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Recall: Deadlock is A Deadly type of Starvation
• Starvation: thread waits indefinitely

– Example, low-priority thread waiting for resources 
constantly in use by high-priority threads

• Deadlock: circular waiting for resources
– Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

• Deadlock Þ Starvation but not vice versa
– Starvation can end (but doesn’t have to)
– Deadlock can’t end without external intervention

Res 2Res 1

Thread
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Recall: Four requirements for occurrence of Deadlock
• Mutual exclusion

– Only one thread at a time can use a resource.
• Hold and wait

– Thread holding at least one resource is waiting to acquire additional resources held 
by other threads

• No preemption
– Resources are released only voluntarily by the thread holding the resource, after 

thread is finished with it
• Circular wait

– There exists a set {T1, …, Tn} of waiting threads
» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1
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• Banker’s algorithm assumptions:
– Every thread pre-specifies is maximum need for resources

» However, it doesn’t have to ask for the all at once… (key advantage)
– Threads may now request and hold dynamically up to the maximum specified number of 

each resources
• Simple use of the deadlock detection algorithm

– For each request for resources from a thread:
» Technique: pretend each request is granted, then run deadlock detection algorithm, and grant 

request if result is deadlock free (conservative!)
– Keeps system in a “SAFE” state, i.e., there exists a sequence {T1, T2, … Tn} with T1

requesting all remaining resources, finishing, then T2 requesting all remaining resources, etc..
• Banker’s algorithm prevents deadlocks involving threads and 

resources by stalling requests that would lead to deadlock
– Can’t fix all issues – e.g., thread going into an infinite loop!

Recall: Banker’s Algorithm
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Revisit: Deadlock Avoidance using Banker’s Algorithm
• Idea: When a thread requests a resource, OS checks if it would result in 

deadlock an unsafe state
– If not, it grants the resource right away
– If so, it waits for other threads to release resources

• Example:

• At point that Thread B attempts y.Acquire():
– Banker’s algorithm: Pretend to give y mutex to B
– Try to run deadlock detection algorithm

» Neither A nor B can get enough resources to complete
– Stall B by putting it to sleep.

Thread B Waits 
until Thread A 
releases 
resources…

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();
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Virtualizing Resources

• Physical Reality: Different Processes/Threads share the same hardware
– Need to multiplex CPU (Just finished: scheduling)
– Need to multiplex use of Memory (starting today)
– Need to multiplex disk and devices (later in term)

• Why worry about memory sharing?
– The complete working state of a process and/or kernel is defined by its data in memory (and 

registers)
– Consequently, cannot just let different threads of control use the same memory

» Physics: two different pieces of data cannot occupy the same locations in memory
– Probably don’t want different threads to even have access to each other’s 

memory if in different processes (protection)
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Recall: Four Fundamental OS Concepts
• Thread: Execution Context

– Fully describes program state
– Program Counter, Registers, Execution Flags, Stack

• Address space (with or w/o translation)
– Set of memory addresses accessible to program (for read or write)
– May be distinct from memory space of the physical machine 

(in which case programs operate in a virtual address space)
• Process: an instance of a running program

– Protected Address Space + One or more Threads
• Dual mode operation / Protection

– Only the “system” has the ability to access certain resources
– Combined with translation, isolates programs from 

each other and the OS from programs
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THE BASICS: Address/Address Space

• What is 210 bytes (where a byte is appreviated as “B”)?
– 210 B = 1024B = 1 KB (for memory, 1K = 1024, not 1000)

• How many bits to address each byte of 4KB page?
– 4KB = 4×1KB = 4× 210= 212Þ 12 bits

• How much memory can be addressed with 20 bits? 32 bits? 64 bits?
– Use 2k

k bits

Address:

Address Space:

2k “things”
“Things” here usually
means “bytes” (8 bits)
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Address Space, Process Virtual Address Space

0x000…

0xFFF…

• Definition: Set of accessible addresses and the state associated 
with them

– 232 = ~4 billion bytes on a 32-bit machine
• How many 32-bit numbers fit in this address space?

– 32-bits = 4 bytes, so 232/4 = 230=~1billion
• What happens when processor reads or writes to an address?

– Perhaps acts like regular memory
– Perhaps causes I/O operation

» (Memory-mapped I/O)
– Causes program to abort (segfault)?
– Communicate with another program
– …

code

Static Data

heap

stack
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Recall: Process Address Space: typical structure

Processor
registers

PC:

SP:

0x000…

0xFFF…

Code Segment

Static Data

heap

Stack Segment

sbrk syscall
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Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency
– “Active” component

• Address space encapsulate protection:
– “Passive” component
– Keeps bugs from crashing the entire system

• Why have multiple threads per address space?
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Important Aspects of Memory Multiplexing
• Protection:

– Prevent access to private memory of other processes
» Different pages of memory can be given special behavior (Read Only, Invisible to user 

programs, etc).
» Kernel data protected from User programs
» Programs protected from themselves

• Translation: 
– Ability to translate accesses from one address space (virtual) to a different one (physical)
– When translation exists, processor uses virtual addresses, physical memory uses physical 

addresses
– Side effects:

» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

• Controlled overlap:
– Separate state of threads should not collide in physical memory.  

Obviously, unexpected overlap causes chaos!
– Conversely, would like the ability to overlap when desired 

(for communication)
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Alternative View: Interposing on Process Behavior

• OS interposes on process’ I/O operations
– How? All I/O happens via syscalls

• OS interposes on process’ CPU usage
– How? Interrupt lets OS preempt current thread

• Question: How can the OS interpose on process’ memory accesses?
– Too slow for the OS to interpose every memory access
– Translation: hardware support to accelerate the common case
– Page fault: uncommon cases trap to the OS to handle
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Recall: Loading

storage

Processor

OS Hardware Virtualization

Hardware

Software

Memory

Networks

Displays
Inputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection 
Boundary

Ctrlr
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Binding of Instructions and Data to Memory

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, -1
bnz r1, loop
…

checkit: …

Process view of memory

0x0300 00000020
… …

0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
…

0x0A00

Physical addresses

Assume 4byte words
0x300 = 4 * 0x0C0
0x0C0 = 0000 1100 0000
0x300 = 0011 0000 0000
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0x0300 00000020
… …

0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
…

0x0A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, -1
bnz r1, loop
…

checkit: …

Process view of memory Physical addresses

8C2000C0
0C000340
2021FFFF
14200242

0x0900

0xFFFF

0x0300

0x0000

00000020

Physical 
Memory

Binding of Instructions and Data to Memory
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Second copy of program from previous example

0x0300 00000020
… …

0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
…

0x0A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, -1
bnz r1, loop
…

checkit: …

Process view of memory Physical addresses

0x0900

0xFFFF

0x0300

0x0000

Physical
Memory

?
App X

Need address translation!



Lec 13.203/4/21 Crooks & Joseph CS162 © UCB Spring 2021

0x1300 00000020
… …

0x1900 8C2004C0
0x1904 0C000680
0x1908 2021FFFF
0x190C 14200642
…

0x1A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, -1
bnz r1, loop
…

checkit: …

Process view of memory Physical addresses

0x0900

0xFFFF

0x0300

0x0000

Physical
Memory

App X

8C2004C0
0C000680
2021FFFF
14200642

000000200x1300

0x1900

• One of many possible translations!
• Where does translation take place?

Compile time, Link/Load time, or Execution time?

Second copy of program from previous example
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From Program to Process
• Preparation of a program for execution involves components 

at:
– Compile time (i.e., “gcc”)
– Link/Load time (UNIX “ld” does link)
– Execution time (e.g., dynamic libs)

• Addresses can be bound to final values anywhere in this path
– Depends on hardware support 
– Also depends on operating system

• Dynamic Libraries
– Linking postponed until execution
– Small piece of code (i.e. the stub), locates appropriate memory-

resident library routine
– Stub replaces itself with the address of the 

routine, and executes routine



Lec 13.223/4/21 Crooks & Joseph CS162 © UCB Spring 2021

Recall: Uniprogramming

• Uniprogramming (no Translation or Protection)
– Application always runs at same place in physical memory since 

only one application at a time
– Application can access any physical address

– Application given illusion of dedicated machine by giving it 
reality of a dedicated machine

0x00000000

0xFFFFFFFF

Application

Operating
System

Va
lid

 3
2-

bi
t

A
dd

re
ss

es
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Primitive Multiprogramming
• Multiprogramming without Translation or Protection

– Must somehow prevent address overlap between threads

– Use Loader/Linker: Adjust addresses while program loaded into 
memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader (relocation)
» Common in early days (… till Windows 3.x, 95?)

• With this solution, no protection: bugs in any program can cause 
other programs to crash or even the OS

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000
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Multiprogramming with Protection

• Can we protect programs from each other without 
translation?

– Yes: Base and Bound!
– Used by, e.g., Cray-1 supercomputer

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000Base  = 0x20000

Bound= 0x10000
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Recall: Base and Bound (No Translation)
code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…
Bound

1100…

1000…

Base

>=

<

Program
address

1010…

• Still protects OS and isolates program
• Requires relocating loader
• No addition on address path

code

Static Data

heap

stack

0000…

0100…

Original Program
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Recall: General Address translation

• Consequently, two views of memory:
– View from the CPU (what program sees, virtual memory)
– View from memory (physical memory)
– Translation box (Memory Management Unit or MMU) converts between the two views

• Translation Þ much easier to implement protection!
– If task A cannot even gain access to task B’s data, no way 

for A to adversely affect B
• With translation, every program can be linked/loaded into same 

region of user address space

Physical
Addresses

CPU MMU

Virtual
Addresses

Untranslated read or write
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Recall: Base and Bound (with Translation)
code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

Program
address

Base Address

Bound <

1000…

1100…
0100…

• Hardware relocation
• Can the program touch OS?
• Can it touch other programs?

0010…

Addresses translated 
on-the-fly

1010…

code

Static Data

heap

stack

0000…

0100…

Original Program
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Issues with Simple B&B Method

• Fragmentation problem over time
– Not every process is same size Þ memory becomes fragmented over time

• Missing support for sparse address space
– Would like to have multiple chunks/program (Code, Data, Stack, Heap, etc)

• Hard to do inter-process sharing
– Want to share code segments when possible
– Want to share memory between processes
– Helped by providing multiple segments per process

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 9

process 6

process 9

OS

process 10
process 11
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More Flexible Segmentation

• Logical View: multiple separate segments
– Typical: Code, Data, Stack
– Others: memory sharing, etc.

• Each segment is given region of contiguous memory
– Has a base and limit
– Can reside anywhere in physical memory

1

3

2

4

user view of
memory space 

1
4

2

3

physical 
memory space

1

2
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Implementation of Multi-Segment Model

• Segment map resides in processor
– Segment number mapped into base/limit pair
– Base added to offset to generate physical address
– Error check catches offset out of range

• As many chunks of physical memory as entries
– Segment addressed by portion of virtual address
– However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax. 
• What is “V/N” (valid / not valid)?

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V

+ Physical
Address

> Erroroffset

Check Valid

Access
Error
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Intel x86 Special Registers

• Typical Segment Register
– Current Priority is RPL of Code Segment (CS)

• Segmentation can’t be just “turned off”
– What if we just want to use paging?
– Set base and bound to all of memory, in all segments

80386 Special Registers
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Example: Four Segments (16-bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

Physical
Address Space
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Example: Four Segments (16-bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x4000

Physical
Address Space

SegID = 0
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Example: Four Segments (16-bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

Physical
Address Space

SegID = 0

SegID = 1
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Example: Four Segments (16-bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

0xF000

Physical
Address Space

Space for
Other Apps

Shared with
Other Apps

Might 
be shared

SegID = 0

SegID = 1
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Let’s simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 ® $a0, Move PC+4®PC

0x240 main: la $a0, varx
0x244 jal strlen

… …
0x360 strlen: li $v0, 0  ;count
0x364 loop: lb $t0, ($a0)
0x368 beq $r0,$t0, done

… …
0x4050 varx dw 0x314159

Seg ID # Base Limit
0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

Example of Segment Translation (16-bit address)
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Let’s simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 ® $a0, Move PC+4®PC

2. Fetch 0x244. Translated to Physical=0x4244.  Get “jal strlen”
Move 0x0248 ® $ra (return address!), Move 0x0360 ® PC

0x240 main: la $a0, varx
0x244 jal strlen

… …
0x360 strlen: li $v0, 0  ;count
0x364 loop: lb $t0, ($a0)
0x368 beq $r0,$t0, done

… …
0x4050 varx dw 0x314159

Seg ID # Base Limit
0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

Example of Segment Translation (16bit address)
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Let’s simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 ® $a0, Move PC+4®PC

2. Fetch 0x244. Translated to Physical=0x4244.  Get “jal strlen”
Move 0x0248 ® $ra (return address!), Move 0x0360 ® PC

3. Fetch 0x360. Translated to Physical=0x4360. Get “li $v0, 0”
Move 0x0000 ® $v0, Move PC+4®PC

0x240 main: la $a0, varx
0x244 jal strlen

… …
0x360 strlen: li $v0, 0  ;count
0x364 loop: lb $t0, ($a0)
0x368 beq $r0,$t0, done

… …
0x4050 varx dw 0x314159

Seg ID # Base Limit
0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

Example of Segment Translation (16bit address)
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Let’s simulate a bit of this code to see what happens (PC=0x0240):
1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 ® $a0, Move PC+4®PC

2. Fetch 0x0244. Translated to Physical=0x4244.  Get “jal strlen”
Move 0x0248 ® $ra (return address!), Move 0x0360 ® PC

3. Fetch 0x0360. Translated to Physical=0x4360. Get “li $v0, 0”
Move 0x0000 ® $v0, Move PC+4®PC

4. Fetch 0x0364. Translated to Physical=0x4364. Get “lb $t0, ($a0)”
Since $a0 is 0x4050, try to load byte from 0x4050
Translate 0x4050 (0100 0000 0101 0000). Virtual segment #? 1; Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850, 
Load Byte from 0x4850®$t0, Move PC+4®PC

0x0240 main: la $a0, varx
0x0244 jal strlen

… …
0x0360 strlen: li $v0, 0  ;count
0x0364 loop: lb $t0, ($a0)
0x0368 beq $r0,$t0, done

… …
0x4050 varx dw 0x314159

Seg ID # Base Limit
0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

Example of Segment Translation (16bit address)
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Observations about Segmentation

• Translation on every instruction fetch, load or store
• Virtual address space has holes

– Segmentation efficient for sparse address spaces
• When it is OK to address outside valid range?

– This is how the stack (and heap?) allowed to grow
– For instance, stack takes fault, system automatically increases size of stack

• Need protection mode in segment table
– For example, code segment would be read-only
– Data and stack would be read-write (stores allowed)

• What must be saved/restored on context switch?
– Segment table stored in CPU, not in memory (small)
– Might store all of processes memory onto disk when 

switched (called “swapping”)
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What if not all segments fit in memory?

• Extreme form of Context Switch: Swapping
– To make room for next process, some or all of the previous process is moved to disk

» Likely need to send out complete segments 
– This greatly increases the cost of context-switching

• What might be a desirable alternative?
– Some way to keep only active portions of a process in memory at 

any one time
– Need finer granularity control over physical memory
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Problems with Segmentation

• Must fit variable-sized chunks into physical memory

• May move processes multiple times to fit everything

• Limited options for swapping to disk

• Fragmentation: wasted space
– External: free gaps between allocated chunks
– Internal: don’t need all memory within allocated chunks
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Recall: General Address Translation

Prog 1
Virtual

Address
Space 1

Prog 2
Virtual

Address
Space 2

Code

Data

Heap
Stack

Code

Data

Heap
Stack

Data 2

Stack 1

Heap 1

OS heap & 
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
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Paging: Physical Memory in Fixed Size Chunks

• Solution to fragmentation from segments?
– Allocate physical memory in fixed size chunks (“pages”)
– Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 … 110010

» Each bit represents page of physical memory
1 Þ allocated, 0 Þ free

• Should pages be as big as our previous segments?
– No: Can lead to lots of internal fragmentation

» Typically have small pages (1K-16K)
– Consequently: need multiple pages/segment
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Physical Address

Offset

How to Implement Simple Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page (e.g., Valid bits, Read, Write, etc.)

• Virtual address mapping
– Offset from Virtual address copied to Physical Address

» Example: 10 bit offset Þ 1024-byte pages
– Virtual page # is all remaining bits

» Example for 32-bits: 32-10 = 22 bits, i.e., 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R

page #1 V,R

V,R,W

V,R,W
N

V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #
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Simple Page Table Example

a
b
c
d
e
f
g
h
i
j
k
l

0x00

0x04

0x08

Virtual
Memory

0x00

i
j
k
l

0x04

0x08

e
f
g
h

0x0C

a
b
c
d

0x10

Physical
Memory

Example (4-byte pages)

4
3
1

Page
Table

0

1

2

0000 0000

0001 0000

0000 0100 0000 1100

0000 1000

0000 0100
0x06?

0000 0110 0000 1110

0x0E!
0x09?

0000 1001 0000 0101

0x05!
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PageTablePtrB page #0
page #1
page #2
page #3

page #5

V,R

N
V,R,W

N

page #4 V,R
V,R,W

page #4 V,R

What about Sharing?

OffsetVirtual
Page #

Virtual Address
(Process A):

PageTablePtrA page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N
V,R,W

OffsetVirtual
Page #

Virtual Address
(Process B):

Shared
Page

This physical page
appears in address

space of both processes

page #2 V,R,W
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Where is page sharing used ?

• The “kernel region” of every process has the same page table entries
– The process cannot access it at user level
– But on U->K switch, kernel code can access it AS WELL AS the region for THIS user

» What does the kernel need to do to access other user processes?
• Different processes running same binary! 

– Execute-only, but do not need to duplicate code segments
• User-level system libraries (execute only)
• Shared-memory segments between different processes

– Can actually share objects directly between processes
» Must map page into same place in address space!

– This is a limited form of the sharing that threads have within a 
single process
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http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpaceLayout.png

Memory Layout for Linux 32-bit (Pre-Meltdown patch!)

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpaceLayout.png
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Some simple security measures
• Address Space Randomization

– Position-Independent Code Þ can place user code 
anywhere in address space

» Random start address makes much harder for attacker 
to cause jump to code that it seeks to take over

– Stack & Heap can start anywhere, so randomize 
placement

• Kernel address space isolation
– Don’t map whole kernel space into each process, 

switch to kernel page table
– Meltdown Þ map none of kernel into user mode!
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1111 1111 stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

1111 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111   11101
11110   11100
11101     null   
11100     null   
11011     null
11010     null
11001     null
11000     null
10111     null
10110     null
10101     null
10100     null
10011     null
10010   10000
10001   01111
10000   01110
01111     null
01110     null      
01101     null
01100     null
01011   01101 
01010   01100 
01001   01011
01000   01010
00111     null
00110     null
00101     null 
00100     null 
00011   00101
00010   00100
00001   00011
00000   00010

Page Table
1110 1111

Summary: Paging
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1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111   11101
11110   11100
11101     null   
11100     null   
11011     null
11010     null
11001     null
11000     null
10111     null
10110     null
10101     null
10100     null
10011     null
10010   10000
10001   01111
10000   01110
01111     null
01110     null      
01101     null
01100     null
01011   01101 
01010   01100 
01001   01011
01000   01010
00111     null
00110     null
00101     null 
00100     null 
00011   00101
00010   00100
00001   00011
00000   00010

Page Table

1110 0000

What happens if 
stack grows to 
1110 0000?

Summary: Paging
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Summary: Paging
1111 1111

stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

11111   11101
11110   11100
11101   10111
11100   10110
11011     null
11010     null
11001     null
11000     null
10111     null
10110     null
10101     null
10100     null
10011     null
10010   10000
10001   01111
10000   01110
01111     null
01110     null
01101     null
01100     null
01011   01101 
01010   01100 
01001   01011
01000   01010
00111     null
00110     null
00101     null 
00100     null 
00011   00101
00010   00100
00001   00011
00000   00010

Page Table

0000 0000
0001 0000

0101 000

0111 000

1110 00001110 0000

Physical memory view

data

code

heap

stack

stack

Allocate new 
pages where 
room!
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How big do things get?
• 32-bit address space => 232 bytes (4 GB)

– Note: “b” = bit, and “B” = byte
– And for memory: 

» “K”(kilo) = 210 = 1024 » 103 (But not quite!): Sometimes called “Ki” (Kibi)
» “M”(mega) = 220 = (1024)2 = 1,048,576    » 106 (But not quite!): Sometimes called “Mi” (Mibi)
» “G”(giga)   = 230 = (1024)3 = 1,073,741,824 » 109 (But not quite!): Sometimes called “Gi” (Gibi)

• Typical page size: 4 KB
– how many bits of the address is that ? (remember 210 = 1024)
– Answer – 4KB = 4×210 = 212Þ 12 bits of the address

• So how big is the simple page table for each process?
– 232/212 = 220  (that’s about a million entries) x 4 bytes each => 4 MB
– When 32-bit machines got started (vax 11/780, intel 80386), 16 MB was a LOT of memory

• How big is a simple page table on a 64-bit processor (x86_64)?
– 264/212 = 252(that’s 4.5´1015 or 4.5 exa-entries)´8 bytes each = 

36´1015 bytes or 36 exa-bytes!!!!  This is a ridiculous amount of memory!
– This is really a lot of space – for only the page table!!!

• The address space is sparse, i.e., has holes that are not mapped to physical memory
– So, most of this space is taken up by page tables mapped to nothing
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Page Table Discussion
• What needs to be switched on a context switch? 

– Page table pointer and limit
• What provides protection here?

– Translation (per process) and dual-mode!
– Can’t let process alter its own page table!

• Analysis
– Pros

» Simple memory allocation
» Easy to share

– Con: What if address space is sparse?
» E.g., on UNIX, code starts at 0, stack starts at (231-1)
» With 1K pages, need 2 million page table entries!

– Con: What if table is really big?
» Not all pages used all the time Þ would be nice to have 

working set of page table in memory
• Simple Page table is way too big! 

– Does it all need to be in memory?
– How about multi-level paging? 
– or combining paging and segmentation
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Summary
• Segment Mapping

– Segment registers within processor
– Segment ID associated with each access

» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)

– Each segment contains base and limit information 
» Offset (rest of address) adjusted by adding base

• Page Tables
– Memory divided into fixed-sized chunks of memory
– Virtual page number from virtual address mapped through page table to physical page 

number
– Offset of virtual address same as physical address
– Large page tables can be placed into virtual memory

• Next Time: Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space


