section

acquire(&mylock)

release(&mylock)
Critical Section

Threads serialized by lock
through critical section.
Only one thread at a time

Lec 8.32/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Motivating Example: “Too Much Milk”
• Great thing about OS’s – analogy between

problems in OS and problems in real life
– Help you understand real life problems better
– But, computers are much stupider than people

• Example: People need to coordinate:

Arrive home, put milk away3:30
Buy milk3:25
Arrive at storeArrive home, put milk away3:20
Leave for storeBuy milk3:15

Leave for store3:05
Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Lec 8.42/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Recall: Solve with a lock?
• Recall: Lock prevents someone from doing something

– Lock before entering critical section
– Unlock when leaving
– Wait if locked

» Important idea: all synchronization involves waiting
• For example: fix the milk problem by putting a key on the refrigerator

– Lock it and take key if you are going to go buy milk
– Fixes too much: roommate angry if only wants OJ

• Of Course – We don’t know how to make a lock yet
– Let’s see if we can answer this question!

Lec 8.52/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk: Correctness Properties
• Need to be careful about correctness of concurrent programs, since

non-deterministic
– Impulse is to start coding first, then when it doesn’t work, pull hair out
– Instead, think first, then code
– Always write down behavior first

• What are the correctness properties for the “Too much milk”
problem???

– Never more than one person buys
– Someone buys if needed

• First attempt: Restrict ourselves to use only atomic load and store
operations as building blocks

Lec 8.62/9/2023 Kubiatowicz CS162 © UCB Spring 2023

• Use a note to avoid buying too much milk:
– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove note;

}
}

Too Much Milk: Solution #1

Lec 8.72/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk: Solution #1
• Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):

Thread A Thread B
if (noMilk) {

if (noMilk) {
if (noNote) {

if (noNote) {
leave Note;
buy Milk;
remove Note;

}
}

leave Note;
buy Milk;
remove Note;

}
}

Lec 8.82/9/2023 Kubiatowicz CS162 © UCB Spring 2023

• Use a note to avoid buying too much milk:
– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

• Suppose a computer tries this (remember, only memory read/write are
atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove note;

}
}

• Result?
– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and note but before buying

milk!
• Solution makes problem worse since fails intermittently

– Makes it really hard to debug…
– Must work despite what the dispatcher does!

Too Much Milk: Solution #1

Lec 8.92/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk: Solution #1½
• Clearly the Note is not quite blocking enough

– Let’s try to fix this by placing note first
• Another try at previous solution:

leave Note;
if (noMilk) {

if (noNote) {
buy milk;

}
}
remove Note;

• What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

Lec 8.102/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk Solution #2
• How about labeled notes?

– Now we can leave note before checking
• Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;
if (noNote B) { if (noNoteA) {

if (noMilk) { if (noMilk) {
buy Milk; buy Milk;

} }
} }
remove note A; remove note B;

• Does this work?
• Possible for neither thread to buy milk

– Context switches at exactly the wrong times can lead each to think that
the other is going to buy

• Really insidious:
– Extremely unlikely this would happen, but will at worse possible time
– Probably something like this in UNIX

Lec 8.112/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk Solution #2: problem!

• I’m not getting milk, You’re getting milk
• This kind of lockup is called “starvation!”

Lec 8.122/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y

do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– If no note B, safe for A to buy,
– Otherwise wait to find out what will happen

• At Y:
– If no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

Lec 8.132/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “leave note A” happens before “if (noNote A)”

Lec 8.142/9/2023 Kubiatowicz CS162 © UCB Spring 2023

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

• “leave note A” happens before “if (noNote A)”

Lec 8.152/9/2023 Kubiatowicz CS162 © UCB Spring 2023

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

Wait for
note B to
be removed

• “leave note A” happens before “if (noNote A)”

Lec 8.162/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”

Lec 8.172/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”

Lec 8.182/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

• “if (noNote A)” happens before “leave note A”

Wait for
note B to
be removed

Lec 8.192/9/2023 Kubiatowicz CS162 © UCB Spring 2023

This Generalizes to Threads…

• Leslie Lamport’s “Bakery
Algorithm” (1974)

Lec 8.202/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Solution #3 discussion
• Our solution protects a single “Critical-Section” piece of code for each

thread:
if (noMilk) {

buy milk;
}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s got to be a better way!

– Have hardware provide higher-level primitives than atomic load & store
– Build even higher-level programming abstractions on this hardware support

Lec 8.212/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Too Much Milk: Solution #4?
• Recall our target lock interface:

– acquire(&milklock) – wait until lock is free, then grab
– release(&milklock) – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are waiting for the lock

and both see it’s free, only one succeeds to grab the lock
• Then, our milk problem is easy:

acquire(&milklock);
if (nomilk)

buy milk;
release(&milklock);

Lec 8.222/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Hardware

Higher-
level
API

Programs

Where are we going with synchronization?

• We are going to implement various higher-level synchronization
primitives using atomic operations

– Everything is pretty painful if only atomic primitives are load and
store

– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set
Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Lec 8.232/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Administrivia
• Midterm Next Thursday (February 16, 7-9pm)!

– No class on day of midterm
– I’ll have extra office hours during class time

• Project 1 Design Document Due Date moved to Saturday!
• Project 1 Design reviews upcoming

– High-level discussion of your approach
» What will you modify?
» What algorithm will you use?
» How will things be linked together, etc.
» Do not need final design (complete with all semicolons!)

– You will be asked about testing
» Understand testing framework
» Are there things you are doing that are not tested by tests we give you?

• Do your own work!
– Please do not try to find solutions from previous terms
– We will be on the look out for anyone doing this…today

Lec 8.242/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Back to: How to Implement Locks?
• Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
» Should sleep if waiting for a long time

• Atomic Load/Store: get solution like Milk #3
– Pretty complex and error prone

• Hardware Lock instruction
– Is this a good idea?
– What about putting a task to sleep?

» What is the interface between the hardware and scheduler?
– Complexity?

» Done in the Intel 432
» Each feature makes HW more complex and slow

Lec 8.252/9/2023 Kubiatowicz CS162 © UCB Spring 2023

• How can we build multi-instruction atomic operations?
– Recall: dispatcher gets control in two ways.

» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU

– On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)
» Preventing external events by disabling interrupts

• Consequently, naïve Implementation of locks:
LockAcquire { disable Ints; }
LockRelease { enable Ints; }

• Problems with this approach:
– Can’t let user do this! Consider following:

LockAcquire();
While(TRUE) {;}

– Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long

– What happens with I/O or other important events?
» “Reactor about to meltdown. Help?”

Naïve use of Interrupt Enable/Disable

Lec 8.262/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Better Implementation of Locks by Disabling Interrupts

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

• Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

Lec 8.272/9/2023 Kubiatowicz CS162 © UCB Spring 2023

New Lock Implementation: Discussion
• Why do we need to disable interrupts at all?

– Avoid interruption between checking and setting lock value.
– Prevent switching to other thread that might be trying to acquire lock!
– Otherwise two threads could think that they both have lock!

• Note: unlike previous solution, this “meta-”critical section is very short
– User of lock can take as long as they like in their own critical section:

doesn’t impact global machine behavior
– Critical interrupts taken in time!

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

“Meta-”
Critical
Section

Lec 8.282/9/2023 Kubiatowicz CS162 © UCB Spring 2023

What about Interrupt Re-enable in Going to Sleep?
• What about re-enabling ints when going to sleep?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Lec 8.292/9/2023 Kubiatowicz CS162 © UCB Spring 2023

What about Interrupt Re-enable in Going to Sleep?
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position?

Lec 8.302/9/2023 Kubiatowicz CS162 © UCB Spring 2023

What about Interrupt Re-enable in Going to Sleep?
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position?

Lec 8.312/9/2023 Kubiatowicz CS162 © UCB Spring 2023

What about Interrupt Re-enable in Going to Sleep?
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position?

Lec 8.322/9/2023 Kubiatowicz CS162 © UCB Spring 2023

What about Interrupt Re-enable in Going to Sleep?
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue
– Release puts the thread on the ready queue, but the thread

still thinks it needs to go to sleep
– Misses wakeup and still holds lock (deadlock!)

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position?

Lec 8.332/9/2023 Kubiatowicz CS162 © UCB Spring 2023

What about Interrupt Re-enable in Going to Sleep?
• What about re-enabling ints when going to sleep?

• Before Putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue
– Release puts the thread on the ready queue, but the thread

still thinks it needs to go to sleep
– Misses wakeup and still holds lock (deadlock!)

• Want to put it after sleep(). But – how?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position?

Lec 8.342/9/2023 Kubiatowicz CS162 © UCB Spring 2023

How to Re-enable After Sleep()?
• In scheduler, since interrupts are disabled when you call

sleep:
– Responsibility of the next thread to re-enable ints
– When the sleeping thread wakes up, returns to acquire and

re-enables interrupts
Thread A Thread B

.

.
disable ints

sleep
sleep return
enable ints

.

.

.
disable int

sleep
sleep return
enable ints

.

.

Lec 8.352/9/2023 Kubiatowicz CS162 © UCB Spring 2023

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

In-Kernel Lock: Simulation

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

lock.Acquire();
…
critical section;
…
lock.Release();

Value: 0 waiters owner

Thread A Thread B
Running

READY

Ready

Lec 8.362/9/2023 Kubiatowicz CS162 © UCB Spring 2023

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

In-Kernel Lock: Simulation

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

lock.Acquire();
…
critical section;
…
lock.Release();

Thread A Thread B

READY

Running
Value: 1 waiters owner

Ready

Lec 8.372/9/2023 Kubiatowicz CS162 © UCB Spring 2023

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}
Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

lock.Acquire();
…
critical section;
…
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation
READY

Running Running
Value: 1 waiters owner

ReadyReady

Lec 8.382/9/2023 Kubiatowicz CS162 © UCB Spring 2023

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation
READY

RunningRunning
Value: 1 waiters owner

WaitingReady

Lec 8.392/9/2023 Kubiatowicz CS162 © UCB Spring 2023

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation
READY

Running
Value: 1 waiters owner

WaitingReady

Lec 8.402/9/2023 Kubiatowicz CS162 © UCB Spring 2023

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

Running

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

lock.Acquire();
…
critical section;
…
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation
READY

Running
Value: 1 waiters owner

Ready Ready

Lec 8.412/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Atomic Read-Modify-Write Instructions
• Problems with previous solution:

– Can’t give lock implementation to users
– Doesn’t work well on multiprocessor

» Disabling interrupts on all processors requires messages and would be
very time consuming

• Alternative: atomic instruction sequences
– These instructions read a value and write a new value atomically
– Hardware is responsible for implementing this correctly

» on both uniprocessors (not too hard)
» and multiprocessors (requires help from cache coherence protocol)

– Unlike disabling interrupts, can be used on both uniprocessors and
multiprocessors

Lec 8.422/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Examples of Read-Modify-Write
• test&set (&address) { /* most architectures */

result = M[address]; // return result from “address” and
M[address] = 1; // set value at “address” to 1
return result;

}
• swap (&address, register) { /* x86 */

temp = M[address]; // swap register’s value to
M[address] = register; // value at “address”
register = temp; // value from “address” put back to register
return temp; // value from “address” considered return from swap

}
• compare&swap (&address, reg1, reg2) { /* x86 (returns old value), 68000 */

if (reg1 == M[address]) { // If memory still == reg1,
M[address] = reg2; // then put reg2 => memory
return success;

} else { // Otherwise do not change memory
return failure;

}
}

• load‐linked&store‐conditional(&address) { /* R4000, alpha */
loop:

ll r1, M[address];
movi r2, 1; // Can do arbitrary computation
sc r2, M[address];
beqz r2, loop;

}

Lec 8.432/9/2023 Kubiatowicz CS162 © UCB Spring 2023

• compare&swap (&address, reg1, reg2) { /* x86, 68000 */
if (reg1 == M[address]) {

M[address] = reg2;
return success;

} else {
return failure;

}
}
Here is an atomic add to linkedlist function:
addToQueue(&object) {

do { // repeat until no conflict
ld r1, M[root] // Get ptr to current head
st r1, M[object] // Save link in new object

} until (compare&swap(&root,r1,object));
}

Using of Compare&Swap for queues

root next next

next
New

Object
Lec 8.442/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Implementing Locks with test&set
• Simple lock that doesn’t require entry into the kernel:

// (Free) Can access this memory location from user space!
int mylock = 0; // Interface: acquire(&mylock);

// release(&mylock);
acquire(int *thelock) {

while (test&set(thelock)); // Atomic operation!
}
release(int *thelock) {

*thelock = 0; // Atomic operation!
}

• Simple explanation:
– If lock is free, test&set reads 0 and sets lock=1, so lock is now busy.

It returns 0 so while exits.
– If lock is busy, test&set reads 1 and sets lock=1 (no change)

It returns 1, so while loop continues.
– When we set thelock = 0, someone else can get lock.

• Busy-Waiting: thread consumes cycles while waiting
– For multiprocessors: every test&set() is a write, which makes value ping-pong around in

cache (using lots of network BW)

Lec 8.452/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Problem: Busy-Waiting for Lock
• Positives for this solution

– Machine can receive interrupts
– User code can use this lock
– Works on a multiprocessor

• Negatives
– This is very inefficient as thread will consume cycles waiting
– Waiting thread may take cycles away from thread holding lock (no one wins!)
– Priority Inversion: If busy-waiting thread has higher priority than thread holding lock
 no progress!

• Priority Inversion problem with original Martian rover
• For higher-level synchronization primitives (e.g. semaphores or monitors),

waiting thread may wait for an arbitrary long time!
– Thus even if busy-waiting was OK for locks, definitely not ok for other primitives
– Homework/exam solutions should avoid busy-waiting!

Lec 8.462/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Multiprocessor Spin Locks: test&test&set
• A better solution for multiprocessors:

// (Free) Can access this memory location from user space!
int mylock = 0; // Interface: acquire(&mylock);

// release(&mylock);
acquire(int *thelock) {

do {
while(*thelock); // Wait until might be free (quick check/test!)

} while(test&set(thelock)); // Atomic grab of lock (exit if succeeded)
}
release(int *thelock) {

*thelock = 0; // Atomic release of lock
}

• Simple explanation:
– Wait until lock might be free (only reading – stays in cache)
– Then, try to grab lock with test&set
– Repeat if fail to actually get lock

• Issues with this solution:
– Busy-Waiting: thread still consumes cycles while waiting

» However, it does not impact other processors!

Lec 8.472/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Better Locks using test&set
• Can we build test&set locks without busy-waiting?

– Mostly. Idea: only busy-wait to atomically check lock value
–

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

release(int *thelock) {
// Short busy‐wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
*thelock = FREE;

}
guard = 0;

int guard = 0; // Global Variable!
int mylock = FREE; // Interface: acquire(&mylock);

// release(&mylock);

acquire(int *thelock) {
// Short busy‐wait time
while (test&set(guard));
if (*thelock == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;
// guard == 0 on wakup!

} else {
*thelock = BUSY;
guard = 0;

}
}

Lec 8.482/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Recap: Locks using interrupts

acquire(int *thelock) {
// Short busy-wait time
disable interrupts;
if (*thelock == 1) {

put thread on wait-queue;
go to sleep() //??

} else {
*thelock = 1;
enable interrupts;

}
}

release(int *thelock) {
// Short busy-wait time
disable interrupts;
if anyone on wait queue {

take thread off wait-queue
Place on ready queue;

} else {
*thelock = 0;

}
enable interrupts;

}

int mylock=0;

acquire(&mylock);
…
critical section;
…
release(&mylock);

acquire(int *thelock) {
disable interrupts;

}

release(int *thelock)
{

enable interrupts;
}

If one thread in critical
section, no other activity
(including OS) can run!

Lock argument not used!

Lec 8.492/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Recap: Locks using test & set
int guard = 0; // global!
acquire(int *thelock) {

// Short busy-wait time
while(test&set(guard));
if (*thelock == 1) {

put thread on wait-queue;
go to sleep()& guard = 0;
// guard == 0 on wakeup

} else {
*thelock = 1;
guard = 0;

}
}

release(int *thelock) {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait-queue
Place on ready queue;

} else {
*thelock = 0;

}
guard = 0;

}

int mylock=0;

acquire(&mylock);
…
critical section;
…

release(&mylock);

int mylock = 0;
acquire(int *thelock) {

while(test&set(thelock));
}

release(int *thelock) {
*thelock = 0;

}

Threads waiting to enter
critical section busy-wait

Lec 8.502/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Linux futex: Fast Userspace Mutex

uaddr points to a 32-bit value in user space
futex_op
– FUTEX_WAIT – if val == *uaddr sleep till FUTEX_WAIT

» Atomic check that condition still holds after we disable interrupts (in kernel!)
– FUTEX_WAKE – wake up at most val waiting threads
– FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE: More interesting operations!
timeout

– ptr to a timespec structure that specifies a timeout for the op

• Interface to the kernel sleep() functionality!
– Let thread put themselves to sleep – conditionally!

• futex is not exposed in libc; it is used within the implementation of pthreads
– Can be used to implement locks, semaphores, monitors, etc…

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex_op, int val,
const struct timespec *timeout);

Lec 8.512/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Example: First try: T&S and futex

• Properties:
– Sleep interface by using futex – no busywaiting

• No overhead to acquire lock
– Good!

• Every unlock has to call kernel to potentially wake someone up – even if none
– Doesn’t quite give us no-kernel crossings when uncontended…!

int mylock = 0; // Interface: acquire(&mylock);
// release(&mylock);

acquire(int *thelock) {
while (test&set(thelock)) {

futex(thelock, FUTEX_WAIT, 1);
}

}

release(int *thelock) {
*thelock = 0; // unlock
futex(thelock, FUTEX_WAKE, 1);

}

Lec 8.522/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Example: Try #2: T&S and futex

• This is syscall-free in the uncontended case
– Temporarily falls back to syscalls if multiple waiters, or concurrent acquire/release

• But it can be considerably optimized!
– See “Futexes are Tricky” by Ulrich Drepper

release(int *thelock, bool *maybe) {
*thelock = 0;
if (*maybe) {

*maybe = false;
// Try to wake up someone
futex(thelock, FUTEX_WAKE, 1);

}
}

bool maybe_waiters = false;
int mylock = 0; // Interface: acquire(&mylock,&maybe_waiters);

// release(&mylock,&maybe_waiters);

acquire(int *thelock, bool *maybe) {
while (test&set(thelock)) {

// Sleep, since lock busy!
*maybe = true;
futex(thelock, FUTEX_WAIT, 1);

// Make sure other sleepers not stuck
*maybe = true;

}
}

Lec 8.532/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Try #3: Better, using more atomics
• Much better: Three (3) states:

– UNLOCKED: No one has lock
– LOCKED: One thread has lock
– CONTESTED: Possibly more

than one (with someone sleeping)
• Clean interface!
• Lock grabbed cleanly by either

– compare&swap()
– First swap()

• No overhead if uncontested!
• Could build semaphores in a similar

way!

typedef enum { UNLOCKED,LOCKED,CONTESTED } Lock;
Lock mylock = UNLOCKED; // Interface: acquire(&mylock);

// release(&mylock);

acquire(Lock *thelock) {
// If unlocked, grab lock!
if (compare&swap(thelock,UNLOCKED,LOCKED))

return;

// Keep trying to grab lock, sleep in futex
while (swap(thelock,CONTESTED) != UNLOCKED))

// Sleep unless someone releases here!
futex(thelock, FUTEX_WAIT, CONTESTED);

}

release(Lock *thelock) {
// If someone sleeping,
if (swap(thelock,UNLOCKED) == CONTESTED)

futex(thelock,FUTEX_WAKE,1);
}

Lec 8.542/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Hardware

Higher-
level
API

Programs

Recall: Where are we going with synchronization?

• We are going to implement various higher-level synchronization
primitives using atomic operations

– Everything is pretty painful if only atomic primitives are load and store
– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set
Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Lec 8.552/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Producer-Consumer with a Bounded Buffer
• Problem Definition

– Producer(s) put things into a shared buffer
– Consumer(s) take them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in lockstep, so put
a fixed-size buffer between them

– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

• Example 2: Coke machine
– Producer can put limited number of Cokes in machine
– Consumer can’t take Cokes out if machine is empty

• Others: Web servers, Routers, ….

Consumer
Consumer

Producer ConsumerBuffer
Producer

Lec 8.562/9/2023 Kubiatowicz CS162 © UCB Spring 2023

• Insert: write & bump write ptr (enqueue)
• Remove: read & bump read ptr (dequeue)
• How to tell if Full (on insert) Empty (on remove)?
• And what do you do if it is?
• What needs to be atomic?

typedef struct buf {
int write_index;
int read_index;
<type> *entries[BUFSIZE];

} buf_t;

w
r

di di+1di+2

Bounded Buffer Data Structure (sequential case)

Lec 8.572/9/2023 Kubiatowicz CS162 © UCB Spring 2023

mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {}; // Wait for a free slot
enqueue(item);
release(&buf_lock);

}

Consumer() {
acquire(&buf_lock);
while (buffer empty) {}; // Wait for arrival
item = dequeue();
release(&buf_lock);
return item

}

Will we ever come out
of the wait loop?

Bounded Buffer – first cut

Lec 8.582/9/2023 Kubiatowicz CS162 © UCB Spring 2023

mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {release(&buf_lock); acquire(&buf_lock);}
enqueue(item);
release(&buf_lock);

}

Consumer() {
acquire(&buf_lock);
while (buffer empty) {release(&buf_lock); acquire(&buf_lock);}
item = dequeue();
release(&buf_lock);
return item

}

What happens when one
is waiting for the other?
- Multiple cores ?
- Single core ?

Bounded Buffer – 2nd cut

Lec 8.592/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Higher-level Primitives than Locks
• Goal of last couple of lectures:

– What is right abstraction for synchronizing threads that share memory?
– Want as high a level primitive as possible!

• Good primitives and practices important!
– Since execution is not entirely sequential, really hard to find bugs, since they

happen rarely
– UNIX is pretty stable now, but up until about mid-80s

(10 years after started), systems running UNIX would crash every week or so –
concurrency bugs

• Synchronization is a way of coordinating multiple concurrent activities that are
using shared state

– This lecture and the next presents a some ways of structuring sharing

Lec 8.602/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Semaphores
• Semaphores are a kind of generalized lock

– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer value and supports
the following operations:

– Set value when you initialize
– Down() or P(): an atomic operation that waits for semaphore to become

positive, then decrements it by 1
» Think of this as the wait() operation

– Up() or V(): an atomic operation that increments the semaphore by 1, waking
up a waiting P, if any

» This of this as the signal() operation
• Technically examining value after initialization is not allowed.

Lec 8.612/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Value=2Value=1Value=0

Semaphores Like Integers Except…
• Semaphores are like integers, except:

– No negative values
– Only operations allowed are P and V – can’t read or write value, except initially
– Operations must be atomic

» Two P’s together can’t decrement value below zero
» Thread going to sleep in P won’t miss wakeup from V – even if both happen at same time

• POSIX adds ability to read value, but technically not part of proper interface!
• Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource control:

Value=1Value=0Value=2

Lec 8.622/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Two Uses of Semaphores
Mutual Exclusion (initial value = 1)
• Also called “Binary Semaphore” or “mutex”.
• Can be used for mutual exclusion, just like a lock:

semaP(&mysem);
// Critical section goes here

semaV(&mysem);
Scheduling Constraints (initial value = 0)
• Allow thread 1 to wait for a signal from thread 2

– thread 2 schedules thread 1 when a given event occurs
• Example: suppose you had to implement ThreadJoin which must wait for

thread to terminate:
Initial value of semaphore = 0
ThreadJoin {

semaP(&mysem);
}
ThreadFinish {

semaV(&mysem);
}

Lec 8.632/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Revisit Bounded Buffer: Correctness constraints for solution
• Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none full (scheduling constraint)
– Producer must wait for consumer to empty buffers, if all full (scheduling constraint)
– Only one thread can manipulate buffer queue at a time (mutual exclusion)

• Remember why we need mutual exclusion
– Because computers are stupid
– Imagine if in real life: the delivery person is filling the machine and somebody

comes up and tries to stick their money into the machine
• General rule of thumb: Use a separate semaphore for each constraint

– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

Lec 8.642/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Semaphore fullSlots = 0; // Initially, no coke
Semaphore emptySlots = bufSize;

// Initially, num empty slots
Semaphore mutex = 1; // No one using machine

Producer(item) {
semaP(&emptySlots); // Wait until space
semaP(&mutex); // Wait until machine free
Enqueue(item);
semaV(&mutex);
semaV(&fullSlots); // Tell consumers there is

// more coke
}
Consumer() {

semaP(&fullSlots); // Check if there’s a coke
semaP(&mutex); // Wait until machine free
item = Dequeue();
semaV(&mutex);
semaV(&emptySlots); // tell producer need more
return item;

}

fullSlots signals coke

emptySlots
signals space

Bounded Buffer, 3rd cut (coke machine)

Critical sections
using mutex
protect integrity
of the queue

Lec 8.652/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Discussion about Solution

• Why asymmetry?
– Producer does: semaP(&emptyBuffer), semaV(&fullBuffer)
– Consumer does: semaP(&fullBuffer), semaV(&emptyBuffer)

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?
– No, except that it might

affect scheduling efficiency
• What if we have 2 producers

or 2 consumers?
– Do we need to change anything?

Decrease # of
empty slots

Increase # of
occupied slots

Increase # of
empty slots

Decrease # of
occupied slots

Producer(item) {
semaP(&mutex);
semaP(&emptySlots);
Enqueue(item);
semaV(&mutex);
semaV(&fullSlots);

}
Consumer() {
semaP(&fullSlots);
semaP(&mutex);
item = Dequeue();
semaV(&mutex);
semaV(&emptySlots);
return item;

}
Lec 8.662/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Semaphores are good but…Monitors are better!
• Semaphores are a huge step up; just think of trying to do the bounded

buffer with only loads and stores or even with locks!
• Problem is that semaphores are dual purpose:

– They are used for both mutex and scheduling constraints
– Example: the fact that flipping of P’s in bounded buffer gives deadlock is not

immediately obvious. How do you prove correctness to someone?
• Cleaner idea: Use locks for mutual exclusion and condition variables for

scheduling constraints
• Definition: Monitor: a lock and zero or more condition variables for

managing concurrent access to shared data
– Some languages like Java provide this natively
– Most others use actual locks and condition variables

• A “Monitor” is a paradigm for concurrent programming!
– Some languages support monitors explicitly

Lec 8.672/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Condition Variables
• How do we change the consumer() routine to wait until something is on

the queue?
– Could do this by keeping a count of the number of things on the queue (with

semaphores), but error prone
• Condition Variable: a queue of threads waiting for something inside a

critical section
– Key idea: allow sleeping inside critical section by atomically releasing lock at

time we go to sleep
– Contrast to semaphores: Can’t wait inside critical section

• Operations:
– Wait(&lock): Atomically release lock and go to sleep.

Re-acquire lock later, before returning.
– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!

Lec 8.682/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of threads waiting for something inside a critical
section

– Key idea: make it possible to go to sleep inside critical section by atomically
releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

Lec 8.692/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Synchronized Buffer (with condition variable)
• Here is an (infinite) synchronized queue:

lock buf_lock; // Initially unlocked
condition buf_CV; // Initially empty
queue queue; // Actual queue!

Producer(item) {
acquire(&buf_lock); // Get Lock
enqueue(&queue,item); // Add item
cond_signal(&buf_CV); // Signal any waiters
release(&buf_lock); // Release Lock

}

Consumer() {
acquire(&buf_lock); // Get Lock
while (isEmpty(&queue)) {

cond_wait(&buf_CV, &buf_lock); // If empty, sleep
}
item = dequeue(&queue); // Get next item
release(&buf_lock); // Release Lock
return(item);

}

Lec 8.702/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and wait.

Consider a piece of our dequeue code:
while (isEmpty(&queue)) {

cond_wait(&buf_CV,&buf_lock); // If nothing, sleep
}
item = dequeue(&queue); // Get next item

– Why didn’t we do this?
if (isEmpty(&queue)) {

cond_wait(&buf_CV,&buf_lock); // If nothing, sleep
}
item = dequeue(&queue); // Get next item

• Answer: depends on the type of scheduling
– Mesa-style: Named after Xerox-Park Mesa Operating System

» Most OSes use Mesa Scheduling!
– Hoare-style: Named after British logician Tony Hoare

Lec 8.712/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Hoare monitors
• Signaler gives up lock, CPU to waiter; waiter runs immediately
• Then, Waiter gives up lock, processor back to signaler when it exits

critical section or if it waits again

• On first glance, this seems like good semantics
– Waiter gets to run immediately, condition is still correct!

• Most textbooks talk about Hoare scheduling
– However, hard to do, not really necessary!
– Forces a lot of context switching (inefficient!)

acquire(&buf_lock);
…
if (isEmpty(&queue)) {
cond_wait(&buf_CV,&buf_lock);

}
…
release(&buf_lock);

…
acquire(&buf_lock);
…
cond_signal(&buf_CV);
…
release(&buf_lock);

Lock, CPU

Lec 8.722/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Mesa monitors
• Signaler keeps lock and processor
• Waiter placed on ready queue with no special priority

• Practically, need to check condition again after wait
– By the time the waiter gets scheduled, condition may be false again – so,

just check again with the “while” loop
• Most real operating systems do this!

– More efficient, easier to implement
– Signaler’s cache state, etc still good

acquire(&buf_lock);
…
while (isEmpty(&queue)) {
cond_wait(&buf_CV,&buf_lock);

}
…
lock.Release();

…
acquire(&buf_lock)
…
cond_signal(&buf_CV);
…
release(&buf_lock));

Put waiting
thread on

ready queue

Lec 8.732/9/2023 Kubiatowicz CS162 © UCB Spring 2023

lock buf_lock = <initially unlocked>
condition producer_CV = <initially empty>
condition consumer_CV = <initially empty>

Producer(item) {
acquire(&buf_lock);
while (buffer full) { cond_wait(&producer_CV, &buf_lock); }
enqueue(item);
cond_signal(&consumer_CV);
release(&buf_lock);

}

Consumer() {
acquire(buf_lock);
while (buffer empty) { cond_wait(&consumer_CV, &buf_lock); }
item = dequeue();
cond_signal(&producer_CV);
release(buf_lock);
return item

}

Bounded Buffer – 4rd cut (Monitors, pthread-like)

What does thread do
when it is waiting?
- Sleep, not busywait!

Lec 8.742/9/2023 Kubiatowicz CS162 © UCB Spring 2023

• MESA semantics
• For most operating systems, when a thread is woken

up by signal(), it is simply put on the ready queue
• It may or may not reacquire the lock immediately!

– Another thread could be scheduled first and "sneak in"
to empty the queue

– Need a loop to re-check condition on wakeup

Again: Why the while Loop?

Lec 8.752/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Summary (1/2)
• Important concept: Atomic Operations

– An operation that runs to completion or not at all
– These are the primitives on which to construct various synchronization

primitives
• Talked about hardware atomicity primitives:

– Disabling of Interrupts, test&set, swap, compare&swap,
load-locked & store-conditional

• Showed several constructions of Locks
– Must be very careful not to waste/tie up machine resources

» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware mechanisms to protect
modifications of that variable

• Showed primitive for constructing user-level locks
– Packages up functionality of sleeping

Lec 8.762/9/2023 Kubiatowicz CS162 © UCB Spring 2023

Summary (2/2)
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads can proceed

• Next time: More complex monitor example
– Readers/Writers in depth!

