CS164: Written Assignment 6
(On Implementation of Object-Oriented Languages)

Assigned: Thursday, Oct 21, 2004
Due: Tuesday, Oct 28, 2004, at the beginning of class.

Grading and Submission

Your answers must be brief and easy to understand. Your grade (credit/no credit) will depend
partly on how easy it is for us to understand and verify your answer. If the written assignment
contains multiple questions or multiple parts, you must answer all questions to receive a “pass”
grade. Minor mistakes are acceptable. Submit your written assignments either in the classroom
(before the lecture) or in 283 Soda. No late homeworks are accepted. Please indicate your login name
and Section number.

1 Compiling Object-Oriented Programs.

Consider the following Java program:

class A {

int a = 0;

int x() { return a; }
}i

class B extends A {

int b = 2;
int e = 4;
int y() { a = a - b + e; return a; }

}i
class C extends A {
int ¢ = 3;
int e = 5;
int x() { return a + e; }
int z() { e = a * ¢; return a; }
}i
class Test {
public static void main (Stringl[] args) {
A p = new B();

B r = new B();
C s = new C();
At = new A();
p.x(); r.x(); s.x0; t.x();



Answer the following questions:

1.

The program instantiates three classes of objects (A4, B, and C). Show the object layout for
each class. Show both the programmer-accessible fields and the “header” fields.

. Can the e fields in classes B and C be placed at different offsets? Clearly and concisely

justify your answer (your answer should be to the point; don’t put down any arguments
irrelevant to the question).

. How many different methods (i.e., assembly-level procedures) will be generated by the com-

piler for the above program? What are the names of these methods? Give their names in the
“assemblerized” form _classname_methodname.

Draw the memory content at the end of main. Show the pointer links between the pointer
variables (p, r, s, t), objects, dispatch tables, and procedures.

Note: Your picture should have four kinds of nodes (pointer variables, objects, dispatch
tables, and procedures) and one kind of edge (denoting points-to relationship). The content
of each pointer in the picture should be depicted as an edge to the target of the pointer.

Give the sequence of x86 instructions that implements the dynamic dispatch call ¢.z().

Assume that the value of the variable ¢ is stored in register %eax. Assume that the dispatch
table and the object header are laid out as you defined above. Comment your code fragment:
what does each offset mean? what does each register contain?

The dynamic-dispatch call used to implement non-static method calls in object-oriented lan-
guages is more expensive than the direct procedure call that you used to implement invo-
cations of static methods in PA4. Fortunately, in some cases, the compiler can remove the
dynamic dispatch and replace it with a direct procedure call.

Question: in which of the four calls in the above program can the dynamic dispatch be
replaced with a direct call? (Assume that the compiler does not “see” the new statements;
i.e., it only knows the type of p, not the type of the object pointed to by p)? Clearly and
concisely explain why your optimization is possible.

(You can also assume that the program is guaranteed not to load any subclasses of B or C at
run-time.)



