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Recall: Deadlock is A Deadly type of Starvation

* Starvation: thread waits indefinitely

— Example, low-priority thread waiting for resources
constantly in use by high-priority threads

» Deadlock: circular waiting for resources

— Thread A owns Res | and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res |

* Deadlock = Starvation but not vice versa
— Starvation can end (but doesn't have to)
— Deadlock can't end without external intervention
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Recall: Four requirements for occurrence of Deadlock

Mutual exclusion
— Only one thread at a time can use a resource.
Hold and walit

— Thread holding at least one resource Is waiting to acquire additional resources held
by other threads

* No preemption
— Resources are released only voluntarily by the thread holding the resource, after
thread is finished with it

Circular wart

— There exists a set {T}, ..., T,} of waiting threads
» T, Is waiting for a resource that is held by T,

» T, Is waiting for a resource that is held by T5
» ...
» T, 1s waiting for a resource that is held by T,
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Recall: Banker’s Algorithm

* Banker's algorithm assumptions:

— Every thread pre-specifies is maximum need for resources
» However, it doesn't have to ask for the all at once... (key advantage)
— Threads may now request and hold dynamically up to the maximum specified number of
each resources
* Simple use of the deadlock detection algorithm

— For each request for resources from a thread:

» Technique: pretend each request is granted, then run deadlock detection algorithm, and grant
request if result is deadlock free (conservative!)

— Keeps system in a “SAFE" state, I.e, there exists a sequence {T, To, ... T} with T,
requesting all remaining resources, finishing, then T, requesting all remaining resources, etc..

* Banker's algorithm prevents deadlocks involving threads and
resources by stalling requests that would lead to deadlock

— Can't fix all issues — e.g,, thread going into an infinite loop!
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Revisit: Deadlock Avoidance using Banker’s Algorithm

* |dea: When a thread requests a resource, OS checks if it would result in
deadleck an unsafe state

— If not, it grants the resource right away

— |f so, it waits for other threads to release resources

* Bxample: Thread A: Thread B:
x.Acquire(); y-Acquire(); qamm Threzd BWaits
y.Acquire(); X.Acquire(); until Thread A
releases
y.ReleaSE(); X.ReleaSE(); resources...
X.Release(); y.Release();

« At point that Thread B attempts y.Acquire():
— Banker's algorithm: Pretend to give y mutex to B

— Try to run deadlock detection algorithm
» Neither A nor B can get enough resources to complete

— Stall B by putting it to sleep.
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* Physical Reality: Different Processes/Threads share the same hardware
— Need to multiplex CPU (Just finished: scheduling)
— Need to multiplex use of Memory (starting today)
— Need to multiplex disk and devices (later in term)

* Why worry about memory sharing?

— The complete working state of a process and/or kernel is defined by its data in memory (and
registers)
— Consequently, cannot just let different threads of control use the same memory
» Physics: two different pieces of data cannot occupy the same locations in memory

— Probably don't want different threads to even have access to each other's
memory If in different processes (protection)
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Recall: Four Fundamental OS Concepts

Thread: Execution Context

— Fully describes program state
— Program Counter, Registers, Execution Flags, Stack

Address space (with or w/o translation)

— Set of memory addresses accessible to program (for read or write)

— May be distinct from memory space of the physical machine
(in which case programs operate in a virtual address space)

Process: an instance of a running program
— Protected Address Space + One or more Threads

Dual mode operation / Protection

— Only the “system” has the ability to access certain resources

— Combined with translation, isolates programs from
each other and the OS from programs
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THE BASICS: Address/Address Space

Address Space:

L Yk e ”
Address: 2 thlngs
\ | “Things” here usually
! means “bytes” (8 bits)
k bits

—

« What is 2!0 bytes (where a byte is appreviated as "“B")?
— 219B = 1024B = | KB (for memory, |K = 1024, not 1000)

* How many bits to address each byte of 4KB page?
— 4KB = 4x |[KB = 4x 210=22= |2 bits

* How much memory can be addressed with 20 bits? 32 bits? 64 bits?
— Use 2¢
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Address Space, Process Virtual Address Space

* Definition: Set of accessible addresses and the state associated

with them — 0x000...
— 232 = ~4 billion bytes on a 32-bit machine o
* How many 32-bit numbers fit in this address space?
— 32-bits = 4 bytes, so 23%/4 = 239%=~billion neep
* What happens when processor reads or writes to an address?
— Perhaps acts like regular memory stack
— Perhaps causes I/O operation OXFFE. .

» (Memory-mapped I/O)
— Causes program to abort (segfault)?
— Communicate with another program
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Recall: Process Address Space: typical structure

0x000...
» Code Segment
PC: - /
SP: o Static Data
heap
Processor
registers sbrk SySCG”
Stack Segment
OxFFF...
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Recall: Single and Multithreaded Processes

code

data

files

code

data

files

registers

stack

thread —> ;

registers

registers

registers

stack

stack

stack

=

?

;,_

— thread

single-threaded process

multithreaded process
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* Threads encapsulate concurrency
— “Active” component
* Address space encapsulate protection:
— “Passive’” component
— Keeps bugs from crashing the entire system

* Why have multiple threads per address space?
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Important Aspects of Memory Multiplexing

* Protection:

— Prevent access to private memory of other processes
» Different pages of memory can be given special behavior (Read Only, Invisible to user
programs, etc).
» Kernel data protected from User programs
» Programs protected from themselves
* Translation:
— Abllity to translate accesses from one address space (virtual) to a different one (physical)

— When translation exists, processor uses virtual addresses, physical memory uses physical
addresses

— Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs
» Controlled overlap:

— Separate state of threads should not collide in physical memory.
Obviously, unexpected overlap causes chaos!

— Conversely, would like the ability to overlap when desired
(for communication)
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Alternative View: Interposing on Process Behavior

* OS interposes on process' I/O operations
— How? All I/O happens via syscalls

* OS interposes on process’ CPU usage
— How!? Interrupt lets OS preempt current thread

* Question: How can the OS interpose on process’ memory accesses!?
— Too slow for the OS to interpose every memory access
— Translation: hardware support to accelerate the common case
— Page fault: uncommon cases trap to the OS to handle
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Recall: Loading

Threads
Address Spaces Windows
Processes Files Sockets

OS Hardware Virtualization

Software
Hardware ISA Memory
Processor i Protection
' AT oS Boundary

Networks

g%lts Displays
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Binding of Instructions and Data to Memory

Assume 4byte words
Ox300 = 4 * Ox0C0
Process view of memory Physid 0x0C0 = 0000 1100 0000

‘\\ 0x300 0011 0000 0O
datal: dw 32

@XQBQE::?EEgigAe

start: 1w r‘l,@(datal) Ox0900 8C2000CH
jal  checkit 0x0904 0C00

loop:  addi ril, rl, -1 0x0908 2021FFFF
bnz  rl, loop Ox090C 14200242

(Eickit: " ‘// @;
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Binding of Instructions and Data to Memory

Physical
Memory

0x0000

0x0300 | pPPVV020

Process view of memory Physical addresses
@cal : dw 32 \ Ox0300 00000020 0x0900 | 8C2000C0
0Co00340
start: 1w rl,0(datal) Ox0900 8C2000C0 2021FFFF
jal checkit 0x0904 0C00 14200242
loop:  addi ri, ri, -1 0x0908 2021FFFF
i [Py LEEIR @x@90C 14200242

@c kit: .. / 0x

OXFFFF
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Second copy of program from previous example

Physical
Memory
0x0000
0x0300
Process view of memory Physical addresses
App X
@cal: dw 32 \ 0x0300 00000020 9’;;9% PP
start: 1w rl,0(datal) Ox0900 8C2000CO "
jJal  checkit 0x0904 ©C000280
loop:  addi ri, ri, -1 0x0908 2021FFFF
bnz  ri, loop 0x090C 14200242
@Ckit: / Q;QAQQ
OXFFFF

Need address translation!
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Second copy of program from previous example

Physical
Memory
00000
0x0300
Process view of memory Physical addresses
App X
éﬂal: dw 32 ) ox1300 00000020 | O<°°% PP
start: 1w r‘l,@(datal) 0X1;00 8C2é@4C@
Jal  checkit 0x1904 0C00 0x1309 790000020
loop:  addi ri, ri, -1 0x1908 2021FFFF
bnz  rl, loop 0x190C 14200642
. ~ ex{oee | 8c2004C0
Qeckit: / Ox 0C000680
2021FFFF
: S 14200642
* One of many possible translations!
: OXFFFF
* Where does translation take place?

Compile time, Link/Load time, or Execution time?
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From Program to Process

other
object
modules

source
program

compiler or
assembler

compile
time

object
module

system
library

dynamicall
loaded
system
library
dynamic
linking

linkage
editor

load
module

loader

h 4

121

in-memory
binary
memory
image

\, load
time

executior
> time (run
time)

* Preparation of a program for execution involves components
at:
— Compile time (i.e., “gcc’”)
— Link/Load time (UNIX “Id" does link)
— Execution time (e.g,, dynamic libs)
* Addresses can be bound to final values anywhere in this path
— Depends on hardware support
— Also depends on operating system

* Dynamic Libraries

— Linking postponed until execution

— Small piece of code (i.e. the stub), locates appropriate memory-
resident library routine

— Stub replaces itself with the address of the
routine, and executes routine
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Recall: Uniprogramming

* Uniprogramming (no Translation or Protection)

— Application always runs at same place in physical memory since
only one application at a time

— Application can access any physical address

OxFFFFFFFF
Operating
System
s g
S
™ o
=l
$ 2
Application
0x00000000

— Application given illusion of dedicated machine by giving it
reality of a dedicated machine

3/4/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 13.22



Primitive Multiprogramming

* Multiprogramming without Translation or Protection
— Must somehow prevent address overlap between threads

OxFFFFFFFF
Operating
System
Application2 0x00020000
Application|
0x00000000

— Use Loader/Linker: Adjust addresses while program loaded into
memory (loads, stores, jJumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader (relocation)
» Common in early days (... till Windows 3.x, 957)

* With this solution, no protection: bugs in any program can cause
other programs to crash or even the OS
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Multiprogramming with Protection

» Can we protect programs from each other without
translation?

— Yes: Base and Bound!
— Used by, e.g,, Cray-| supercomputer

: OxFFFFFFFF
Operating
System
Bound= 0x10000 —
Base = 0x20000 —| Application2 0x00020000
Application|
0x00000000
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Recall: Base and Bound (No Translation)

0000...
code
* Still protects OS and isolates program Static Data
* Requires relocating loader heap
* No addition on address path
Base Original Program
1000... " 1000... — 0000...
Static D: i
Program  1010... tatic Lata Static Data
address heap heap
Bound
1100... 1100... stack 0100...
FFFF...
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Recall: General Address translation

Virtual
Addresses

Physical
Addresses

Untranslated read or write

» Consequently, two views of memory:
— View from the CPU (what program sees, virtual memory)
— View from memory (physical memory)
— Translation box (Memory Management Unit or MMU) converts between the two views

* Translation = much easier to implement protection!

— If task A cannot even gain access to task B's data, no way
for A to adversely affect B

* With translation, every program can be linked/loaded into same
region of user address space
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Recall: Base and Bound (with Translation)

0000...
code
Addresses translated Static Data
on-the-fly
heap
Basleofa\g'd. fess ------- o 1000...
Program 0010... \éy’\\ Static Data
=
address UIOIO.. heap
Bound
0100... 100
* Hardware relocation
 (Can the program touch O%? FEFF

* (Can it touch other programs?
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Issues with Simple B&B Method

process 6

process 5

process 2

—>

0Ss

process 6

process 5

process 6

process 5

process 9

0S

Fragmentation problem over time
Missing support for sparse address space

Hard to do inter-process sharing
— Want to share code segments when possible

— Want to share memory between processes

0S

— Helped by providing multiple segments per process
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process 11

—J

— Not every process is same size = memory becomes fragmented over time

— Would like to have multiple chunks/program (Code, Data, Stack, Heap, etc)






_ More Flexible Segmentation

|

subroutine stack . 4
symbol
table

2

Ssqrt
main E
program . 3
: user view of physical
logical address E memory Space memory space .

* Logical View: multiple separate segments
— Typical: Code, Data, Stack
— Others: memory sharing, etc.

» Fach segment is given region of contiguous memory
— Has a base and limit

— Can reside anywhere in physical memo
3/4/21 Crooks & Joseph CS162 © UCB Spring 2021 Lec 13.30



Implementation of Multi-Segment Model

Virtual Offset offset Error
Address BaseO | Limit0 |V |
Limit|
Base3 | Limit3 Physical
Base4 | Limit4 |V Address
Base5 | LimitS [N
Base6 | Limité [ N
Base7 | Limit7 |V Check Valid
* Segment map resides in processor Acctss
— Segment number mapped into base/limit pair Error

— Base added to offset to generate physical address
— Error check catches offset out of range

* As many chunks of physical memory as entries
— Segment addressed by portion of virtual address

— However, could be included in instruction instead:
» x86 Example: mov [es:bx],ax.

* What is “V/N" (valid / not valid)?
— Can mark segments as invalid; requires check as well
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Intel x86 Special Registers

80386 Special Registers

Seginent tegisiels

Code Seg.
15 CS o} 15 DS o]
Stack Seg.
15 SS o} 15 ES o]
Exita Seg.
15 ES o} 15 GS o]
N | 1O O|D|L|(T|S|Z A P c
X|Tt|eL |F|F|E|F|F|E|X|F|X|F|X|F
1§ 14 13 1211 10 ¢ &8 72 &6 S 4+ 3 2 1 O
P E|T|TM|P
G Tlsls el CRO Unuosed
3130 S 43210 31 0
Page Fault Page Ditector WNot
Li nengl?Addles CR2 Bg’:e chisicl}" Used
o g 3}(=Rﬁel\'ed 2

PG=Paging Enable
ET=Einulatich nge
TS=Task Switch

EM=Einulate Coplocessol
b P=path coplrocessol present
PE=Potecied Mode enable

WNT=Nested Task
LOPL=L/O Privilege Level
OF=Dveiflow Flag
DE=Ditection Flag
[F:ln‘!cl'l'ugt Flag
TE=Tiap Flag
SE=Sign Flag
ZF=Zelo Flag
AF=Auxiliaty Flag
PE=Pauity Flag
CF=Carry Flag
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Data Seg.

Exita Seg.

Extra. Seg

CR1

Flags

CR3

15 3

I~

Ihdex

~

RPL = Requestor Privilege Level
TL=Table Indicator

(0=GDT, 1=LDT)
Lhdex =Ihdex into table

Protected Mode segunent selector

Typical Segment Register
— Current Priority is RPL of Code Segment (CS)
Segmentation can't be just “turned off”
— What if we just want to use paging?
— Set base and bound to all of memory, in all segments
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Example: Four Segments (16-bit addresses)

Seg ID # Base Limit
- Offset 0 (code) 0x4000 |0x0800
15 14 13 0 | (data) 0x4800 |0x1400
Virtual Address Format 2 (shared) | OxFO00 |0xI1000
3 (stack) 0x0000 |0x3000
0x0000 0x0000
0x4000
0x8000
0xC000
Virtual Physical
Address Space Address Space
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Example: Four Segments (16-bit addresses)

Seg ID # Base Limit

- Offset 0 (code) 0x4000 | 0x0800
15 1413 0 | (data) 0x4800 | 0x1400
Virtual Address Format 2 (shared) | OxFO00 |0xI1000
3 (stack) 0x0000 | 0x3000
0x0000 >e9P =0 0x0000
0x4000 ey
0x8000
0xC000
Virtual Physical
Address Space Address Space
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Example: Four Segments (16-bit addresses)

Seg ID # Base Limit

- Offset 0 (code) 0x4000 |0x0800
15 14 13 0 | (data) 0x4800 |0x1400
Virtual Address Format 2 (shared) | OxFO00 |0xI1000
3 (stack) 0x0000 |0x3000
0x0000 Seng =0 0x0000
0x4000 Segib=11 5 Oxa000
> 0x5C00
0x8000
0xC000
Virtual Physical
Address Space Address Space
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Example: Four Segments (16-bit addresses)

Seg ID # Base Limit

- Offset 0 (code) 0x4000 | 0x0800
15 14 13 0 | (data) 0x4800 | 0x1400
Virtual Address Format 2 (shared) | OxFO00 |0xI1000
3 (stack) 0x0000 | 0x3000
0x0000 Seng =0 0x0000
0x4000 SegID =1 3 0x4000 — Might
X _|_> 0x4800 be shared
0x5C00 —~
0x8000
Space for
P~ CI))th A
0xC000 € Apps
0xF000 Shared with
Other Apps
Virtual Physical
Address Space Address Space
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Example of Segment Translation (16-bit address)

0x240 main: la $a0, varx
0x244 jal strlen Seg ID # Base Limit
. 0 (code) 0x4000 |0x0800
0x360 strlen: 1i $vo, © ;count
0x364 loop: 1b  $to, ($a0) | (data) 0x4800 |0x1400
0x368 beq $re,$to, done 2 (shared) | 0xFO00 |0xI000
3 (stack) 0x0000 |0x3000

0x4050 varx dw 0x314159

Let's simulate a bit of this code to see what happens (PC=0x240):
|, Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? O; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC
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Example of Segment Translation (|6bit address)

= 10x240 main: la $a0, varx
o0x244 jal strlen
0x360 strlen: 1i $vo, © ;count
ox364 loop: l1b  $to, (%a0)
0x368 beq $ro,$te, done
0x4050 varx dw 0x314159

Let's simulate a bit of this code to see what happens

|, Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset! 0x240

Physical address? Base=0x4000, so physical addr=0x4240

Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC

2. Fetch Ox244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC

Crooks & Joseph CS162 © UCB Spring 2021
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Seg ID # Base Limit

0 (code) 0x4000 | 0x0800

| (data) 0x4800 |0xI1400

2 (shared) |0xFO00 |Ox1000

3 (stack) 0x0000 |0x3000
PC=0x240):
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Example of Segment Translation (|6bit address)

= 10x240 main:
0x244

0x368

0x4050 varx

la $a@, varx
jal strlen

0x360 strlen: 1i $vo, © ;count
0x364 loop: 1b $t0, (%a0

beq $ro,$te, done

dw 0x314159

Let's simulate a bit of this code to see what happens
|, Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? O; Offset? 0x240

Seg ID # Base Limit

0 (code) 0x4000 | 0x0800

| (data) 0x4800 |0xI1400

2 (shared) |0xFO00 |Ox1000

3 (stack) 0x0000 |0x3000
PC=0x240):

Physical address? Base=0x4000, so physical addr=0x4240

Fetch instruction at 0x4240. Get “la $a0, varx”

Move 0x4050 — $a0, Move PC+4—PC

2. Fetch Ox244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC

3. Fetch Ox360. Translated to Physical=0x4360. Get “li $v0, 0"
Move 0x0000 — $vO, Move PC+4—PC
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=—10x0240 main: la $a@, varx

Example of Segment Translation (|6bit address)

0x0244 jal strlen

0x0360 strlen: 1i $vO, © ;count

0x0364 loop: l1b  $to, (%a0
0x0368 beq $%$re,%to, done
0x4050 varx dw 0x314159

Let's simulate a bit of this code to see what happens

|, Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset! 0x240

Seg ID # Base Limit

0 (code) 0x4000 | 0x0800

| (data) 0x4800 |0xI1400

2 (shared) |0xFO00 |Ox1000

3 (stack) 0x0000 |0x3000
PC=0x0240):

Physical address? Base=0x4000, so physical addr=0x4240

Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC

Fetch 0x0244. Translated to Physical=0x4244. Get “jal strlen”

Move 0x0248 — $ra (return address!), Move 0x0360 — PC
3. Fetch Ox0360. Translated to Physical=0x4360. Get “li $v0, 0"

Move 0x0000 — $v0O, Move PC+4—PC

Since $a0 is 0x4050, try to load byte from 0x4050

Translate 0x4050 (0100 0000 0101 0000). Virtual segment #? |; Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850,

Load Byte from 0x4850—%t0, Move PC+4—PC

Crooks & Joseph CS162 © UCB Spring 2021

Fetch Ox0364. Translated to Physical=0x4364. Get “Ib $t0, ($a0)"
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Observations about Segmentation

Translation on every instruction fetch, load or store

Virtual address space has holes

— Segmentation efficient for sparse address spaces
When it is OK to address outside valid range?

— This is how the stack (and heap?) allowed to grow

— For instance, stack takes fault, system automatically increases size of stack

Need protection mode in segment table
— For example, code segment would be read-only
— Data and stack would be read-write (stores allowed)

What must be saved/restored on context switch?
— Segment table stored in CPU, not in memory (small)

— Might store all of processes memory onto disk when
switched (called “swapping™)
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What if not all segments fit in memory!?

operating

system
rocess P.
@l swap out ;

(@ swap in
——— |
L e

—~—

process P,

o

user
SRECe backing store

* Extreme form of Context Switch: Swapping
— To make room for next process, some or all of the previous process is moved to disk
» Likely need to send out complete segments
— This greatly increases the cost of context-switching

* What might be a desirable alternative?
— Some way to keep only active portions of a process in memory at

any one time
— Need finer granularity control over physical memory
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Problems with Segmentation

Must fit variable-sized chunks into physical memory

* May move processes multiple times to fit everything

Limited options for swapping to disk

Fragmentation: wasted space
— External: free gaps between allocated chunks
— Internal: don't need all memory within allocated chunks
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Recall: General Address Translation

Address
Space |

Address
Space 2

Translation Map | Translation Map 2

Physical Address Space
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Paging: Physical Memory in Fixed Size Chunks

* Solution to fragmentation from segments?
— Allocate physical memory in fixed size chunks (“pages”)
— Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 .. 110010

» Each bit represents page of physical memory
1 = allocated, @ = free

 Should pages be as big as our previous segments!?
— No: Can lead to lots of internal fragmentation
» Typically have small pages (IK-16K)
— Consequently: need multiple pages/segment
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How to Implement Simple Paging!?

Virtual Address:

PageTabIePtr

PageTableSize

\ page #4

Access Error

page #5

V,RW

» Page Table (One per process)

— Resides in physical memory

_1

Physical Address
Check Perm

v

Access
Error

— Contains physical page and permission for each virtual page (e.g,, Valid bits, Read, Write, etc.)

* Virtual address mapping

— Offset from Virtual address copied to Physical Address

» Example: |0 bit offset = 1024-byte pages
— Virtual page # is all remaining bits

» Example for 32-bits: 32-10 = 22 bits, i.e., 4 million entries
» Physical page # copied from table into physical address

— Check Page Table bounds and permissions
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Simple Page Table Example

Example (4-byte pages)

ox00 T 0000 0000 000
b
. c >0 L‘E__ 00050000 0x04 |5
: ' !
: 0x04 T 0040 9188 [Joooo 1100 L | 00
: f
: 2 0000 0100 |
! 0x067 | —> L[  0x08
: h
} 0x08 i 00001000 Page I oxoc |
: 0x097 1) Table f
: = g | OxOE!
' —> 0x10 =i
Virtual 0000 0110 ===-> 0000 1110 :
Memory 00001001 ===-> 0000 0101 c
Physical
................................................................................. Memory.........
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What about Sharing!?

Virtual Address

(Process A): BRSO ]
page #0 VR
V.R

This physical page
appears in address
space of both processes

Virtual Address
(Process B):
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Where is page sharing used !

The “kernel region™ of every process has the same page table entries
— The process cannot access it at user level
— But on U->K switch, kernel code can access it AS WELL AS the region for THIS user

» What does the kernel need to do to access other user processes?

Different processes running same binary!
— Execute-only, but do not need to duplicate code segments

User-level system libraries (execute only)

Shared-memory segments between different processes
— Can actually share objects directly between processes

» Must map page into same place in address space!

— This is a limited form of the sharing that threads have within a
single process
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Memory Layout for Linux 32-bit (Pre-Meltdown patch!)

1GB
0xCcO000000 == TASK_SIZE

4 } Random stack offset

RLIMIT_STACK (e.g., SMB)

} Random mmap offset

3GB _< program break
brk

start_brk
Random brk offset

serName;
end_data

S own prototype”; start_data
end_code

-8., /bin/gonzo) | 60043000
g 2]

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpacelLayout.png
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Some simple security measures

* Address Space Randomization

— Position-Independent Code = can place user code
anywhere in address space

» Random start address makes much harder for attacker
to cause jump to code that it seeks to take over

— Stack & Heap can start anywhere, so randomize
placement

» Kernel address space isolation

— Don't map whole kermel space into each process,
switch to kemel page table

— Meltdown = map none of kemnel into user model!

Crooks & Joseph CS162 © UCB Spring 2021

Kernel page-table isolation

Kernel space

Kernel space

Kernel space

User space

User space

User space

User mode
Kernel mode

Kernel mode

User mode
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Summary: Paging

. . Page Table
Virtual memory view 7 Physical memory view
1411 1111 11 (1101 [ 777, FHY y

stack——— 1110|1100 717,

1111 0000 [_StaCK 11101| null \

11100| null
11011| null
11010| null

11001| null
1100 0000 11000| null
10111 null
10110| null

‘I 10101| null
10100 null

10011| null
neap 10010 10000

10001| 01111 hean
10000( 01110 o 0111 000

01111 null
01110 null
01101 null 0101 000
01100| null
0100 0000 01011| 01101
01010| 01100
01001| 01011

01000, 01010

110 0000

1000 0000

|

y Vv

A

00111| null code
code 00110| null 0001 0000
0000 0000 \881 e e 0000 0000
—— 00011| 00101
page # C‘;f,f_slet 00010 00100

00001| 00011
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Summary: Paging

. . Page Table . .
Virtual memory view 11111 1101 Physical memory view

1111 111 —— —>11110| 11100

11101 null

11100 I
1110 0000 1011] null 1100000
11010/ nuli
N 11001| nuli
. 11000( null
What happens if 101111 null

stack grows to 10110| null

10101| null

1110 00007? 10100 null

10011| null

eap 10010| 10000
10001| 01111

10000 01110 > heap 0111 000

01111 null
01110| null
01101 null 0101 000
01100| nuli
0100 0000 01011| 01101
01010/ 01100
01001| 01011
01000

01010
00111| nuli
00110| null
00101| null
00100 null
00011| 00101
00010| 00100
00001| 00011
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—
)
Q
A

1000 0000

y Vv

|

0001 0000

L 100000000

0000 0000
page # c‘;t’f_s’et
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)
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Summary: Paging

. . Page Table
Virtual memory view 11 1?1 11101 ysical memory view
/
11 1 — 1110|1100 _
11101/ 10111 \ |
—» 11100 10110 ack
1110 0000 11011| null S22..{1110 0000
11001 null
1100 0000 11000 null
10111| null ack
10110, null
10101| null
10100( null
— qoon| o Allocate rrllew
10010 10000 . ages where
1000 0000 %:10001 01111 > Pag '
10000 01110 . room!
01111| null

0100 0000

0000 0000

—
page # :l'f_s’;et
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null

null

null
01101

01100

01011

01010

null
null
null
null

00101

00100

00011

00010

0101 000

7

0001 0000

L 100000000
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How big do things get!

32-bit address space => 232 bytes (4 GB)
— Note: “b” = bit, and “B" = byte
— And for memory:
» "K'(kilo)  =210= 1024
» "M’(mega) = 2% = (1024)?
» "G'(giga) =20 =(1024)
Typical page size: 4 KB
— how many bits of the address is that ? (remember 2'9 = 1024)
— Answer — 4KB = 4x219 =212 = |2 bits of the address
So how big is the simple page table for each process?
— 23%/212 = 220 (that's about a million entries) x 4 bytes each => 4 MB
— When 32-bit machines got started (vax | 1/780, intel 80386), 16 MB was a LOT of memory

How big is a simple page table on a 64-bit processor (x86_64)?

— 254212 = 2>(that's 4.5x10'> or 4.5 exa-entries)x8 bytes each =
36x10'> bytes or 36 exa-bytes!!ll This is a ridiculous amount of memory!

Q

10° (But not quitel): Sometimes called “Ki” (Kibi)
1,048,576 10 (But not quitel): Sometimes called “Mi”" (Mibi)
1,073,741,824 =~ 107 (But not quitel): Sometimes called “Gi"” (Gibi)

Q

— This is really a lot of space — for only the page tablel!l
The address space is sparse, I.e., has holes that are not mapped to physical memory

— S0, most of this space is taken up by page tables mapped to nothing
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Page Table Discussion

* What needs to be switched on a context switch!?
— Page table pointer and limit
* What provides protection here?
— Translation (per process) and dual-mode!
— Can't let process alter its own page table!
* Analysis
— Pros
» Simple memory allocation
» Easy to share
— Con: What if address space Is sparse!
» E.g, on UNIX| code starts at O, stack starts at (23!-1)

» With K pages, need 2 million page table entries!
— Con: What if table is really big?

» Not all pages used all the time = would be nice to have
working set of page table in memory

* Simple Page table is way too big!
— Does it all need to be in memory?
— How about multi-level paging?
— or combining paging and segmentation
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Summary

* Segment Mapping
— Segment registers within processor
— Segment ID associated with each access

» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)

— Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base
» Page Tables
— Memory divided into fixed-sized chunks of memory

— Virtual page number from virtual address mapped through page table to physical page
number

— Offset of virtual address same as physical address

— Large page tables can be placed into virtual memory
* Next Time: Multi-Level Tables

— Virtual address mapped to series of tables

— Permit sparse population of address space
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