CS162
Operating Systems and
Systems Programming

Lecture 12

Scheduling 3: Deadlock

Recall: Choosing the Right Scheduler

| Care About: Then Choose:

CPU Throughput FCFS
Avg. Response Time SRTF Approximation
/O Throughput SRTF Approximation
Fairness (CPU Time) Linux CFS
Fairness — Wait Time to Get Round Robin
CPU
Favoring Important Tasks Priority

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.2

Deadlock: A Deadly type of Starvation

» Deadlock: cyclic waiting for resources

* Thread A owns Res 1 and is waiting for Res 2

« Thread B owns Res 2 and is waiting for Res 1

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.3

Deadlock: A Deadly type of Starvation

« Starvation: thread waits indefinitely

— Example, low-priority thread waiting for resources constantly in use by
high-priority threads

 Deadlock implies starvation but starvation does not imply deadlock
— Starvation can end (but doesn't have to)
— Deadlock can't end without external intervention

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Llec12.4

Example: Single-Lane Bridge Crossing

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.5

Bridge Crossing Example

- Fach segment of road can be viewed as a resource

WW

* Rules:
— Car must own the segment under them
— Must acquire segment that they are moving into
— For bridge: traffic only in one direction at a time

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.6

Bridge Crossing Example

* Car must own the segment under them

* Must acquire segment that they are moving into

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.7

Bridge Crossing Example

|”

Could be resolved by “externa

intervention:

- fork-lifting a car of the bridge
fquivalent to killing a thread)

- Asking cars to backup
(equivalent to removing the
resource from the thread)

Deadlock: Circular
waiting for resources

Wait
For

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.8

Starvation does not mean deadlock!

@@

@ e

(o

Stop sign: purple car must wait for cars
to release resources.

Cars on highway never do! Purple car is starved

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.9

Deadlock with Locks

Thread A: Thread B:

x.Acquire(); y.Acquire();
y.Acquire(); x.Acquire();
y.Release(); X.Release();
X.Release(); y.Release();

» This lock pattern exhibits non-deterministic deadlock

— Sometimes it happens, sometimes it doesn't!

A system is subject to deadlock if deadlock can happen in any execution

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.10

2/3/21

Deadlock with Locks: “Lucky” Case

Thread A:
xX.Acquire();
y.Acquire();

y.Release();
X.Release();

Sometimes, schedule won't trigger deadlock!

Thread B:

y.Acquire();

X.Acquire();

X.Release();
y.Release();

Crooks & Joseph CS162 © UCB Spring 2021

Lec12.11

Other Types of Deadlock

* Threads often block waiting for resources
— Locks
— Terminals

— Printers
— CD drives

— Memory

* Threads often block waiting for other threads
— Pipes

— Sockets

* You can deadlock on any of these!

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.12

Dining Computer Scientists Problem

¢

» Five chopsticks/Five computer scientists

+ Need two chopsticks to eat

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.13

Free for all leads to deadlock and (literal) starvation

Fixing deadlock needs external intervention!

How could we have prevented this?

- Give everyone two chopsticks
- Make everyone “give up” after a while

- Require everyone to pick up both chopsticks
atomically

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.14

Four requirements for occurrence of Deadlock

Mutual exclusion and bounded resources
— Only one thread at a time can use a resource.
Hold and wait

— Thread holding at least one resource is waiting to acquire additional resources held
by other threads

No preemption

— Resources are released only voluntarily by the thread holding the resource, after
thread is finished with it

Circular wait

— There exists a set {I, ..., T.} of waiting threads
» T, is waiting for a resource that is held by T,
» T, is waiting for a resource that is held by T
»
» T, is waiting for a resource that is held by T,

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.15

Detecting Deadlock: Resource-Allocation Graph

* System Model
— Asetof Threads T, T,, ..., T,
— Resource types Ry, R,, .., R

m

CPU cycles, memory space, I/O devices
— Each resource type R has W, instances
— Each thread utilizes a resource as follows:
» Request () / Use() / Release()
* Resource-Allocation Graph:

— V is partitioned into two types:
» T=A{T,, T, ..., I}, the set threads in the system.

» R={Ry, Ry, ..., R}, the set of resource types in system
— request edge — directed edge T, > R,
— assignment edge — directed edge R — T,

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Symbols

©©
-]

X
N

Lec 12.16

Resource-Allocation Graph Examples

« Model:

— request edge — directed edge Iy > R,
— assignment edge — directed edge R, — 1,

R, R,

R
3 R, R, a
Simple Resource Allocation Graph Allocation Graph
Allocation Graph With Deadlock With Cycle, but

No Deadlock

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.17

Deadlock Detection Algorithm

* Let [X] represent an m-ary vector of non-negative integers
(quantities of resources of each type):

[FreeResources]: Current free resources each type
[Request,]: Current requests from thread X
[Allocy]: Current resources held by thread X

* See if tasks can eventually terminate on their own

[Avail] = [FreeResources]
Add all threads to UNFINISHED
do {

done = true
Foreach thread in UNFINISHED {
if ([Request, j.] <= [Avail]) {
remove thread from UNFINISHED
[Avail] = [Avail] + [Alloc, 4]
done = false
}
}
} until(done)
« Threads left in UNFINISHED = deadlocked

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.18

2/3/21

Deadlock Detection Algorithm

[Avail] = [FreeResources]

Add all threads to UNFINISHED

do {
done = true

Foreach thread in UNFINISHED {
if ([Request 4] <= [Avail]) {
remove thread from UNFINISHED
[Avail] = [Avail] + [Alloc, 4]

done = false
}
}
} until(done)

Threads left in UNFINISHED = deadlocked

Crooks & Joseph CS162 © UCB Spring 2021

[Avail] = {e,0}
UNFINISHED = T1, T2, T3, T4

Looking at T1: [1,0] > [0,0]

Looking at T2: [0,0] <= [0,0]
Avail = [1,0]
UNFINISHED = T1,T3,T4

Looking at T3: [0,1] > [1,0]

Looking at T4
[0,0] <= [0,0]
Avail = [1,1]
UNFINISHED = T1, T3

Looking at T1: [1,0] <= [1,1]
Avail = [2,1]
UNFINISHED = T3

Looking at T3: [0,1] <= [2,1]

Avail = [2,2]
UNFINISHED = Empty!

Lec 12.19

How should a system deal with deadlock?

- Four different approaches:
1. Deadlock prevention: write your code in a way that it isn't prone to deadlock

2. Deadlock recovery: let deadlock happen, and then figure out how to recover from
it

3. Deadlock avoidance: dynamically delay resource requests so deadlock doesn't
happen

4. Deadlock denial: ignore the possibility of deadlock

» Modern operating systems:
— Make sure the system isn't involved in any deadlock

— lgnore deadlock in applications

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.20

Deadlock prevention

Condition 1: Mutual exclusion and bounded resources
=> Provide sufficient resources

Condition 2: Hold and wait
—Abort request or acquire requests atomically

Condition 3: No preemption
=> Preempt threads

Condition 4: Circular wait
=> Order resources and always acquire resources in the same way

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.21

Condition 1: (Virtually) Infinite Resources

Thread A Thread B

AllocateOrWait(1 MB) AllocateOrWait(l MB)
AllocateOrWait(1 MB) AllocateOrWait(l MB)
Free(1l MB) Free(1l MB)
Free(1l MB) Free(1l MB)

* With virtual memory we have “infinite” space so everything will just succeed, thus
above example won't deadlock

— Of course, it isn't actually infinite, but certainly larger than 2MB!

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.22

Condition 2: Request Resources Atomically

Rather than:
Thread A; Thread B:
X.Acquire(); y.Acquire();
y.Acquire(); x.Acquire();
y.Release(); x.Release();
X.Release(); y.Release();

Consider instead:
Thread A: Thread B:
Acquire_both(x, y); Acquire_both(y, x);

y.Release(); X.Release();
X.Release(); y.Release();

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.23

Condition 3: Preemption

* Force thread to give up resource

« Common technique in databases using database aborts

— A transaction is “aborted”: all of its actions are undone, and the transaction must be
retried

« Common technique in wireless networks:

— Everyone speaks at once. When a resource collision is detected, retry at a new, random
time

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.24

Condition 4: Circular Waiting

* Force all threads to request resources in a particular order preventing any cyclic use
of resources

2/3/21

Thread A: Thread B:

x.Acquire(); y.Acquire();
y.Acquire(); X.Acquire();
y.Release(); X.Release();
x.Release(); y.Release();
Thread A: Thread B:

x.Acquire(); x.Acquire();
y.Acquire(); y.Acquire();
y.Release(); x.Release();
x.Release(); y.Release();

Crooks & Joseph CS162 © UCB Spring 2021

Lec 12.25

Condition 4: Circular Waiting

* Joseph: first 1 then 5
« Crooks: first 2 then 1
* Turing: first 3 then 2
Johnson: first 4 than 3
* Liskov: first 5 then 4

If ensure that Joseph graphs chopstick
5 followed by 1, no deadlock!

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.26

Recall: how should a system deal with deadlock?

- Four different approaches:
1. Deadlock prevention: write your code in a way that it isn't prone to deadlock

2. Deadlock recovery: let deadlock happen, and then figure out how to recover from
it

3. Deadlock avoidance: dynamically delay resource requests so deadlock doesn't
happen

4. Deadlock denial: ignore the possibility of deadlock

» Modern operating systems:
— Make sure the system isn't involved in any deadlock

— lgnore deadlock in applications

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.27

Techniques for Deadlock Avoidance

* |dea: When a thread requests a resource, OS checks if it would
result in deadlock

— If not, it grants the resource right away

— If so, it waits for other threads to release resources

THIS DOES NOT WORK!!

- Example:
Thread A: Thread B:
~ X.Acquire(); "~ y.Acquire();
Blocks... y.Acquire(); x.Acquire(); Wait?
But it's already too late...
y.Release(); x.Release();
X.Release(); y.Release();

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.28

Deadlock Avoidance: Three States

« Safe state

— System can delay resource acquisition to prevent deadlock

 Unsafe state
— No deadlock yet...
— But threads can request resources in a pattern that unavadablyleads to deadlock

+ Deadlocked state
— There exists a deadlock in the system

— Also considered “unsafe” .
Deadlock avoidance: prevent system from

reaching an unsafe state

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.29

2/3/21

Deadlock Avoidance

* |dea: When a thread requests a resource, OS checks if it

would result in deadleck an unsafe state
— If not, it grants the resource right away

— If so, it waits for other threads to release resources

* Example:
Thread A: Thread B:
x.Acqu1reZS; y.Acqu1reZ$;
y.Acquire(); x.Acquire();
y.Release(); x.Release();
X.Release(); y.Release();

Crooks & Joseph CS162 © UCB Spring 2021

Wait until
Thread A

releases
mutex X

Lec 12.30

Banker’s Algorithm for Avoiding Deadlock

+ Toward right idea:
— State maximum (max) resource needs in advance

— Allow particular thread to proceed if:

(available resources - #requested) = max
remaining that might be needed by any thread

* Banker’s algorithm (less conservative):

— Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.31

2/3/21

Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources]
Add all threads to UNFINISHED
do {

done = true
Foreach thread in UNFINISHED {
if ([Requesty,...4] <= [Avail]) {
remove thread from UNFINISHED
[Avail] = [Avail] + [AlloCip,eaql
done = false

}
} Jﬁtil(done)

Crooks & Joseph CS162 © UCB Spring 2021

Lec 12.32

Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources]
Add all threads to UNFINISHED
do {

done = true
Foreach threads in UNFINISHED {
if ([Maxthreads]'[Allocthread] <= [Avall]) {
remove thread from UNFINISHED
[Avail] = [Avail] + [AllOCi},eaql
done = false

}
} until(done)

Step 1: “Assume” request is made
Step 2: If request is made, is system still in SAFE state?

There exists a sequence {T,, T, ... T} with T, requesting all remaining resources, finishing, then T, requesting
all remaining resources, etc..

Step 3: If SAFE, grant resources. If UNSAFE, delay

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.33

Banker’s Algorithm for Avoiding Deadlock

. Thread A: Thread B:
[Avail] = [FreeResources]
ﬁgd{all threads to UNFINISHED X.Acqu]-r.e ; y.Acqu1r‘e ;
done = true 0 o
h threads i S .Acquire(); X.Acquire();
"OOLE (Mo] [ALI0C] <= [Availl) { y-Aeq 0); g 0);
remove thread from UNFINISHED
5Avail]f=l[Avail] + [AlloCipnead] *ee ooe
= se
0 e y.Release(); X.Release();
} until(done) X.Release(); y.Release();
When Thread A acquires x: When Thread B acquires y:
Run Algorithm: Run Algorithm:
Avail = [0,1] Avail = [0,0]
For A: [1,1]-[1,0] <= [0,1] For A: [1,1] = [1,0] <= [0,0]
Update Avail to = 1,1. Remove A from UNFINISHED For B: [1,1] = [0,1] <= [0,0]
For B:
[1,1]-[0,0] <= [1,1] UNFINISHED not empty
Update Avail to = [1,1]. Remove A from UNFINISHED
Safe state! Unsafe state! Must delay acquiring !

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.34

Summary

Deadlock => Starvation, Starvation does not imply deadlock

Four conditions for deadlocks
— Mutual exclusion
— Hold and wait
— No preemption
— Circular wait

Techniques for addressing deadlock: prevention, recovery, avoidance, or denial

Banker’s algorithm for avoiding deadlock

2/3/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 12.35

	CS162�Operating Systems and�Systems Programming�Lecture 12��Scheduling 3: Deadlock�
	Recall: Choosing the Right Scheduler
	Deadlock: A Deadly type of Starvation
	Deadlock: A Deadly type of Starvation
	Example: Single-Lane Bridge Crossing
	Bridge Crossing Example
	Bridge Crossing Example
	Bridge Crossing Example
	Starvation does not mean deadlock!
	Deadlock with Locks
	Deadlock with Locks: “Lucky” Case
	Other Types of Deadlock
	Dining Computer Scientists Problem
	Free for all leads to deadlock and (literal) starvation
	Four requirements for occurrence of Deadlock
	Detecting Deadlock: Resource-Allocation Graph
	Resource-Allocation Graph Examples
	Deadlock Detection Algorithm
	Deadlock Detection Algorithm
	How should a system deal with deadlock?
	Deadlock prevention
	Condition 1: (Virtually) Infinite Resources
	Condition 2: Request Resources Atomically
	Condition 3: Preemption
	Condition 4: Circular Waiting
	Slide Number 26
	Recall: how should a system deal with deadlock?
	Techniques for Deadlock Avoidance
	Deadlock Avoidance: Three States
	Deadlock Avoidance
	Banker’s Algorithm for Avoiding Deadlock
	Banker’s Algorithm for Avoiding Deadlock
	Banker’s Algorithm for Avoiding Deadlock
	Banker’s Algorithm for Avoiding Deadlock
	Summary

