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Recall : Simplified IO architecture

Follows a hierarchical structure 
because of cost: the faster the 
bus, the more expensive it is
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Recall: How does the processor talk to devices?

• Remember, it’s all about abstractions!

Interface 
(What the OS sees)

Internals
(What is needed to implement the 

abstraction)

Hardware interface device 
presents to OS 

Hardware interface device 
presents to OS 

Microcontroller Memory Other chips

Device Controller

Status Command Data
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Recall: Device Drivers
• Device Driver: Device-specific code in the kernel that interacts directly with the 

device hardware
– Supports a standard, internal interface
– Special device-specific configuration supported with the ioctl() system call

• Device Drivers typically divided into two pieces:

– Top half: accessed in call path from system calls
» implements a set of standard, cross-device calls like open(), close(), read(),
write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep until finished

– Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

• Your body is 90% water, the OS is 70% device-drivers
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Recall: Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program
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Ways of Measuring Performance: Times (s) and Rates (op/s)

• Response Time or Latency - time to complete a task
– Measured in units of time (s, ms, us, …, hours, years)

• Throughput or Bandwidth – rate at which tasks are performed
– Measured in units of things per unit time (ops/s, GFLOP/s)

• Start up or Overhead – time to initiate an operation

• Most I/O operations are roughly linear in b bytes
– Latency(b) = Overhead + b/TransferCapacity
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Storage Devices
• Magnetic disks

– Storage that rarely becomes corrupted
– Large capacity at low cost
– Block level random access (except for SMR – later!)
– Slow performance for random access
– Better performance for sequential access

• Flash memory
– Storage that rarely becomes corrupted
– Capacity at intermediate cost (5-20x disk)
– Block level random access
– Good performance for reads; worse for random writes
– Wear patterns issue
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Hard Disk Drives (HDDs)

Read/Write Head Side View

IBM Personal Computer 1986

30MB Hard Disk for 500 dollars
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The Amazing Magnetic Disk

• Store data magnetically on thin metallic film 
bonded to rotating disk of glass, ceramic, or 
aluminum
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The Amazing Magnetic Disk

Store data magnetically on thin metallic film bonded to rotating disk of glass, ceramic, or 
aluminum

Track: concentric circle on surface

Sectors: slice of a track
• Smallest addressable unit
• Are units of transfers

Cylinder all the tracks under the head at a given point

on all surfaces
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The Amazing Magnetic Disk

Sector

Track

CylinderHead

Platter

Track lengths vary across disk: outside tracks 
have more sectors per track, higher bandwidth

Disk is organized into regions of tracks with 
the same number of sector/tracks

Usually, only outer half of radius is used
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The Amazing Magnetic Disk

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the 

proper track

– Rotational latency: wait for desired sector to 
rotate under r/w head

– Transfer time: transfer a block of bits 
(sector) under r/w head

Software
Queue
(Device Driver)

H
ardw

are
C

ontroller

Media Time
(Seek+Rot+Xfer)

Request

Result

Request Time = Queueing Time +  Controller Time + Seek + Rotational + Transfer 
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Typical Numbers for Magnetic Disk

Parameter Info/Range

Space/Density Space: 14TB (Seagate), 8 platters, in 3½ inch form factor!
Areal Density: ≥ 1 Terabit/square inch! (PMR, Helium, …)

Average Seek Time Typically 4-6 milliseconds

Average Rotational Latency Most laptop/desktop disks rotate at 3600-7200 RPM 
(16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk so 4-8 milliseconds

Controller Time Depends on controller hardware

Transfer Time Typically 50 to 250 MB/s. Depends on:
• Transfer size (usually a sector): 512B – 1KB per sector
• Rotation speed: 3600 RPM to 15000 RPM
• Recording density: bits per inch on a track
• Diameter: ranges from  1 in to 5.25 in

Cost Used to drop by a factor of two every 1.5 years (or faster), now slowing down
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Disk Performance Example

• Key to using disk effectively (especially for file systems) is to minimize seek and 
rotational delays

• Assumptions:
– Ignoring queuing and controller times for now
– Avg seek time of 5ms, 

– 7200RPM ⇒ Time for rotation: 60000 (ms/min) / 7200(rev/min) ~= 8ms
– Transfer rate of 50MByte/s, block size of 4Kbyte ⇒

4096 bytes/50×106 (bytes/s) = 81.92 × 10-6 sec  ≅ 0.082 ms for 1 sector



Lec 18.151/4/2021 Crooks & Joseph CS162 © Spring 2021

Disk Performance Example
• Read block from random place on disk (random reads):

– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.082ms) = 9.082ms

– Approx 9ms to fetch/put data: 4096 bytes/9.082×10-3 s ≅ 451KB/s

• Read block from random place in same cylinder:
– Rot. Delay (4ms) + Transfer (0.082ms) = 4.082ms 

– Approx 4ms to fetch/put data: 4096 bytes/4.082×10-3 s ≅ 1.03MB/s

• Read next block on same track (sequential reads):
– Transfer (0.082ms): 4096 bytes/0.082×10-3 s ≅ 50MB/sec 



Lec 18.161/4/2021 Crooks & Joseph CS162 © Spring 2021

Lots of Intelligence in the Controller

• Sectors contain sophisticated error correcting codes
– Disk head magnet has a field wider than track
– Hide corruptions due to neighboring track writes

• Sector sparing
– Remap bad sectors transparently to spare sectors on the same surface

• Slip sparing
– Remap all sectors (when there is a bad sector) to preserve sequential behavior

• Track skewing
– Sector numbers offset from one track to the next, to allow for disk head movement for 

sequential ops
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Hard Drive Prices over Time
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Example of Current HDDs
• Seagate Exos X18 (2020)

– 18 TB hard disk
» 9 platters, 18 heads
» Helium filled: reduce friction and power

– 4.16ms average seek time
– 4096 byte physical sectors
– 7200 RPMs
– Dual 6 Gbps SATA /12Gbps SAS interface

» 270MB/s MAX transfer rate
» Cache size: 256MB 

– Price: $ 562 (~ $0.03/GB)

• IBM Personal Computer/AT (1986)
– 30 MB hard disk
– 30-40ms seek time
– 0.7-1 MB/s (est.)
– Price: $500 ($17K/GB, 340,000x more expensive !!)
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Solid State Drives

• 1995 – Replace rotating magnetic media with non-
volatile memory (battery backed DRAM)

• 2009 – Use flash memory
– Sector (4 KB page) addressable, but stores 4-64 “pages” per 

memory block
– Trapped electrons distinguish between 1 and 0

• No moving parts (no rotate/seek motors)
– Eliminates seek and rotational delay (0.1-0.2ms access time)
– Very low power and lightweight
– Limited “write cycles”

• Rapid advances in capacity and cost ever since!
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The Flash Cell

• Encode bit by trapping electrons into a cell

• Single-level cell (SLC)
– Single bit is stored within a transistor
– Faster, more lasting (50k to 100k writes before wear out)

• Multi-level cell (MLC)
– Two/three bits are encoded into different levels of charge
– Wear out much faster (1k to 10k writes)
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Of banks, blocks, cells

Bank

Block Block

Page Page Page Page

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

• Flash chips organized in banks
– Banks can be accessed in 

parallel

• Blocks: 128 KB/256KB
– (64 to 258 pages)

• Pages: Few KB

• Cells: 1 to 4 bits

• Distinction between blocks and 
pages important in operations!
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Low-level flash operations

• How do you read?
– Chip supports reading pages

– 10s of microseconds, independently of the previously read page

• What about writing? More complicated!
– Must first erase the block

» Erase quite expensive (milliseconds)

– Once block has been erased, can then program a page
» Change 1s to 0s within a page. 

» 100s of microseconds.

– Blocks can only be erased a limited number of times!
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Low-level flash operations

INVALID ERASED VALID
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Low-level flash operations

• Assume block of 4 pages. All valid. Want to write Page 0

Step 1: erase full block

Step 2: program page 0
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SSD Architecture

• Recall that SSDs uses low-level Flash operations to provide same interface as HDD
– read and write chunk (4KB) at a time

• Reads are easy, but for writes,  can only overwrite data one block (256KB) at a time!

• Why not just erase and rewrite new version of entire 256KB block?
– Erasure is very slow (milliseconds)
– Each block has a finite lifetime, can only be erased and rewritten about 10K times
– Heavily used blocks likely to wear out quickly
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SSD Architecture (Simplified)
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Flash Translation Layer (FTL)

• Add a layer of indirection: the flash translation layer
– Translates request for logical blocks (device interface) to low-level Flash blocks and pages

• Goal: performance and reliability 

• Reduce write amplification
– Ratio of the total write traffic in bytes issues by the flash chip by the FTL devided by the 

total write traffic issued by the OS to the device

• Avoid wear out
– A single block should not be erased too often
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FTL – Two Systems Principles

• FTL uses indirection and copy-on-write

• Maintains mapping tables in DRAM
– Map virtual block numbers (which OS uses) to physical page numbers (which flash mem. 

controller uses)
– Can now freely relocate data w/o OS knowing

• Copy on Write/ Log-structured FTL
– Don’t overwrite a page when OS updates its data
– Instead, write new version in a free page
– Update FTL mapping to point to new location
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FTL – Two Systems Principles

• FTL uses indirection and copy-on-write

• Maintains mapping tables in DRAM
– Map virtual block numbers (which OS uses) to physical page numbers (which flash mem. 

controller uses)
– Can now freely relocate data w/o OS knowing

• Copy on Write/ Log-structured FTL
– Don’t overwrite a page when OS updates its data
– Instead, write new version in a free page
– Update FTL mapping to point to new location
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FTL Example
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Some “Current” (large) 3.5in SSDs
• Seagate Exos SSD: 15.36TB (2017)

– Seq reads 860MB/s
– Seq writes 920MB/s
– Price (Amazon): $5495 ($0.36/GB)

• Nimbus SSD: 100TB (2019) 
– Seq reads/writes: 500MB/s
– Random Read Ops (IOPS): 100K
– Unlimited writes for 5 years!

– Price: ~ $40K? ($0.4/GB)
» However, 50TB drive costs $12500 ($0.25/GB)
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HDD vs. SSD Comparison

HDD SDD

Require seek + rotation No seeks

Not parallel (one head) Parallel

Brittle (moving parts) No moving parts

Random reads take 10s milliseconds Random reads take 10s 
microseconds

Slow (Mechanical) Wears out

Cheap/large storage Expensive/smaller storage
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Recall: Overall Performance for I/O Path

• Performance of I/O subsystem
– Metrics: Response Time, Throughput 

• Contributing factors to latency:
» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time

• Queuing behavior:
– Can lead to big increases of latency as utilization 

increases
– Solutions?

Response Time = Queue + I/O device service time

User
Thread

Queue
[OS Paths]

Controller

I/O
device

100%

Response
Time (ms)

Throughput  (Utilization)
(% total BW)

0

100

200

300

0%
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Sequential Server Performance

• Single sequential “server” that can complete a task in time 𝐿𝐿 operates at 
rate ≤ 1

𝐿𝐿
(on average, in steady state, …)

– 𝐿𝐿 = 10 ms → 𝐵𝐵 = 100 �op
s

L L L L…
time

L
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Single Pipelined Server

• Single pipelined server of 𝑘𝑘 stages for tasks of length 𝐿𝐿 (i.e., time ⁄𝐿𝐿 𝑘𝑘 per stage) 
delivers at rate ≤ ⁄𝑘𝑘 𝐿𝐿.

– 𝐿𝐿 = 10 ms, 𝑘𝑘 = 4 → 𝐵𝐵 = 400 �op
s

L

…

L

L L L L L L L

logical operation
divided over distinct resources

time
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Multiple Servers

• 𝑘𝑘 servers handling tasks of length 𝐿𝐿 delivers at rate ≤ ⁄𝑘𝑘 𝐿𝐿.

– 𝐿𝐿 = 10 ms, 𝑘𝑘 = 4 → 𝐵𝐵 = 400 �op
s

L

… k
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A Simple Systems Performance Model

Bandwidth (𝐵𝐵): Rate, Op/s
e.g., flow: gal per min

Latency (𝐿𝐿): time per op
- How long does it take to 

flow through the system

If 𝐵𝐵 = 2 �ops
s and L = 3 s

How much water is “in the 
system?” 
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A Simple Systems Performance Model

Bandwidth (𝐵𝐵): Rate, Op/s
e.g., flow: gal per min

Latency (𝐿𝐿): time per op
- How long does it take to 

flow through the system

If 𝐵𝐵 = 2 �op
s and L = 3 s

How many ops are “in the 
system?” 
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A Simple Systems Performance Model

If 𝐵𝐵 = 2 �op
s and L = 3 s

How many ops are “in the system?” 

B=1/3 B=2/3 B=1 B=4/3 B=5/3s B=2
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Little’s Law (B ⇒ 𝜆𝜆)

• In any stable system 
– Average arrival rate = Average departure rate 

• The number of “things” in a system is equal to the bandwidth times the latency (on 
average)

– N (jobs) = λ (jobs/s) x L (s)
– Applies to any stable system

• Can be applied to an entire system:
– Including the queues, the processing stages, parallelism, whatever

• Or to just one processing stage:
– i.e., disk I/O subsystem, queue leading into a CPU or I/O stage, …

arrivals departuresN
λ

L
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A Simple Systems Performance Model

Request Rate: 𝜆𝜆

Service Rate: 𝜇𝜇

Operation Time: 𝑡𝑡

Queuing delay: 𝑑𝑑

Latency (𝐿𝐿) 

The maximum service rate 
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 is a property of the 
system – the “bottleneck”

Utilization: 𝜌𝜌 = 𝜆𝜆
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚



Lec 18.421/4/2021 Crooks & Joseph CS162 © Spring 2021

Ideal System Performance

How does 𝜇𝜇 (service rate) vary with 𝜆𝜆 (request rate)?

42

Request Rate ( 𝜆𝜆 ) - “offered load”

Service Rate (𝜇𝜇) -
“delivered load”

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚

asymptotic peak rate
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Two Related Questions

Request Rate: 𝜆𝜆

Operation Time: 𝑡𝑡

Latency (𝐿𝐿) 

The maximum service rate 
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 is a property of the 
system – the “bottleneck”

Utilization: 𝜌𝜌 = 𝜆𝜆
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚

Service Rate: 𝜇𝜇

Queuing delay: 𝑑𝑑

What determines 
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚?

What about “internal” 
queues?
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Bottleneck Analysis

…
L L L L L L L

time

Overall System: Series of Stages

Request 
Rate: 𝜆𝜆

Service 
Rate: 𝜇𝜇
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Bottleneck Analysis

• Each stage has its own queue and maximum service rate

• Suppose the green stage is the bottleneck 

Overall System: Series of Stages

Request 
Rate: 𝜆𝜆

Service 
Rate: 𝜇𝜇

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,1 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,2 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,3
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Bottleneck Analysis

• Each stage has its own queue and maximum service rate

• Suppose the green stage is the bottleneck

• The bottleneck stage dictates the maximum service rate 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚

System Model: Bottleneck Stage

Request 
Rate: 𝜆𝜆

Service 
Rate: 𝜇𝜇

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,3
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Example: Servicing a Highly Contended Lock

…

…

𝑋𝑋 sec in 
critical 
section

All try to grab lock

Time = 𝑝𝑝 ⋅ 𝑋𝑋 sec
Rate = ⁄1 𝑋𝑋 ops/sec, regardless 
of # cores

𝑝𝑝
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 = �1

𝑋𝑋

Queue of waiting 
threads

Critical section 
guarded by lock
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Request Rate: 𝜆𝜆

Operation Time: 𝑡𝑡

Latency (𝐿𝐿) 

The maximum service rate 
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 is a property of the 
system – the “bottleneck”

Utilization: 𝜌𝜌 = 𝜆𝜆
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚

Two Related Questions

Service Rate: 𝜇𝜇

Queuing delay: 𝑑𝑑

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 is service rate of 
bottleneck stage

Tank represents queue of 
bottleneck stage
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Queuing

• What happens when request rate (𝜆𝜆) exceeds max service rate (𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚)?

• Short bursts can be absorbed by the queue
– If on average 𝜆𝜆 < 𝜇𝜇, it will drain eventually

• Prolonged 𝜆𝜆 > 𝜇𝜇 → queue will grow without bound
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• Assume requests arrive at regular intervals, take a fixed time to process, with plenty 
of time between …

Queue Serverarrivals departures

𝑇𝑇𝐴𝐴 𝑇𝑇𝐴𝐴 𝑇𝑇𝐴𝐴

𝑇𝑇𝑄𝑄
𝑇𝑇𝑆𝑆

𝑇𝑇𝑄𝑄 𝑇𝑇𝑆𝑆

• 𝑇𝑇𝐴𝐴: time between 
arrivals

• 𝜆𝜆 = �1 𝑇𝑇𝐴𝐴
• 𝑇𝑇𝑆𝑆 : service time

• 𝜇𝜇 = �𝑘𝑘 𝑇𝑇𝑆𝑆
• 𝑇𝑇𝑄𝑄 : queuing time

• 𝐿𝐿 = 𝑇𝑇𝑄𝑄 + 𝑇𝑇𝑆𝑆

A Simple, Deterministic World
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A Simple, Deterministic World

Utilization (𝜌𝜌 = ⁄𝜆𝜆 𝜇𝜇 = �𝑇𝑇𝑆𝑆
𝑇𝑇𝐴𝐴)
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• Requests arrive in a burst, must queue up until served

• Same average arrival time, but almost all of the requests experience large queue 
delays (even though average utilization is low)

Queue Serverarrivals departures

𝑇𝑇𝑄𝑄 𝑇𝑇𝑆𝑆

• 𝑇𝑇𝐴𝐴: time between 
arrivals

• Now, a random 
variable

• 𝑇𝑇𝑆𝑆 : service time
• 𝜇𝜇 = �𝑘𝑘 𝑇𝑇𝑆𝑆

• 𝑇𝑇𝑄𝑄 : queuing time
• 𝐿𝐿 = 𝑇𝑇𝑄𝑄 + 𝑇𝑇𝑆𝑆

Q depth

Server

Arrivals

A Bursty World
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How to model burstiness of arrival?

• 𝑇𝑇𝐴𝐴, the time between arrivals, is now a random variable
– Elegant mathematical framework if we model it as an exponential distribution

– Probability distribution function of an exponential distribution with parameter 𝜆𝜆 is 
𝑓𝑓 𝑚𝑚 = 𝜆𝜆𝑒𝑒−𝜆𝜆𝑚𝑚
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Steady State Queuing Theory

• Queuing Theory applies to long term, steady state behavior
– Arrival rate = Departure rate

• Arrivals characterized by some probabilistic distribution

• Departures characterized by some probabilistic distribution

DeparturesArrivals
Queuing System

Queue Server
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Little’s Law Applied to a Queue

• When applied to a queue, we get:

Average length of the 
queue

Average Arrival Rate

Average time “waiting”

𝐿𝐿𝑄𝑄 = 𝜆𝜆𝑇𝑇𝑄𝑄
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Some Results from Queuing Theory

• Assumptions: system in equilibrium, no limit to the queue, time between successive 
arrivals is random and memoryless

Arrival Rate
𝜆𝜆

Queue Server
Service Rate
𝜇𝜇 = �1

𝑇𝑇𝑆𝑆

• 𝜇𝜇: service rate ( �1 𝑇𝑇𝑆𝑆)

• 𝜌𝜌: utilization ( ⁄𝜆𝜆 𝜇𝜇)

• 𝜆𝜆: arrival rate
• 𝑇𝑇𝑆𝑆 : mean time to service a customer

• 𝐶𝐶: squared coefficient of variance ( �𝜎𝜎2
𝑇𝑇𝑆𝑆
2)
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Some Results from Queuing Theory

• Memoryless service distribution (𝐶𝐶 = 1)—an “M/M/1 queue”:

𝑇𝑇𝑄𝑄 =
𝜌𝜌

1 − 𝜌𝜌
⋅ 𝑇𝑇𝑆𝑆

• General service distribution (no restrictions)—an “M/G/1 queue”:

𝑇𝑇𝑄𝑄 =
1 + 𝐶𝐶

2
⋅

𝜌𝜌
1 − 𝜌𝜌

⋅ 𝑇𝑇𝑆𝑆

• 𝜇𝜇: service rate ( �1 𝑇𝑇𝑆𝑆)

• 𝜌𝜌: utilization ( ⁄𝜆𝜆 𝜇𝜇)

• 𝜆𝜆: arrival rate
• 𝑇𝑇𝑆𝑆 : mean time to service a customer

• 𝐶𝐶: squared coefficient of variance ( �𝜎𝜎2
𝑇𝑇𝑆𝑆
2)
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Some Results from Queuing Theory (con’t)

• 𝑇𝑇𝑄𝑄 = 𝜌𝜌
1−𝜌𝜌

⋅ 𝑇𝑇𝑆𝑆 (memoryless service distribution)

• 𝐿𝐿𝑄𝑄 = 𝜆𝜆𝑇𝑇𝑄𝑄 (by Little’s Law)

Utilization is 𝜌𝜌 = ⁄𝜆𝜆 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜆𝜆𝑇𝑇𝑆𝑆 , so 

• 𝐿𝐿𝑄𝑄 = 𝜆𝜆𝑇𝑇𝑄𝑄 = 𝜌𝜌
𝑇𝑇𝑆𝑆
⋅ 𝑇𝑇𝑄𝑄 = 𝜌𝜌2

1−𝜌𝜌
(for a single server)
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Ideal System Performance

Request Rate ( 𝜆𝜆 ) - “offered load”
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Latency (𝜆𝜆)
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m

e

• 𝑇𝑇𝑄𝑄~ 𝜌𝜌
1−𝜌𝜌

, 𝜌𝜌 = ⁄𝜆𝜆 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚

• Why does latency blow 
up as we approach 100% 
utilization?

• Queue builds up on 
each burst

• But very rarely (or 
never) gets a chance 
to drain
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A Little Queuing Theory: An Example
• Example Usage Statistics:

– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller+seek+rot+trans)

• Questions: 
– How utilized is the disk? 

» Ans: server utilization, ρ = λTser
– What is the average time spent in the queue? 

» Ans: Tq
– What is the number of requests in the queue? 

» Ans: Lq
– What is the avg response time for disk request? 

» Ans: Tsys = Tq + Tser
• Computation:

λ (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
ρ (server utilization) = λ x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u) 

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) = λ x Tq=10/s x .005s = 0.05
Tsys (avg time/customer in system) =Tq + Tser= 25 ms
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Conclusion

• Two types of storage devices: 
– HDDs,  which are organized as a set of platters split into tracks, which are being spinned

by a motor. HDDs have suffer from rotational delay and high seek latency
– SDDs are built on top of flash technology. Flash offers three operations: read, write, 

program
– SDDs do not suffer from seek/rotation delay but suffer from wear out.

• Performance
– Bottleneck & queueing delay
– Model arrival/departure rate as probability distributions


	CS162�Operating Systems and�Systems Programming�Lecture 18��Storage Devices, Performance, Queuing Theory
	Recall : Simplified IO architecture
	Recall: How does the processor talk to devices?
	Recall: Device Drivers
	Recall: Life Cycle of An I/O Request
	Ways of Measuring Performance: Times (s) and Rates (op/s)
	Storage Devices
	Hard Disk Drives (HDDs)
	The Amazing Magnetic Disk
	The Amazing Magnetic Disk
	The Amazing Magnetic Disk
	The Amazing Magnetic Disk
	Typical Numbers for Magnetic Disk
	Disk Performance Example
	Disk Performance Example
	Lots of Intelligence in the Controller
	Hard Drive Prices over Time
	Example of Current HDDs
	Solid State Drives
	The Flash Cell
	Of banks, blocks, cells
	Low-level flash operations
	Low-level flash operations
	Low-level flash operations
	SSD Architecture
	SSD Architecture (Simplified)
	Flash Translation Layer (FTL)
	FTL – Two Systems Principles
	FTL – Two Systems Principles
	FTL Example
	Some “Current” (large) 3.5in SSDs
	HDD vs. SSD Comparison
	Recall: Overall Performance for I/O Path
	Sequential Server Performance
	Single Pipelined Server
	Multiple Servers
	A Simple Systems Performance Model
	A Simple Systems Performance Model
	A Simple Systems Performance Model
	Little’s Law (B  𝜆)
	A Simple Systems Performance Model
	Ideal System Performance
	Two Related Questions
	Bottleneck Analysis
	Bottleneck Analysis
	Bottleneck Analysis
	Example: Servicing a Highly Contended Lock
	Two Related Questions
	Queuing
	A Simple, Deterministic World
	A Simple, Deterministic World
	A Bursty World
	How to model burstiness of arrival?
	Steady State Queuing Theory
	Little’s Law Applied to a Queue
	Some Results from Queuing Theory
	Some Results from Queuing Theory
	Some Results from Queuing Theory (con’t)
	Ideal System Performance
	A Little Queuing Theory: An Example
	Conclusion

