
CS164: Written Assignment 2
(On Grammars, Parsing, and NFAs)

Assigned: Thursday, Sep 23, 2004
Due: Thursday, Sep 30, 2004, at the beginning of class.

Grading and Submission

Your answers must be brief and easy to understand. Your grade (credit/no credit) will depend
partly on how easy it is for us to understand and verify your answer. Submit your written assign-
ments either in the classroom (before the lecture) or in 283 Soda. No late homeworks are accepted.
Please indicate your login name and Section number.

1 How to Develop a Predictive LL(1) Parser

Background: In PA3, you will develop an automatic generator of predicitive LL(1) parsers. This
problem will help you understand how to do it.

Question: Consider the following grammar:

S → RT

R → sURb

R → ε

U → uU

U → ε

V → vV

V → ε

T → V tT | ε

1. Give a leftmost derivation of ssuurrtvt. For each step, indicate which production you ap-
plied.

2. Compute the FIRST and the FOLLOW sets for this grammar.

3. Construct an LL(1) predictive parse table for the grammar.

4. Show the moves made by this parser on the input ssuurrtvt (i.e., show a table for the stack,
input, and production used at each step, as shown on slide 35 from Sep 21).

1

2 How to Create an LL(1) Grammar?

Background: In the lecture, we covered several transformations that may help you turn a gram-
mar into an LL(1) grammar (namely, elimination of left recursion, left factoring, and “de-ambiguation”).
Unfortunately, performing these transformations does not guarantee to produce an LL(1) gram-
mar.

Question: (a) Give an example of a grammar that is unambiguous, left-factored, and not left re-
cursive that is also not LL(1). Justify your answer.

(b) Is this grammar LL(k) for some k? If yes, what is k?

(c) Can you suggest how to rewrite the grammar to make it LL(1). (Note: no such transformation
may be possible for your grammar.)

3 How Expressive are Regular Expressions and Grammars?

Background: Context-free grammars are more powerful than regular expressions because they
can specify languages that regular languages can’t (e.g., the language of arithmetic expressions
with balanced parentheses). However, typical programming languages contain syntactic frag-
ments that can be described with a regular expression, which is often simpler than with a gram-
mar. For example, variable declarations may have the form

(int | float) id (, id)* ;

So, sometimes it is convenient to write these fragments as regular expressions, and then rewrite
them into a context-free grammar requiored by your parser generator. This questions asks how to
do this.

Question: Give a context-free grammar that describes the same set of strigns as the following
regular expression.

a((b|a.c∗)x)∗|x∗a

4 Translating Regular Expressions into NFAs

Consider slide 66 from the lecture “Building a Scanner” from Sep 2. The slide shows how to con-
struct an NFA for the regular expression operator ’|’. The ε-transitions shown in this construction
may appear superfluous, in that it looks like it may be possible to build the automaton for A|B by
simply merging the start states of A and B, making the merged state the start state of A|B; simi-
larly for the accepting states of A and B. (When two states are “merged,” their transitions, both
incoming and outgoing, are merged, too.) This question asks you to explain why this method for
creating the NFA for A|B is incorrect.

Question: Give regular expressions A and B for which the above method for constructing the
NFA for A|B produces an NFA that accepts something else than L(A|B).

2

