
CS162
Operating Systems and
Systems Programming

Lecture 2

Four Fundamental OS Concepts

Lec 2.2Crooks & Joseph CS162 © UCB Spring 20211/21/21

Recall: What is an Operating System?

• Referee
– Manage protection, isolation, and sharing of resources

» Resource allocation and communication

• Illusionist
– Provide clean, easy-to-use abstractions of physical resources

» Infinite memory, dedicated machine
» Higher level objects: files, users, messages
» Masking limitations, virtualization

• Glue
– Common services

» Storage, Window system, Networking
» Sharing, Authorization
» Look and feel

Lec 2.3Crooks & Joseph CS162 © UCB Spring 20211/21/21

PgTbl
& TLB Storage

Networks

Hardware

I/O Ctrlr

ISA

Operating System

Compiler

Recall: OS Protection

Processor Memory

Process 1

Threads

OS
Mem

Address Spaces Files Sockets

Process 2

Threads Address Spaces Files Sockets

Compiled
Program 1

System Libs

Compiled
Program 2

System Libs

Lec 2.4Crooks & Joseph CS162 © UCB Spring 20211/21/21

Recall: HW Functionality ⇒ great complexity!

Intel Skylake-X I/O Configuration

Direct Media Interface
(3.93 GBytes/sec)

Really High Speed I/O
(e.g. graphics)

Memory Channels
(High BW DRAM)

High-Speed I/O devices
(PCI Exp)

Disks (8 x SATA)

Slower I/O (USB)

Integrated Ethernet

PCI/e Drives

HD Audio

RAID 0/1/5/10

Smart Connect
(autoupdate)

Lec 2.5Crooks & Joseph CS162 © UCB Spring 20211/21/21

0 20 40 60 80 100 120 140

Mouse Base Pairs

Modern Car

Mac OS X "Tiger"

Facebook

Windows Vista

Microsoft Office 2013

Windows 7

Linux 3.1 (recent)

Android

Firefox

Mars Curiosity Rover

Linux 2.2.0

0 20 40 60 80 100 120 140

Mouse Base Pairs

Modern Car

Mac OS X "Tiger"

Facebook

Windows Vista

Microsoft Office 2013

Windows 7

Linux 3.1 (recent)

Android

Firefox

Mars Curiosity Rover

Linux 2.2.0

0 20 40 60 80 100 120 140

Mouse Base Pairs

Modern Car

Mac OS X "Tiger"

Facebook

Windows Vista

Microsoft Office 2013

Windows 7

Linux 3.1 (recent)

Android

Firefox

Mars Curiosity Rover

Linux 2.2.0

New Versions usually (much) larger older versions!

Recall: Increasing Software Complexity

Millions of Lines of Code
(source https://informationisbeautiful.net/visualizations/million-lines-of-code/)

Cars getting really complex!

Chart1

		Mouse Base Pairs

		Modern Car

		Mac OS X "Tiger"

		Facebook

		Windows Vista

		Microsoft Office 2013

		Windows 7

		Linux 3.1 (recent)

		Android

		Firefox

		Mars Curiosity Rover

		Linux 2.2.0

120

100

86

62

50

45

40

15

12

9.7

5

2

Sheet1

				Million of Lines of Code

		Mouse Base Pairs		120

		Modern Car		100

		Mac OS X "Tiger"		86

		Facebook		62

		Windows Vista		50

		Microsoft Office 2013		45

		Windows 7		40

		Linux 3.1 (recent)		15

		Android		12

		Firefox		9.7

		Mars Curiosity Rover		5

		Linux 2.2.0		2

Chart1

		Mouse Base Pairs

		Modern Car

		Mac OS X "Tiger"

		Facebook

		Windows Vista

		Microsoft Office 2013

		Windows 7

		Linux 3.1 (recent)

		Android

		Firefox

		Mars Curiosity Rover

		Linux 2.2.0

120

100

86

62

50

45

40

15

12

9.7

5

2

Sheet1

				Million of Lines of Code

		Mouse Base Pairs		120

		Modern Car		100

		Mac OS X "Tiger"		86

		Facebook		62

		Windows Vista		50

		Microsoft Office 2013		45

		Windows 7		40

		Linux 3.1 (recent)		15

		Android		12

		Firefox		9.7

		Mars Curiosity Rover		5

		Linux 2.2.0		2

Chart1

		Mouse Base Pairs

		Modern Car

		Mac OS X "Tiger"

		Facebook

		Windows Vista

		Microsoft Office 2013

		Windows 7

		Linux 3.1 (recent)

		Android

		Firefox

		Mars Curiosity Rover

		Linux 2.2.0

120

100

86

62

50

45

40

15

12

9.7

5

2

Sheet1

				Million of Lines of Code

		Mouse Base Pairs		120

		Modern Car		100

		Mac OS X "Tiger"		86

		Facebook		62

		Windows Vista		50

		Microsoft Office 2013		45

		Windows 7		40

		Linux 3.1 (recent)		15

		Android		12

		Firefox		9.7

		Mars Curiosity Rover		5

		Linux 2.2.0		2

Lec 2.6Crooks & Joseph CS162 © UCB Spring 20211/21/21

Complexity leaks into OS if not properly designed:

• Buggy device drivers

• Holes in security model or bugs in OS lead to
instability and privacy breaches

– Meltdown (2017)

– Spectre (2017)

• Version skew of libraries can lead to problems
with application execution

Lec 2.7Crooks & Joseph CS162 © UCB Spring 20211/21/21

• Processor → Thread
• Memory → Address Space
• Disks, SSDs, … → Files
• Networks → Sockets
• Machines → Processes

• OS as an Illusionist:
– Remove software/hardware quirks (fight complexity)
– Optimize for convenience, utilization, reliability, … (help the programmer)

• For any OS area (e.g. file systems, virtual memory, networking, scheduling):
– What hardware interface to handle? (physical reality)
– What’s software interface to provide? (nicer abstraction)

Application

Operating System

Hardware
Physical Machine Interface

Abstract Machine Interface

OS Abstracts Underlying Hardware to help Tame Complexity

Lec 2.8Crooks & Joseph CS162 © UCB Spring 20211/21/21

Today: Four Fundamental OS Concepts

• Thread: Execution Context
– Fully describes program state

• Address space
– Set of memory addresses accessible to program (for read or write)

• Process: an instance of a running program
– Protected Address Space + One or more Threads

• Dual mode operation / Protection
– Only the “system” has the ability to access certain resources

Lec 2.9Crooks & Joseph CS162 © UCB Spring 20211/21/21

First OS Concept: Thread of Control

• Thread: Single unique execution context

– Program Counter, Registers, Execution Flags, Stack, Memory State

• A thread is executing on a processor (core) when it is resident in the processor registers

• A thread is suspended (not executing) when its state is not loaded (resident) into the processor
– Processor state pointing at some other thread

– Program counter register is not pointing at next instruction from this thread

– Often: a copy of the last value for each register stored in memory

Lec 2.10Crooks & Joseph CS162 © UCB Spring 20211/21/21

61 is back! Instruction Fetch/Decode/Execute
The instruction cycle

PC:

Instruction fetch

Registers

ALU

Execute

Memory

instruction

Decode decode

next

data

Processor

Lec 2.11Crooks & Joseph CS162 © UCB Spring 20211/21/21

Illusion of Multiple Processors

• Multiplex in time

• Threads are virtual cores

• Contents of virtual core (thread):
– Program counter, stack pointer

– Registers

• Where is “it” (the thread)?
– On the real (physical) core, or

– Saved in chunk of memory – called the Thread Control Block (TCB)

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

vCPU3vCPU2vCPU1

Shared Memory

Programmer’s View

Lec 2.12Crooks & Joseph CS162 © UCB Spring 20211/21/21

Illusion of Multiple Processors (Continued)

• Consider:
– At T1: vCPU1 on real core, vCPU2 in memory

– At T2: vCPU2 on real core, vCPU1 in memory

• What happened?
– OS Ran, triggering a context switch

– Saved PC, SP, … in vCPU1's thread control block (memory)

– Loaded PC, SP, … from vCPU2's TCB, jumped to PC

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

T1 T2

vCPU3vCPU2vCPU1

Shared Memory
Programmer’s View

Lec 2.13Crooks & Joseph CS162 © UCB Spring 20211/21/21

Multiprogramming - Multiple Threads of Control

• Thread Control Block (TCB)
– Holds contents of registers when thread not running

• Where are TCBs stored?
– For now, in the kernel

• PINTOS? – read thread.h and thread.c

OS

Proc
1

Proc
2

Proc
n…

code
Static Data
heap

stack

code
Static Data
heap

stack

code
Static Data
heap

stack

Lec 2.14Crooks & Joseph CS162 © UCB Spring 20211/21/21

Registers: RISC-V ⇒ x86

• cs61C does RISC-V. Will need to learn x86…

• Section will cover this architecture

Load/Store Arch (RISC-V)
with software conventions

Complex mem-mem arch (x86) with
specialized registers and “segments”

Lec 2.15Crooks & Joseph CS162 © UCB Spring 20211/21/21

Second OS Concept: Address Space

0x000…

0xFFF…

code

Static Data

heap

stack
• Address space ⇒ the set of accessible addresses + state

associated with them:
– For 32-bit processor: 232 = 4 billion (109) addresses

– For 64-bit processor: 264 = 18 quintillion (1018) addresses

• What happens when you read or write to an address?
– Perhaps acts like regular memory

– Perhaps causes I/O operation
» (Memory-mapped I/O)

– Perhaps causes exception (fault)

– Communicates with another program

– ….

Lec 2.16Crooks & Joseph CS162 © UCB Spring 20211/21/21

Address Space: In a Picture

Processor
registers

PC:

0x000…

0xFFF…

Code Segment

Static Data

heap

stack

instruction

SP:

Lec 2.17Crooks & Joseph CS162 © UCB Spring 20211/21/21

Very Simple Multiprogramming

• All vCPU's share non-CPU resources
– Memory, I/O Devices

• Each thread can read/write memory
– Perhaps data of others, including OS!

• Used in early days of computing or embedded systems.

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

Lec 2.18Crooks & Joseph CS162 © UCB Spring 20211/21/21

Simple Multiplexing has no Protection!

• OS must protect user programs from one another
– Prevent threads owned by one user from impacting threads owned by another user

– Example: prevent one user from stealing secret information from another user

• OS must protect itself from user programs
– Reliability: compromising the operating system generally causes it to crash

– Security: limit the scope of what threads can do

– Privacy: limit each thread to the data it is permitted to access

– Fairness: each thread should be limited to its appropriate share of system resources
(CPU, memory)

Lec 2.19Crooks & Joseph CS162 © UCB Spring 20211/21/21

What can the hardware do to help the OS
protect itself from programs???

Lec 2.20Crooks & Joseph CS162 © UCB Spring 20211/21/21

Simple Protection: Base and Bound (B&B)

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

1100…

0100…

Bound

1100…

1000…

Base

>=

<

Program
address

0010…

1010…

Lec 2.21Crooks & Joseph CS162 © UCB Spring 20211/21/21

Simple Protection: Base and Bound (B&B)

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

1100…

0100…

Bound

1100…

1000…

Base

>=

<

Program
address

0010…

1010…

Addresses translated
when program loaded

Lec 2.22Crooks & Joseph CS162 © UCB Spring 20211/21/21

61C Review: Relocation

• Compiled .obj file linked together in an .exe

• All address in the .exe are as if it were loaded at memory address
00000000

• File contains a list of all the addresses that need to be adjusted when it
is “relocated” to somewhere else.

Lec 2.23Crooks & Joseph CS162 © UCB Spring 20211/21/21

Simple address translation with Base and Bound

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base Address

Bound <

1000…

1100…
0100…

• Hardware relocation

0010…
0010…

Addresses translated
on-the-fly

1010…

0100…

Lec 2.24Crooks & Joseph CS162 © UCB Spring 20211/21/21

x86 – segments and stacks

CS EIP

SS ESP

DS
ECXES
EDX
ESI
EDI

EAX
EBX

code
static data
heap

stack

code

static data

heap

stack

CS:
EIP:

SS:
ESP:

Processor Registers

Start address, length and
access rights associated with
each segment register

Lec 2.25Crooks & Joseph CS162 © UCB Spring 20211/21/21

Another idea: Address Space Translation
• Program operates in an address space that is distinct from the

physical memory space of the machine

Processor Memory

0x000…

0xFFF…

translator
Registers

Lec 2.26Crooks & Joseph CS162 © UCB Spring 20211/21/21

Paged Virtual Address Space

• Break the entire virtual address space into equal size chunks (i.e., pages)

• All pages same size, so easy to place each page in memory!

• Hardware translates address using a page table
– Each page has a separate base

– The “bound” is the page size

– Special hardware register stores pointer to page table

Lec 2.27Crooks & Joseph CS162 © UCB Spring 20211/21/21

Paged Virtual Address

• Instructions operate on virtual addresses

• Translated to a physical address through a Page Table by the hardware

• Any Page of address space can be in any (page sized) frame in memory
– Or not-present (access generates a page fault)

• Special register holds page table base address (of the process)

Processor

Registers Page Table

Memory

<Virtual Address> =
<Page #> <Page Offset>

Page (eg, 4 kb)

<Page #>

<Frame Addr>

<Page Offset>
instruction

PT Addr

Lec 2.28Crooks & Joseph CS162 © UCB Spring 20211/21/21

Third OS Concept: Process

• Definition: execution environment with restricted rights
– (Protected) Address Space with One or More Threads

– Owns memory (address space), file descriptors, sockets

– Encapsulate one or more threads sharing process resources

• Why processes?
– Protected from each other! OS Protected from them

– Processes provides memory protection

• A process is a running program, with protection

Lec 2.29Crooks & Joseph CS162 © UCB Spring 20211/21/21

Single and Multithreaded Processes

• Threads encapsulate concurrency

• Address spaces encapsulate protection

• Why have multiple threads per address space?
– Parallelism: take advantage of actual hardware

parallelism (e.g. multicore)

– Concurrency: ease of handling I/O and other
simultaneous events

Lec 2.30Crooks & Joseph CS162 © UCB Spring 20211/21/21

Protection and Isolation

• Processes provide protection and isolation
– Reliability: bugs can only overwrite memory of process they are in

– Security and privacy: malicious or compromised process can’t read or write other
process’ data

• Mechanisms:
– Address translation: address space only contains its own data

– BUT: why can’t a process change the page table pointer?
» Or use I/O instructions to bypass the system?

– Hardware must support privilege levels

Lec 2.31Crooks & Joseph CS162 © UCB Spring 20211/21/21

Fourth OS Concept: Dual Mode Operation

• Hardware provides at least two modes
1. Kernel Mode (or “supervisor” mode)

2. User Mode

• Certain operations are prohibited when running in user mode (privileged instructions)

• Carefully controlled transitions between user mode and kernel mode

Lec 2.32Crooks & Joseph CS162 © UCB Spring 20211/21/21

3 types of User ⇒ Kernel Mode Transfer
• Syscall

– Process requests a system service, e.g., exit

– Like a function call, but “outside” the process

• Interrupt
– External asynchronous event triggers context switch

– e. g., Timer, I/O device

• Trap or Exception
– Internal synchronous event in process triggers context switch

– e.g., Protection violation (segmentation fault), Divide by zero, …

Lec 2.33Crooks & Joseph CS162 © UCB Spring 20211/21/21

For example: UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 2.34Crooks & Joseph CS162 © UCB Spring 20211/21/21

User/Kernel (Privileged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

rtn

interrupt

rfi

exception

Lec 2.35Crooks & Joseph CS162 © UCB Spring 20211/21/21

Additional Layers of Protection for Modern Systems

• Additional layers of protection through virtual machines or containers
– Run a complete operating system in a virtual machine

– Package all the libraries associated with an app into a container for execution

• More on these ideas later in the class

Lec 2.36Crooks & Joseph CS162 © UCB Spring 20211/21/21

Tying it together: Simple B&B: OS loads process

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base xxxx …

xxxx…Bound

xxxx…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

Lec 2.37Crooks & Joseph CS162 © UCB Spring 20211/21/21

Simple B&B: OS gets ready to execute process

• Privileged Inst: set special
registers

• RTU (Return To
Usermode)

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

0001…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…

RTU

Lec 2.38Crooks & Joseph CS162 © UCB Spring 20211/21/21

Unprogrammed control transfers

• User => Kernel mode transitions are examples of “unprogrammed
control transfers”

• How do we know what the address of the next instruction should be?

• Will require support of lookup tables

Lec 2.39Crooks & Joseph CS162 © UCB Spring 20211/21/21

Interrupt Vector

interrupt number (i)

intrpHandler_i () {
….

}

Address and properties of
each interrupt handler

Lec 2.40Crooks & Joseph CS162 © UCB Spring 20211/21/21

Simple B&B: User => Kernel

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…

0000 1234

Lec 2.41Crooks & Joseph CS162 © UCB Spring 20211/21/21

Simple B&B: Interrupt

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 …Bound

0000 1234uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…

IntrpVector[i]

• How to save registers and
set up system stack?

Lec 2.42Crooks & Joseph CS162 © UCB Spring 20211/21/21

Simple B&B: Switch User Process

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

0000 0248uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00D0…

0001 0124

1000 …

1100 …

0000 1234

regs

00FF…

RTU

Lec 2.43Crooks & Joseph CS162 © UCB Spring 20211/21/21

Simple B&B: “resume”

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

xxxx xxxxuPC

regs

sysmode

…

0

PC

0000…

FFFF…

00D0…

000 0248

1000 …

1100 …

0000 1234

regs

00FF…

RTU

Lec 2.44Crooks & Joseph CS162 © UCB Spring 20211/21/21

Running Many Programs ???

• We have the basic mechanism to
– switch between user processes and the kernel,

– the kernel can switch among user processes,

– Protect OS from user processes and processes from each other

• How do we decide which user process to run?

• How do we represent user processes in the OS?

• How do we pack up the process and set it aside?

• How do we get a stack and heap for the kernel?

Lec 2.45Crooks & Joseph CS162 © UCB Spring 20211/21/21

Conclusion: Four Fundamental OS Concepts

• Thread: Execution Context
– Single thread of execution

• Address space (with or w/o translation)
– Set of memory addresses accessible to program (for read or write)

• Process: an instance of a running program
– Protected Address Space + One or more Threads

• Dual mode operation / Protection
– Only the “system” has the ability to access certain resources

	CS162�Operating Systems and�Systems Programming�Lecture 2��Four Fundamental OS Concepts
	Recall: What is an Operating System?
	Recall: OS Protection
	Recall: HW Functionality great complexity!
	Recall: Increasing Software Complexity
	Complexity leaks into OS if not properly designed:
	OS Abstracts Underlying Hardware to help Tame Complexity
	Today: Four Fundamental OS Concepts
	First OS Concept: Thread of Control
	61 is back! Instruction Fetch/Decode/Execute
	Illusion of Multiple Processors
	Illusion of Multiple Processors (Continued)
	Multiprogramming - Multiple Threads of Control
	Registers: RISC-V x86
	Second OS Concept: Address Space
	Address Space: In a Picture
	Very Simple Multiprogramming
	Simple Multiplexing has no Protection!
	What can the hardware do to help the OS protect itself from programs???
	Simple Protection: Base and Bound (B&B)
	Simple Protection: Base and Bound (B&B)
	61C Review: Relocation
	Simple address translation with Base and Bound
	x86 – segments and stacks
	Another idea: Address Space Translation
	Paged Virtual Address Space
	Paged Virtual Address
	Third OS Concept: Process
	Single and Multithreaded Processes
	Protection and Isolation
	Fourth OS Concept: Dual Mode Operation
	3 types of User Kernel Mode Transfer
	For example: UNIX System Structure
	User/Kernel (Privileged) Mode
	Additional Layers of Protection for Modern Systems
	Tying it together: Simple B&B: OS loads process
	Simple B&B: OS gets ready to execute process
	Slide Number 38
	Interrupt Vector
	Simple B&B: User => Kernel
	Simple B&B: Interrupt
	Simple B&B: Switch User Process
	Simple B&B: “resume”
	Running Many Programs ???
	Conclusion: Four Fundamental OS Concepts

