
 Page 1/21

University of California, Berkeley
College of Engineering

Computer Science Division EECS

Spring 2015

John Kubiatowicz

Midterm I
March 11th, 2015

CS162: Operating Systems and Systems Programming

Your Name:

SID Number:

Discussion
Section:

General Information:
This is a closed book exam. You are allowed 1 page of hand-written notes (both sides). You
have 3 hours to complete as much of the exam as possible. Make sure to read all of the questions
first, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. On
programming questions, we will be looking for performance as well as correctness, so think through
your answers carefully. If there is something about the questions that you believe is open to
interpretation, please ask us about it!

Problem Possible Score

1 18

2 18

3 24

4 20

5 20

Total 100

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 2/21

[This page left for]

3.141592653589793238462643383279502884197169399375105820974944

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 3/21

Problem 1: TRUE/FALSE [18 pts]
In the following, it is important that you EXPLAIN your answer in TWO SENTENCES OR LESS
(Answers longer than this may not get credit!). Also, answers without an explanation GET NO
CREDIT.

Problem 1a[2pts]: The kernel on a multiprocessor can use the local disabling of interrupts (within
one CPU) to produce critical sections between the OSs on different CPUs.

 True / False
 Explain:

Problem 1b[2pts]: Simultaneous Multithreading is a hardware mechanism that can switch threads
every cycle.

 True / False
 Explain:

Problem 1c[2pts]: In a multi-process HTTP server (like in HW#2), only the child process is
responsible for closing the client socket (e.g. the file descriptor returned by accept()), since the
parent doesn’t know when the child is done using the socket.

 True / False
 Explain:

Problem 1d[2pts]: A user-level library implements each system call by first executing a “transition
to kernel mode” instruction. The library routine then calls an appropriate subroutine in the kernel.

 True / False
 Explain:

Problem 1e[2pts]: A thread can be blocked on multiple condition variables simultaneously.

 True / False
 Explain:

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 4/21

Problem 1f[2pts]: Floating point numbers are not used in Pintos because floating point operations
are too slow and have rounding issues.

 True / False
 Explain:

Problem 1g[2pts]: In Pintos, implementing priority scheduling for semaphores will also take care
of priority scheduling for locks and condition variables. This is because locks and condition
variables are implemented using semaphores.

 True / False
 Explain:

Problem 1h[2pts]: The only way to resolve a resource deadlock is to reboot the system.

 True / False
 Explain:

Problem 1i[2pts]: Calls to printf() always enter the kernel to perform an output to stdout.

 True / False
 Explain:

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 5/21

Problem 2: Short Answer [18pts]
Problem 2a[3pts]: Name at least two disadvantages to using interrupts to serialize access to a
critical section. When does it make sense to use interrupt disable/enable around a critical section?

Problem 2b[2pts]: What is the difference between Mesa and Hoare scheduling for monitors? How
does this affect the programming pattern used by programmers (be explicit)?

Problem 2c[2pts]: What needs to be saved and restored on a context switch between two threads in
the same process? What if we have two different processes?

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 6/21

Problem 2d[3pts]: Name three ways in which the processor can transition from user mode to
kernel mode. Can the user execute arbitrary code after the transition?

Problem 2e[2pts]: What is the difference between fork() and exec() on Unix?

Problem 2f[2pts]: List two reasons why overuse of threads is bad (i.e. using too many threads for
different tasks). Be explicit in your answers.

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 7/21

Problem 2g[2pts]: What is the default scheduler in PintOS?

Problem 2h[2pts]: In PintOS, the code for thread_unblock() contains a comment that says
“This function does not preempt the running thread”. Explain why you should not modify
thread_unblock() in a way that could cause it to preempt the running thread.

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 8/21

Problem 3: Atomic Synchronization Primitives [24pts]
In class, we discussed a number of atomic hardware primitives that are available on modern
architectures. In particular, we discussed “test and set” (TSET), SWAP, and “compare and swap”
(CAS). They can be defined as follows (let “expr” be an expression, “&addr” be an address of a
memory location, and “M[addr]” be the actual memory location at address addr):

Test and Set (TSET) Atomic Swap (SWAP) Compare and Swap (CAS)

TSET(&addr) {
 int result = M[addr];
 M[addr] = 1;
 return (result);
}

SWAP(&addr, expr) {
 int result = M[addr];
 M[addr] = expr;
 return (result);
}

CAS(&addr, expr1, expr2) {
 if (M[addr] == expr1) {
 M[addr] = expr2;
 return true;
 } else {
 return false;
 }
}

Both TSET and SWAP return values (from memory), whereas CAS returns either true or false.
Note that our &addr notation is similar to a reference in c++, and means that the &addr argument
must be something that can be stored into (an “lvalue”). For instance, TSET could be used to
implement a spin-lock acquire as follows:

 int lock = 0; // lock is free

 // Later: acquire lock
 while (TSET(lock));

CAS is general enough as an atomic operation that it can be used to implement both TSET and
SWAP. For instance, consider the following implementation of TSET with CAS:

 TSET(&addr) {
 int temp;
 do {
 temp = M[addr];
 } while (!CAS(addr,temp,1));
 return temp;
 }

Problem 3a[3pts]:
Show how to implement a spinlock acquire with a single while loop using CAS instead of TSET.
You must only fill in the arguments to CAS below:

 // Initialization
 int lock = 0; // Lock is free

 // acquire lock

 while (!CAS(, ,));

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 9/21

Problem 3b[2pts]:
Show how SWAP can be implemented using CAS. Don’t forget the return value.

 SWAP(&addr, reg1) {

 }

Problem 3c[2pts]:
With spinlocks, threads spin in a loop (busy waiting) until the lock is freed. In class we argued that
spinlocks were a bad idea because they can waste a lot of processor cycles. The alternative is to put
a waiting process to sleep while it is waiting for the lock (using a blocking lock). Contrary to what
we implied in class, there are cases in which spinlocks would be more efficient than blocking locks.
Give a circumstance in which this is true and explain why a spinlock is more efficient.

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 10/21

An object such as a queue is considered “lock-free” if multiple processes can operate on this object
simultaneously without requiring the use of locks, busy-waiting, or sleeping. In this problem, we
are going to construct a lock-free FIFO queue using the atomic CAS operation. This queue needs
both an Enqueue and Dequeue method.

We are going to do this in a slightly different way than normally. Rather than Head and Tail
pointers, we are going to have “PrevHead” and Tail pointers. PrevHead will point at the last
object returned from the queue. Thus, we can find the head of the queue (for dequeuing). If we
don’t have to worry about simultaneous Enqueue or Dequeue operations, the code is
straightforward:

// Holding cell for an entry
class QueueEntry {
 QueueEntry next = null;
 Object stored;

 QueueEntry(Object newobject) {
 stored = newobject;
 }
}

// The actual Queue (not yet lock free!)
class Queue {
 QueueEntry prevHead = new QueueEntry(null);
 QueueEntry tail = prevHead;

 void Enqueue(Object newobject) {
 QueueEntry newEntry = new QueueEntry(newobject);
 QueneEntry oldtail = tail;
 tail = newEntry;
 oldtail.next = newEntry;
 }

 Object Dequeue() {
 QueueEntry oldprevHead = prevHead;
 QueueEntry nextEntry = oldprevHead.next;
 if (nextEntry == null)
 return null;
 prevHead = nextEntry;
 return nextEntry.stored;
 }
}

Problem 3d[3pts]:
For this non-multithreaded code, draw the state of a queue with 2 queued items on it:

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 11/21

Problem 3e[3pts]: For each of the following potential context switch points, state whether or not a
context switch at that point could cause incorrect behavior of Enqueue(); Explain!

 void Enqueue(Object newobject) {
1 QueueEntry newEntry = new QueueEntry(newobject);
2 QueueEntry oldtail = tail;
3 tail = newEntry;
 oldtail.next = newEntry;
 }

Point 1:

Point 2:

Point 3:

Problem 3f[4pts]: Rewrite code for Enqueue(), using the CAS() operation, such that it will work
for any number of simultaneous Enqueue and Dequeue operations. You should never need to busy
wait. Do not use locking (i.e. don’t use a test-and-set lock). The solution is tricky but can be
done in a few lines. We will be grading on conciseness. Do not use more than one CAS() or more
than 10 lines total (including the function declaration at the beginning). Hint: wrap a do-while
around vulnerable parts of the code identified above.

 void Enqueue(Object newobject) {
 QueueEntry newEntry = new QueueEntry(newobject);

 // Insert code here

 }

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 12/21

Problem 3g[3pts]: For each of the following potential context switch points, state whether or not a
context switch at that point could cause incorrect behavior of Dequeue(); Explain! (Note: Assume
that the queue is not empty when answering this question, since we have removed the null-queue
check from the original code):

 Object Dequeue() {
1 QueueEntry oldprevHead = prevHead;
2 QueueEntry nextEntry = oldprevHead.next;
3 prevHead = nextEntry;
 return nextEntry.stored;
 }

Point 1:

Point 2:

Point 3:

Problem 3h[4pts]: Rewrite code for Dequeue(), using the CAS() operation, such that it will work
for any number of simultaneous Enqueue and Dequeue operations. You should never need to busy
wait. Do not use locking (i.e. don’t use a test-and-set lock). The solution can be done in a few
lines. We will be grading on conciseness. Do not use more than one CAS() or more than 10 lines
total (including the function declaration at the beginning). You should correctly handle an empty
queue by returning “null”. Hint: wrap a do-while around vulnerable parts of the code identified
above and add back the null-check from the original code.

 Object Dequeue() {

 // Insert code here

 }

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 13/21

 Problem 4: Scheduling and Deadlock [20 pts]
Problem 4a[2pts]: How could a priority scheduler be used to emulate Earliest Deadline First
(EDF) scheduling? Would computing of priorities be an expensive operation (assume that we
schedule periodic tasks characterized by period T and computational time of C)? Explain.

Problem 4b[2pts]: What is a multi-level feedback scheduler and how can it approximate SRTF?

Problem 4c[3pts]: What is priority donation? What sort of information must the OS track to allow
it to perform priority donation? Is priority donation targeted at preventing a deadlock or a
livelock?

Problem 4d[3pts]: Suppose that you utilize a scheme that schedules threads within a process at
user level. Why might a naïve scheduling scheme run into problems when accessing I/O? Can the
operating system help resolve this problem? Explain

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 14/21

Pwnage Games, a fairly unknown arcade in Downtown Berkeley, decided to purchase Super Smash
Bros. for Wii U -- a popular fighting video game -- in the hope that it would draw customers to the
business. However, due to limited resources, the store could only buy one copy of the game.
Luckily, the owners know Gill Bates -- a Cal EECS undergrad -- who offers her help in exchange
for free arcade credits. Her job is to allow multiple consoles to play the game at the same time.
Thanks to her hacking skills, Gill completes the task in no time, but she is forced to impose some
conditions on the gameplay:
 - each console only allows for two players to fight at a time;
 - the same character cannot be used by more than one player at a time.

The enforcement of these conditions is handled after character selection. That is, all fighters appear
available at all times, and the following function loads the fight. Each character has a global
fighter_t* representing it across consoles.

void smash (fighter_t* first, fighter_t* second)
{
 pthread_mutex_lock (&first->lock);
 pthread_mutex_lock (&second->lock);
 fight (first, second);
 pthread_mutex_unlock (&second->lock);
 pthread_mutex_unlock (&first->lock);

}

Problem 4e[4pts]: Despite Gill’s effort, her algorithm has an obvious flaw: it can lead to deadlock!
Present an example of how this can happen. List the four conditions for deadlock and show how
they are satisfied by this example:

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 15/21

Problem 4f[3pts]: Redesign the smash() function to avoid deadlock. Write your new version in
the space below. Which of the four conditions are now missing? Name one downside of your
approach.

Problem 4g[3pts]: Explain how the Banker’s algorithm could prevent the deadlock identified in
Problem (4e) and what changes would need to be made to the code to support it. Clearly identify
the behavior that would result, and why the four conditions for deadlock are not simultaneously
satisfied. Would this solution be better or worse than your solution to Problem (4f)?

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 16/21

[This page intentionally left blank]

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 17/21

Problem 5: Address Translation [20 pts]
Consider a multi-level memory management scheme with the following format for virtual
addresses:

Virtual Page #
(10 bits)

Virtual Page #
(10 bits)

Offset
(12 bits)

Virtual addresses are translated into physical addresses of the following form:

Physical Page #
(20 bits)

Offset
(12 bits)

Page table entries (PTE) are 32 bits in the following format, stored in big-endian form in memory
(i.e. the MSB is first byte in memory):

Physical Page #
(20 bits)

OS
Defined
(3 bits)

0

L
arge

P
age

D
irty

A
ccessed

N
ocache

W
rite

T
hrough

U
ser

W
riteable

V
alid

Here, “Valid” means that a translation is valid, “Writeable” means that the page is writeable, “User”
means that the page is accessible by the User (rather than only by the Kernel). Note: the phrase
“page table” in the following questions means the multi-level data structure that maps virtual
addresses to physical addresses.

Problem 5a[2pts]: How big is a page? Explain.

Problem 5b[4pts]: Draw a picture of the page table. What good property(s) result from dividing
the address into three fields in this way (i.e. 32 bits = 10bits + 10bits + 12bits)?

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 18/21

Problem 5c[2pts]: Suppose that we want an address space with one physical page at the top of the
address space and one physical page at the bottom of the address space. How big would the page
table be (in bytes)? Explain.

Problem 5d[2pts]: What is the maximum amount of physical memory that can be addressed by this
page table. Explain.

Problem 5e[10pts]: Assume the memory translation scheme from (5a). Use the Physical Memory
table given on the next page to predict what will happen with the following load/store instructions.
Assume that the base table pointer for the current user level process is 0x00200000.

Addresses in the “Instruction” column are virtual. You should translate these addresses to
physical address (i.e. in middle column), then attempt to execute the specified instruction on the
resulting address. The return value for a load is an 8-bit data value or an error, while the return
value for a store is either “ok” or an error. Possible errors are: invalid, read-only, kernel-only.
Hints: (1) Don’t forget that Hexidecimal digits contain 4 bits! (2) PTEs are 4 bytes!

Instruction Physical Address Result

Load
[0x00001047] 0x00002047 0x50

Store
[0x00C07665]

0xEEFF0655 ok

Store
[0x00C005FF] 0x112205FF

ERROR:
read-only

Load
[0x00003012]

Store
[0x02001345]

Load
[0xFF80078F]

Load
[0xFFFFF005]

Test-And-Set
[0xFFFFF006]

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 19/21

Physical Memory [All Values are in Hexidecimal]
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

00000000 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
00000010 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D

….
00001010 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
00001020 40 03 41 01 30 01 31 03 00 03 00 00 00 00 00 00
00001030 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
00001040 10 01 11 03 31 03 13 00 14 01 15 03 16 01 17 00

….
00002030 10 01 11 00 12 03 67 03 11 03 00 00 00 00 00 00
00002040 02 20 03 30 04 40 05 50 01 60 03 70 08 80 09 90
00002050 10 00 31 01 10 03 31 01 12 03 30 00 10 00 10 01

….
00004000 30 00 31 01 11 01 33 03 34 01 35 00 43 38 32 79
00004010 50 28 36 19 71 69 39 93 75 10 58 20 97 49 44 59
00004020 23 03 20 03 00 01 62 08 99 86 28 03 48 25 34 21

….
00100000 00 00 10 67 00 00 20 67 00 00 30 00 00 00 40 07
00100010 00 00 50 03 00 00 00 00 00 00 00 00 00 00 00 00

…
00103000 11 22 00 05 55 66 77 88 99 AA BB CC DD EE FF 00
00103010 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 00 67

…
001FE000 04 15 00 00 48 59 70 7B 8C 9D AE BF D0 E1 F2 03
001FE010 10 15 00 67 10 15 10 67 10 15 20 67 10 15 30 67

…
001FF000 00 00 00 00 00 00 00 65 00 00 10 67 00 00 00 00
001FF010 00 00 20 67 00 00 30 67 00 00 40 65 00 00 50 07

…
001FFFF0 00 00 00 00 00 00 00 00 10 00 00 67 00 10 30 67

…
00200000 00 10 00 07 00 10 10 07 00 10 20 07 00 10 30 07
00200010 00 10 40 07 00 10 50 07 00 10 60 07 00 10 70 07
00200020 00 10 00 07 00 00 00 00 00 00 00 00 00 00 00 00

…
00200FF0 00 00 00 00 00 00 00 00 00 1F E0 07 00 1F F0 07

…

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 20/21

 [This page intentionally left blank]

CS 162 Spring 2015 Midterm Exam I March 11th, 2015

 Page 21/21

[This page left for scratch]

