
What we’ll talk about today    CS164 Sections 1 & 4 

 
- LL1 parsing 
- LL1 on a relly nice grammar 
- LL1 on a nice grammar 

o First and Follow Sets 
- LL1 on an almost nice grammar 

o Left Factoring 
- LL1 failing miserably with a not quite nice grammar 

 
 

LL1 parsing, the idea: 

 
You will start with a single non-terminal, the Start production. 
You want to expand your non-terminals by using the production rules. i.e. build the tree 
top down. 
You would like to be able to be able to decide which production to use based on the next 
token.  
Given a non-terminal with several possible productions, how do we tell which one to use 
next? That’s the question at the heart of LL1 parsing. 
 

Really nice grammar: 

 
E -> + T T | ( T )  
T-> int | * T T | ( E ) 
 
 
Here are some sample strings you can produce from this grammar. 
 
+ int int 
+ * int * int (+ int int) int 
( * ( (int) ) * int  int ) 
 
In this case, for a given non-terminal, it’s easy to tell which rule to use if we know what 
the next token of the input is. Simply pick the production whose first token matches the 
next token in the input. We’ll generalize this idea for cases where the grammar is not so 
nice. 
 

 

 

 + ( * int ) 

E      

T      



Nice grammar: 

 
E->T X 
X->+ E | ε 
T->( E ) | int Y 
Y->* T | ε 
 
 
 
 
In this case, we can use the same rule as before. But how do we know what the first token 
will be for a production like E-> TX.  
 
 
 
 

First and Follow Sets. 

 

In order to solve this problem, you want to find the set of all terminals that could possibly 
start a string corresponding to this production.  
 
For example, you would like to find all possible terminals that could start a string that can 
be produced by T X in our above example. Such a set is called the First set of T X, and is 
denoted as First( T X ). 
 
You can define it recursively:  
 
Suppose you are given a sentence of terminals and non-terminals A1 A2 A3…An 
 
Then there are four cases we need to consider:  

- If n=1 and A1 is a Terminal, First(A1) = { A1 } 
 
- If  n != 1 and First(A1) doesn’t contain ε,  

First(A1 A2 A3…An) = First(A1) 
 
 
- If n=1 and A1 is a non-Terminal, Find all productions of the form 

A1 -> B1,1 B2,1, … Bn1, 1 
A1 -> B1,2 B2,2, … Bn2, 2 
… 
A1 -> B1,k B2,k, … Bnk, k 

       Then, First(A1) = Union( First( B1,i, …, Bni,i) )  
 

- If  n != 1 and First(A1) contains ε,  
First(A1 A2 A3…An) = Union( First(A1) - ε, First(A2 A3…An) ) 
 

 + ( * int ) 
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First sets allow you to know where to use each production. From our above example,  
 
First( TX ) = { (, int } 
First( +E) = {+} 
First( ( E ) ) = { ( } 
First( int Y ) = { int  } 
First( * T ) = { * } 
 
 
So from this we can fill the following entries in the table: 
 
 
 
 
 
 
 
 
 
But how do we know when to use the ε rules? 
 
Then you need Follow Sets, which are the set of tokens that could potentially come after 
a non Terminal. 
 
To compute Follow( X ),  
 
Start by setting FollowX to empty 
 
Find all rules of the form Y-> … X A1..An 
 
Then, for each of this rule, add  First(A1…An) to Follow(X) 
 
And if ε is in First(A1…An), you must also add Follow(Y) to Follow(X). 
 
Note that Follow(Y) may require that you know Follow(X), which leads to a chicken-egg 
problem. How do you fix it? You have to do it iteratively.  
 
Initialize the Follow sets to {}. Then, update them according to the following equations 
(which you can derive from the above rules), and repeat until they stop changing. 
 
Follow( E ) = { ), $}  U  Follow( X ) 
Follow( X ) = Follow( E ) 
Follow( T ) = First( X )  U Follow(E)  U Follow( Y ) 
Follow( Y ) = Follow(T) 
 
From this, you will get  

 + ( * int ) 

E  TX  TX  

X +E     

T  ( E )  int Y  

Y   * T   



 
Follow( E ) = { ), $ } 
Follow( X ) = { ) , $ } 
Follow( T ) = { + , ε,  ), $} 
Follow( Y ) = { + , ε,  ), $} 
 
Now, we can handle the cases we were missing. 
 
 
 
 
 
 
 
 
 
 
 

Almost Nice grammar 

 
In some cases, we may be given grammars for which it seems you can not use this 
technique. 
 
 
E->T+E | T 
T->int | int * T | (E) 
 
 
Many times, you can rescue them by using Left Factoring 
 
Factor out common prefixes: T, int 
 
E->T X 
X->+ E | ε 
T->( E ) | int Y 
Y->* T | ε 
 
 
 
 

 + ( * int ) 

E ERROR TX ERROR TX ERROR 

X +E ERROR ERROR ERROR ε 

T ERROR ( E ) ERROR int Y ERROR 

Y ε ERROR * T ERROR ε 



 

L1 failing miserably with a not quite nice grammar 

Mostly for your own entertainment, here is an example where left factoring is not 
enough, and LL1 will fail miserably: 
 
 
E->T+E | T 
T->int | int * T | (E) |  int + 
 
After left factoring, we get: 
 
E->T X 
X->+ E | ε 
T->( E ) | int Y | T 
Y->* T | ε | + 
 
This is a perfectly legal context free grammar, and it is in fact unambiguous. The problem 
is that the Follow set of Y contains +, which means that on seeing a + you should use the 
epsilon rule for Y, but + is also in the First set for +, so this creates a conflict; you can’t 
tell which rule to use by just looking ahead by one. 
 
 


