
Review Session: Threads, Synchronization, and File I/O

CS 162

September 25, 2019

Contents

1 Threads, Processes 2
1.1 Process vs Thread . 2
1.2 Context Switch . 2
1.3 Overuse of Threads . 2
1.4 Critical Section . 2
1.5 Mode Switch . 2
1.6 Threads . 3

2 Synchronization 3
2.1 Locking via Disabling Interrupts . 3
2.2 Counting Semaphores . 4
2.3 Bounded Buffer with Locks and Semaphores . 4

3 File I/O 6
3.1 Benefits of Concurrency . 6
3.2 Storing Integers . 6

1

CS 162 Fall 2019 Review Session: Threads, Synchronization, and File I/O

1 Threads, Processes

1.1 Process vs Thread

How is a process different from a thread?

1.2 Context Switch

What state information do you need to save/restore about threads when performing a context switch?

1.3 Overuse of Threads

List two reasons why overuse of threads is bad (i.e., using too many threads for different tasks). Be
explicit in your answers.

1.4 Critical Section

Suppose a thread is running in a critical section of code, meaning that it has acquired the locks through
proper arbitration. Can it get context switched? Why or why not?

1.5 Mode Switch

Name three ways in which the processor can transition from user mode to kernel mode. Can the user
execute arbitrary code after transitioning?

2

CS 162 Fall 2019 Review Session: Threads, Synchronization, and File I/O

1.6 Threads

What are the possible outputs of this program?

void* threadfun(void* arg) {

print("hello\n");

}

int main(int argc, char** argv) {

pthread_t t;

pthread_create(&t, NULL, threadfun, NULL);

sleep(1);

printf("world\n");

}

2 Synchronization

2.1 Locking via Disabling Interrupts

Consider the following implementation of Locks:

Lock::Acquire() { Lock::Release() {

disable_interrupts(); enable_interrupts();

} }

1. For a single-processor system state whether this implementation is incorrect.

2. For a multiprocessor system, explain what additional reason(s) might make this implementation
incorrect?

3

CS 162 Fall 2019 Review Session: Threads, Synchronization, and File I/O

2.2 Counting Semaphores

We have a limited number of resources such that only N threads can use them at any given time. Explain
how we can use a “counting semaphore” to control access to these resources.

2.3 Bounded Buffer with Locks and Semaphores

In class we discussed a solution to the bounded-buffer problem for multiple producers and multiple con-
sumers using semaphores and locks. In this problem, there is a fixed size buffer. Producers add to the
buffer, but only if there is room in the buffer. Consumers remove from the buffer, but only if there are
items. Producers should sleep until there is space in the buffer and consumers should sleep until there
is something in the buffer.

1. Reproduce this solution from lecture. Think about how we can use semaphores track how many
empty and full spots are currently in the buffer. Do not go onto the next part until you are done
with this, as it will give away the answer.

Producer () { Consumer () {

_______________________________ _______________________________

_______________________________ _______________________________

queue.Enqueue() queue.Dequeue()

_______________________________ _______________________________

_______________________________ _______________________________

} }

4

CS 162 Fall 2019 Review Session: Threads, Synchronization, and File I/O

2. Examine the following implementation where the lock operations have been moved. Explain it is
correct. If not, explain why.

Producer () { Consumer () {

mutex.Acquire() mutex.Acquire()

emptyBuffers.P() fullBuffers.P()

queue.Enqueue() queue.Dequeue()

fullBuffers.V() emptyBuffers.V()

mutex.Release() mutex.Release()

} }

3. Examine the following implementation where the lock operations have been moved. Explain it is
correct. If not, explain why.

Producer () { Consumer () {

mutex.Acquire() fullBuffers.P()

emptyBuffers.P() mutex.Acquire()

queue.Enqueue() queue.Dequeue()

fullBuffers.V() mutex.Release()

mutex.Release() emptyBuffers.V()

} }

4. Examine the following implementation where the lock operations have been moved. Explain it is
correct. If not, explain why.

Producer () { Consumer () {

emptyBuffers.P() fullBuffers.P()

mutex.Acquire() mutex.Acquire()

queue.Enqueue() queue.Dequeue()

fullBuffers.V() emptyBuffers.V()

mutex.Release() mutex.Release()

} }

5

CS 162 Fall 2019 Review Session: Threads, Synchronization, and File I/O

3 File I/O

3.1 Benefits of Concurrency

On a single processor machine, under what circumstances can a multithreaded program complete more
quickly than a non-multithreaded program? Keep in mind that multithreading has context-switch over-
head associated with it.

3.2 Storing Integers

You are working for BigStore and your boss has tasked you with writing a function that takes an array
of ints and writes it to a specified file for later use. He also wants you to use file descriptors (no fopen,
etc.). Fill in the following function:

void write_to_file(const char *file, int *a, int size) {

int write_fd = open(__________________, __________________);

char *write_buf = __________________

int buf_size = __________________

int bytes_written = 0;

// Write a to file.

__

__

__

close(write_fd);

}

Now, write the function that retrieves previously saved integers and places them in a int array.

void read_from_file(const char *file, int *a, int size) {

int read_fd = open(__________________, __________________);

6

CS 162 Fall 2019 Review Session: Threads, Synchronization, and File I/O

char *read_buf = __________________

int buf_size = __________________

// Read a from a file.

__

__

__

__

__

close(read_fd);

}

Your coworker opens up one of the files that you used to store ints on his text editor and complains its
full of junk! Explain to him why this might be the case.

7

	Threads, Processes
	Process vs Thread
	Context Switch
	Overuse of Threads
	Critical Section
	Mode Switch
	Threads

	Synchronization
	Locking via Disabling Interrupts
	Counting Semaphores
	Bounded Buffer with Locks and Semaphores

	File I/O
	Benefits of Concurrency
	Storing Integers

