
CS162
Operating Systems and
Systems Programming

Lecture 12

Scheduling 3: Deadlock

Lec 12.22/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Recall: Choosing the Right Scheduler

I Care About: Then Choose:

CPU Throughput FCFS

Avg. Response Time SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness – Wait Time to Get
CPU

Round Robin

Favoring Important Tasks Priority

Lec 12.32/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Deadlock: A Deadly type of Starvation

• Deadlock: cyclic waiting for resources

• Thread A owns Res 1 and is waiting for Res 2

• Thread B owns Res 2 and is waiting for Res 1

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Lec 12.42/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Deadlock: A Deadly type of Starvation

• Starvation: thread waits indefinitely
– Example, low-priority thread waiting for resources constantly in use by

high-priority threads

• Deadlock implies starvation but starvation does not imply deadlock
– Starvation can end (but doesn’t have to)
– Deadlock can’t end without external intervention

Lec 12.52/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Example: Single-Lane Bridge Crossing

Lec 12.62/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Bridge Crossing Example

• Rules:
– Car must own the segment under them
– Must acquire segment that they are moving into
– For bridge: traffic only in one direction at a time

• Each segment of road can be viewed as a resource

Lec 12.72/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Bridge Crossing Example

• Car must own the segment under them

• Must acquire segment that they are moving into

Lec 12.82/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Bridge Crossing Example

East
Half

West
Half

Wait
For

Wait
For

Owned
By

Owned
By

Deadlock: Circular
waiting for resources

Could be resolved by “external”
intervention:
- fork-lifting a car of the bridge

(equivalent to killing a thread)
- Asking cars to backup

(equivalent to removing the
resource from the thread)

Lec 12.92/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Starvation does not mean deadlock!

Stop sign: purple car must wait for cars
to release resources.

Cars on highway never do! Purple car is starved

Lec 12.102/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Lock yLock x

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Deadlock with Locks

• This lock pattern exhibits non-deterministic deadlock
– Sometimes it happens, sometimes it doesn’t!

• A system is subject to deadlock if deadlock can happen in any execution

Lec 12.112/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Deadlock with Locks: “Lucky” Case

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();

x.Acquire();
…
x.Release();
y.Release();

Sometimes, schedule won’t trigger deadlock!

Lec 12.122/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Other Types of Deadlock

• Threads often block waiting for resources
– Locks

– Terminals

– Printers

– CD drives

– Memory

• Threads often block waiting for other threads
– Pipes

– Sockets

• You can deadlock on any of these!

Lec 12.132/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Dining Computer Scientists Problem

• Five chopsticks/Five computer scientists

• Need two chopsticks to eat

Lec 12.142/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Free for all leads to deadlock and (literal) starvation

Fixing deadlock needs external intervention!

How could we have prevented this?

- Give everyone two chopsticks

- Make everyone “give up” after a while

- Require everyone to pick up both chopsticks
atomically

Lec 12.152/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Four requirements for occurrence of Deadlock
• Mutual exclusion and bounded resources

– Only one thread at a time can use a resource.
• Hold and wait

– Thread holding at least one resource is waiting to acquire additional resources held
by other threads

• No preemption
– Resources are released only voluntarily by the thread holding the resource, after

thread is finished with it
• Circular wait

– There exists a set {T1, …, Tn} of waiting threads
» T1 is waiting for a resource that is held by T2

» T2 is waiting for a resource that is held by T3

» …
» Tn is waiting for a resource that is held by T1

Lec 12.162/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Symbols

Detecting Deadlock: Resource-Allocation Graph

• System Model
– A set of Threads T1, T2, . . ., Tn

– Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

– Each resource type Ri has Wi instances

– Each thread utilizes a resource as follows:
» Request() / Use() / Release()

• Resource-Allocation Graph:
– V is partitioned into two types:

» T = {T1, T2, …, Tn}, the set threads in the system.
» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge T1 → Rj

– assignment edge – directed edge Rj → Ti

R1
R2

T1 T2

Lec 12.172/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Resource-Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Model:
– request edge – directed edge T1 → Rj

– assignment edge – directed edge Rj → Ti

Lec 12.182/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Deadlock Detection Algorithm
• Let [X] represent an m-ary vector of non-negative integers

(quantities of resources of each type):
[FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X
[AllocX]: Current resources held by thread X

• See if tasks can eventually terminate on their own
[Avail] = [FreeResources]
Add all threads to UNFINISHED
do {

done = true
Foreach thread in UNFINISHED {

if ([Requestnode] <= [Avail]) {
remove thread from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

• Threads left in UNFINISHED ⇒ deadlocked

Lec 12.192/3/21 Crooks & Joseph CS162 © UCB Spring 2021

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
• [Avail] = [FreeResources]

Add all threads to UNFINISHED
do {

done = true
Foreach thread in UNFINISHED {

if ([Requestnode] <= [Avail]) {
remove thread from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

• Threads left in UNFINISHED ⇒ deadlocked

[Avail] = {0,0}
UNFINISHED = T1, T2, T3, T4

Looking at T1: [1,0] > [0,0]

Looking at T2: [0,0] <= [0,0]
Avail = [1,0]
UNFINISHED = T1,T3,T4

Looking at T3: [0,1] > [1,0]

Looking at T4
[0,0] <= [0,0]
Avail = [1,1]
UNFINISHED = T1, T3

Looking at T1: [1,0] <= [1,1]
Avail = [2,1]
UNFINISHED = T3

Looking at T3: [0,1] <= [2,1]
Avail = [2,2]
UNFINISHED = Empty!

Lec 12.202/3/21 Crooks & Joseph CS162 © UCB Spring 2021

How should a system deal with deadlock?

• Four different approaches:

1. Deadlock prevention: write your code in a way that it isn’t prone to deadlock

2. Deadlock recovery: let deadlock happen, and then figure out how to recover from
it

3. Deadlock avoidance: dynamically delay resource requests so deadlock doesn’t
happen

4. Deadlock denial: ignore the possibility of deadlock

• Modern operating systems:
– Make sure the system isn’t involved in any deadlock

– Ignore deadlock in applications

Lec 12.212/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Deadlock prevention

• Condition 1: Mutual exclusion and bounded resources
=> Provide sufficient resources

• Condition 2: Hold and wait
⇒Abort request or acquire requests atomically

• Condition 3: No preemption
=> Preempt threads

• Condition 4: Circular wait
=> Order resources and always acquire resources in the same way

Lec 12.222/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Condition 1: (Virtually) Infinite Resources

• With virtual memory we have “infinite” space so everything will just succeed, thus
above example won’t deadlock

– Of course, it isn’t actually infinite, but certainly larger than 2MB!

Thread A
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Lec 12.232/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Condition 2: Request Resources Atomically

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Consider instead:
Thread A:
Acquire_both(x, y);
…
y.Release();
x.Release();

Thread B:
Acquire_both(y, x);
…
x.Release();
y.Release();

Rather than:

Lec 12.242/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Condition 3: Preemption

• Force thread to give up resource

• Common technique in databases using database aborts
– A transaction is “aborted”: all of its actions are undone, and the transaction must be

retried

• Common technique in wireless networks:
– Everyone speaks at once. When a resource collision is detected, retry at a new, random

time

Lec 12.252/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Condition 4: Circular Waiting

• Force all threads to request resources in a particular order preventing any cyclic use
of resources

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
x.Acquire();
y.Acquire();
…
x.Release();
y.Release();

Lec 12.262/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Condition 4: Circular Waiting

1

2

3
4

5

• Joseph: first 1 then 5

• Crooks: first 2 then 1

• Turing: first 3 then 2

• Johnson: first 4 than 3

• Liskov: first 5 then 4

If ensure that Joseph graphs chopstick
5 followed by 1, no deadlock!

Lec 12.272/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Recall: how should a system deal with deadlock?

• Four different approaches:

1. Deadlock prevention: write your code in a way that it isn’t prone to deadlock

2. Deadlock recovery: let deadlock happen, and then figure out how to recover from
it

3. Deadlock avoidance: dynamically delay resource requests so deadlock doesn’t
happen

4. Deadlock denial: ignore the possibility of deadlock

• Modern operating systems:
– Make sure the system isn’t involved in any deadlock

– Ignore deadlock in applications

Lec 12.282/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Techniques for Deadlock Avoidance

• Idea: When a thread requests a resource, OS checks if it would
result in deadlock

– If not, it grants the resource right away

– If so, it waits for other threads to release resources

• Example:

Wait?

But it’s already too late…
Blocks…

Lec 12.292/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Deadlock Avoidance: Three States

• Safe state
– System can delay resource acquisition to prevent deadlock

• Unsafe state
– No deadlock yet…

– But threads can request resources in a pattern that unavoidably leads to deadlock

• Deadlocked state
– There exists a deadlock in the system

– Also considered “unsafe” Deadlock avoidance: prevent system from
reaching an unsafe state

Lec 12.302/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Deadlock Avoidance

• Idea: When a thread requests a resource, OS checks if it
would result in deadlock an unsafe state

– If not, it grants the resource right away

– If so, it waits for other threads to release resources

• Example:

Wait until
Thread A
releases
mutex X

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Lec 12.312/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) ≥ max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm

Lec 12.322/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources]
Add all threads to UNFINISHED
do {

done = true
Foreach thread in UNFINISHED {

if ([Requestthread] <= [Avail]) {
remove thread from UNFINISHED
[Avail] = [Avail] + [Allocthread]
done = false

}
}

} until(done)

Lec 12.332/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources]
Add all threads to UNFINISHED
do {

done = true
Foreach threads in UNFINISHED {

if ([Maxthreads]-[Allocthread] <= [Avail]) {
remove thread from UNFINISHED
[Avail] = [Avail] + [Allocthread]
done = false

}
}

} until(done)

Step 1: “Assume” request is made
Step 2: If request is made, is system still in SAFE state?

There exists a sequence {T1, T2, … Tn} with T1 requesting all remaining resources, finishing, then T2 requesting
all remaining resources, etc..
Step 3: If SAFE, grant resources. If UNSAFE, delay

Lec 12.342/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Banker’s Algorithm for Avoiding Deadlock

[Avail] = [FreeResources]
Add all threads to UNFINISHED
do {

done = true
Foreach threads in UNFINISHED {

if ([Maxthreads]-[Allocthread] <= [Avail]) {
remove thread from UNFINISHED
[Avail] = [Avail] + [Allocthread]
done = false

}
}

} until(done)

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

When Thread A acquires x:

Run Algorithm:
Avail = [0,1]
For A: [1,1] – [1,0] <= [0,1]
Update Avail to = 1,1. Remove A from UNFINISHED
For B:
[1,1] – [0,0] <= [1,1]
Update Avail to = [1,1]. Remove A from UNFINISHED

Safe state!

When Thread B acquires y:

Run Algorithm:
Avail = [0,0]
For A: [1,1] – [1,0] <= [0,0]
For B: [1,1] – [0,1] <= [0,0]

UNFINISHED not empty

Unsafe state! Must delay acquiring y!

Lec 12.352/3/21 Crooks & Joseph CS162 © UCB Spring 2021

Summary
• Deadlock => Starvation, Starvation does not imply deadlock

• Four conditions for deadlocks
– Mutual exclusion
– Hold and wait
– No preemption
– Circular wait

• Techniques for addressing deadlock: prevention, recovery, avoidance, or denial

• Banker’s algorithm for avoiding deadlock

	CS162�Operating Systems and�Systems Programming�Lecture 12��Scheduling 3: Deadlock�
	Recall: Choosing the Right Scheduler
	Deadlock: A Deadly type of Starvation
	Deadlock: A Deadly type of Starvation
	Example: Single-Lane Bridge Crossing
	Bridge Crossing Example
	Bridge Crossing Example
	Bridge Crossing Example
	Starvation does not mean deadlock!
	Deadlock with Locks
	Deadlock with Locks: “Lucky” Case
	Other Types of Deadlock
	Dining Computer Scientists Problem
	Free for all leads to deadlock and (literal) starvation
	Four requirements for occurrence of Deadlock
	Detecting Deadlock: Resource-Allocation Graph
	Resource-Allocation Graph Examples
	Deadlock Detection Algorithm
	Deadlock Detection Algorithm
	How should a system deal with deadlock?
	Deadlock prevention
	Condition 1: (Virtually) Infinite Resources
	Condition 2: Request Resources Atomically
	Condition 3: Preemption
	Condition 4: Circular Waiting
	Slide Number 26
	Recall: how should a system deal with deadlock?
	Techniques for Deadlock Avoidance
	Deadlock Avoidance: Three States
	Deadlock Avoidance
	Banker’s Algorithm for Avoiding Deadlock
	Banker’s Algorithm for Avoiding Deadlock
	Banker’s Algorithm for Avoiding Deadlock
	Banker’s Algorithm for Avoiding Deadlock
	Summary

