
AllegroStore
manual

version 2.1.8,
release with

Allegro CL 6.2
June, 2002

Copyright and other notices:

This manual has Franz Inc. document number D-U-00-AST-02-020529-8-F. This is revi-

sion 8 of this document.

Copyright 1993-2002 by Franz Inc. All rights reserved. No part of this publication may

be reproduced, stored in a retrieval system, or transmitted, in any form or by any means

electronic, mechanical, by photocopying or recording, or otherwise, without the prior and

explicit written permission of Franz Incorporated, 555 12th St. Suite 1450, Oakland, CA

94607 USA.

Restricted rights legend: Use, duplication, and disclosure by the United States Government

are subject to Restricted Rights for Commercial Software developed at private expense as

specified in DOD FAR 52.227-7013 (c) (1) (ii).

The following notices apply to this document:

Allegro CL and Allegro Composer are registered trademarks of Franz Inc.

AllegroStore, Allegro CL\PC, Allegro CL for Windows, Allegro Common Windows, Alle-

gro Presto, Allegro Runtime, and Allegro Matrix are trademarks of Franz Inc.

Unix is a trademark of AT&T.

DOS and Windows are trademarks of the Microsoft Corporation.

Sun, Solaris, SPARC, and SunOS are trademarks of Sun Microsystems Inc.

ObjectStore is a trademark of Object Design Inc.

Other brand or product names are trademarks or registered trademarks of their respective

owners.

The Allegro CL software as provided may contain material copyright Xerox Corporation

and the Open Systems Foundation. All such material is used and distributed with permis-

sion. Other, uncopyrighted material originally developed at MIT and at CMU is also

included.

Portions of the chapters entitled: Installation guide, Database maintenance and admin-
istration, Administration utilities, and Database user utilities contain material copyright

 Object Design Inc., 1992-1994. We thank Object Design Inc. for allowing us to repro-

duce this information.

Contents

Preface 11

1 Installation p-13

2 Release notes p-15
2.1 How to use this section p-15

3 Introduction p-17
3.1 Format of the manual p-17

Examples may not exactly match what is on the screen p-18
A note on the prompt p-18

3.2 An outline of the manual p-18
3.3 Comments and suggestions p-19
3.4 Reporting bugs p-19

Patches p-20
3.5 Upcoming technical memoranda p-21

4 Technical overview p-23
4.1 Product description - What does AllegroStore do? p-23

4.1.1 AllegroStore features p-23
Persistent object access p-23
Minimal locking overhead p-24
Locking granularity p-24
Minimal data caching overhead p-24
Minimal per-object network overhead p-25
Minimal disk access overhead p-25
Transparent lock management p-25

4.2 Relationships p-26
What are relationships? p-26
Example p-26
Referential integrity p-28
Garbage collection p-29

4.3 Distributed object management p-30
Client/server architecture p-30

4.3.1 The Server p-30
What is a server? p-30
Restart/recovery p-30

4.3.2 The client p-31
What is a client? p-31

4.4 Concurrency control in a client/server environment p-32
What is concurrency control? p-32
Client/server locking model p-32
AllegroStore: Table of Contents c - 3

Lock management p-32
Example p-32
Deadlock detection p-33

4.5 Heterogeneous operation p-34
What is heterogeneity? p-34

4.6 An administrator's view of AllegroStore p-35
What is a database? p-35
Choice of native or ObjectStore file system p-35
Database management utilities p-35
Performance monitoring p-35
Restart/recovery p-36
Access control p-36

4.7 Continuous operation p-37
Non-stop database backup p-37
Archive logging protects against media failure p-37

5 Tutorial p-39
5.1 Getting started p-39

Put the databases on the server machine p-39
Use the allegrostore package p-39
Assumed background p-39
Further things before you start the tutorial p-39
with-database and with-transaction p-40
Our running example p-40

5.2 The database p-40
Define the book class p-41
Create a database and put some stuff in it p-41
Transactions p-42
Displaying and verifying the contents of the library p-42
Changing the schema p-43
Object interrelations p-44
Retrieving items from the database p-45
Searching the database for an instance in a slot p-46
Inverse functions p-47
The :inverse slot definition p-47
Deleting instances p-48
Referential integrity p-49

5.3 Persistent class slots p-49
5.4 Multiple databases p-51

6 Programmer’s guide p-53
A quick example p-53

6.1 Organization of this chapter p-54
6.2 A review of CLOS concepts p-56

Classes p-56
Slots p-57
Instance creation p-58
Metaclasses p-58
c - 4 AllegroStore: Table of Contents

Defining your own metaclasses p-59
6.3 The database p-59

Database naming conventions p-59
Moving and copying databases p-61
Creating the database p-61
The current database p-62

6.4 The schema p-62
What is a schema? p-62
How a schema is set p-62
How schema differences are reconciled p-63

6.5 Transactions p-65
A quick illustrative example p-65
What is a transaction? p-65
A model for transactions p-66
The real database p-67
The problem of deadlocks p-67
How are transactions started and committed or rolled back? p-68
Nested transactions and top-level transactions p-68
Top-level transactions: committed when complete p-69
The transaction-active-p function p-69
Transaction restarts p-70
Code in a with-transaction form may execute many times p-70

6.6 Slots p-71
Types of slots p-71
:persistent slots p-71
:persistent-class slots p-71
Non-persistent slots p-71
Set-valued slots p-72
What type of values can be stored in slots p-72
Program-defined types p-74

6.6.1 Caching Persistent Slot Values p-77
When will caching improve performance? p-77
How does caching improve performance? p-77
Manual caching p-77
Automatic caching p-78

Manual caching vs. Automatic caching p-78
What about write caching? p-78
When stale caches are reinitialized p-78
Slot values other than CLOS instances are eq with automatic

caching p-79
6.7 Persistent hash tables p-79

Why use persistent hash tables? p-79
Properties of persistent hash tables p-79
Creating and manipulating persistent hash tables p-79

6.8 Blobs p-79
Why use blobs? p-80
Properties of blobs p-80
Creating and manipulating blobs p-80
Blobs and files p-80
AllegroStore: Table of Contents c - 5

6.9 Persistent Ftype (Foreign Type) Arrays p-81
Why use persistent ftype arrays? p-81
When are persistent ftype arrays the wrong choice? p-82
Persistent ftype array properties p-82
Creating and manipulating persistent ftype arrays p-82
Using pointers to persistent Lisp objects p-86
Dynamically determining foreign type definitions p-86
Freeing persistent foreign type array memory p-86
Discarding unneeded foreign types from a database p-86
Using tags to retrieve an initial persistent address p-87

6.10 Inverse functions p-87
Readers and accessors p-87
The problem of finding an object given a slot value p-88
Inverse functions p-88
Inverse functions speed up querying, but may cost p-88
Unique slot values p-89

6.11 Queries and iterators p-90
Iterators p-90
Non-iterator: retrieve p-92

6.12 Pointers p-92
The validity of pointers p-92

6.13 Implicit object creation p-94
6.14 Object deletion p-94
6.15 Referential integrity p-95

Finding references to an object (collect-references) p-95
6.16 Object update p-96

Handling object update automatically p-97
6.17 Multiprocessing p-98

Platforms with :os-threads on *features* p-98
Platforms without :os-threads on *features* p-99

6.18 Interactive transactions during application development p-99
6.19 Persistent Object Check Out and Check In p-100

The Example Database p-100
Designing Persistent Classes for Check Out And Check In p-101
Check Out and Check In Methods p-102
Creating New Instances p-104
Some Example Sessions p-104
Conclusions p-105

6.20 Reducing Page Lock Contention p-105
6.21 Read-Only Processing p-107
6.22 Multi Version Concurrency Control (MVCC) Processing p-108
6.23 Long Transactions p-109
6.24 Notifications p-110

Why use notifications? p-110
Setting up notifications p-110
Sending a notification p-111
Waiting for notifications p-111
Examining notification objects p-112
c - 6 AllegroStore: Table of Contents

7 Reference guide p-115
7.1 General information p-116

About saving and restoring databases p-116
About multiprocessing (:os-threads version) p-116
About multitasking (non :os-threads version) p-116
About the configuration database p-116
About moving and copying database files p-117
About deleting database files p-117
About persistent-standard-class p-117
About persistent slots p-118
About persistent-standard-object p-119
About read-locks and write-locks p-119
About schema p-119
About transaction p-120
About commit p-120
About roll back p-120
About shell environment variables p-120
About deadlock resolution p-122
About shrinking the transaction log p-122
New arguments to open-database and with-database allowing

instance/pointer/segment allocation p-123
7.2 Definitions p-125

7.2.1 Variables p-125
7.2.2 Databases: saving and restoring p-126
7.2.3 Database manipulation p-126

Program to verify database consistency p-129
7.2.4 Schema manipulation p-130

Executable subforms of the defclass macro and lexical environ-
ments p-131

7.2.5 Transactions p-134
7.2.6 Object manipulation p-135
7.2.7 Query language p-137
7.2.8 References p-141
7.2.9 Object identifiers p-141
7.2.10 Persistent hash tables p-142

Persistent hash tables as slot values p-143
7.2.11 Blobs p-144
7.2.12 Persistent ftypes p-145
7.2.13 Lock timeouts p-147
7.2.14 Notifications p-148
7.2.15 Conditions p-150

The condition hierarchy p-150

8 Database maintenance & administration p-157
8.1 Using the ObjectStore documentation p-157
8.2 In this chapter p-158
8.3 File databases p-159
8.4 The server p-160
AllegroStore: Table of Contents c - 7

8.4.1 Server command line options p-161
8.4.2 Server access control p-161

8.5 Authentication p-162
8.5.1 User interface to authentication p-162

8.6 Server parameters file p-163
8.6.1 Parameter terms p-163
8.6.2 Server parameters p-164

8.7 Password and license management p-169
8.8 Cache manager p-169

8.8.1 Cache manager parameters p-169
8.9 The client environment p-171

8.9.1 Client environment variables p-171
8.10 Directory manager databases p-174
8.11 Ports file p-175
8.12 Error reporting by ObjectStore daemons p-176
8.13 On-line backup and restore of ObjectStore databases p-177

8.13.1 On-line backup p-177
8.13.2 On-line restore p-178

9 Administration utilities p-179
9.1 Using the ObjectStore documentation p-179
9.2 In this chapter p-180
9.3 Specifying pathnames p-180
9.4 Rawfs pathname wildcard processing p-181
9.5 Using the OS_DIRMAN_HOST variable p-181
9.6 osbackup p-182
9.7 oschhost p-184
9.8 oscmrf p-185
9.9 oscmshtd p-186
9.10 oscmstat p-187
9.11 osrestore p-189
9.12 ossvrchkpt p-192
9.13 ossvrclntkill p-193
9.14 ossvrmtr p-194
9.15 ossvrshtd p-196
9.16 ossvrstat p-197

10 User utilities p-203
10.1 Using the ObjectStore documentation p-203
10.2 In this chapter p-204
10.3 oschangedbref p-206
10.4 oschgrp p-207
10.5 oschmod p-208
10.6 oschown p-211
10.7 oscompact p-212
10.8 oscp p-214
10.9 osdf p-215
c - 8 AllegroStore: Table of Contents

10.10osglob p-216
10.11oshostof p-217
10.12osls p-218
10.13osmkdir p-219
10.14osmv p-220
10.15osrm p-221
10.16osrmdir p-222
10.17ossetasp p-223
10.18ossevol p-224
10.19ossize p-226
10.20ossvrping p-228
10.21ostest p-229
10.22osverifydb p-230
10.23osversion p-232

Index 235
AllegroStore: Table of Contents c - 9

c - 10 AllegroStore: Table of Contents

Preface

This manual contains definitions of AllegroStore concepts and functionality and informa-

tion on installing and maintaining an AllegroStore system.

It is in PDF format, intended to be read online using an Adobe Acrobat (r) Reader.

We would appreciate comments, suggestions, and criticisms of this manual. See the onlie

HTML files doc/introduction.htm for information on contacting Franz Inc.
AllegroStore 2.0 11

[This page intentionally left blank.]
12 AllegroStore 2.0

Chapter 1 Installation

Installation instructions can be found in the document doc/installation.htm provided with

the distribution. That document describes the unified installation procedure for Allegro CL

and all associated products including AllegroStore.
AllegroStore 2.1 13

[This page intentionally left blank.]
14 AllegroStore 2.1

Chapter 2 Release notes

2.1 How to use this section

Release Notes for AllegroStore on Allegro CL 6.2 can be found in the document

doc/release-notes.htm provided with the distribution.
AllegroStore 2.1 15

[This page intentionally left blank.]
16 AllegroStore 2.1

Chapter 3 Introduction

3.1 Format of the manual

This manual contains definitions of Lisp functions, variables, named constants, special

forms, macros, etc. The name of the object being defined appears on the left while the type

of object appears in brackets on the right. Arguments (if any) appear on the next line, which

is labeled Arguments. Definitions use a larger type font to highlight them. What follows is

a template followed by specific examples:

name [Object type]

Arguments: parameters

■ [Description goes here.]

Three specific examples follow:

digit-char-p [Function]

Arguments: char &optional radix

default-pathname-defaults [Variable]

setf [Macro]

Arguments: {place newvalue}*

Arguments lists may spill over onto additional lines. If the arguments list is blank, it

means that there are no arguments. (Objects such as variables do not have an arguments

line, of course.) The line naming the object and the arguments line, if present, are followed

by explanatory text and examples. Many optional and keyword arguments have default val-

ues which are specified in the explanatory text.

Type faces are used to distinguish between operators (functions, macros, etc.), symbols,

constants, printed forms, and examples. Operator names are printed in bold Courier.

Arguments (and other placeholders) are in slant Courier. Other symbols are printed

in plain Courier, as are constants (such as #\A and nil) and special symbols

(such as *package*) and keywords and lambda-list keywords (such as :test and

&optional, respectively). Printed forms and examples are printed in Courier. User

input is typically in bold while what the system prints is typically in plain.
AllegroStore 2.1 17

Examples may not exactly match what is on the screen
Sometimes the printed example has a line break which does not actually appear on the

screen. More important, there are slight differences between different versions of Allegro

CL, so the printed examples showing Lisp sessions may differ from what you will actually

see, especially as regards what the system prints. Suggested code will work with all ver-

sions, however, unless otherwise indicated.

On occasion, a page break is placed above the usual bottom of the page so that text and,

more commonly, examples will be on a single page. We have tried to ensure that symbol

names and other literals are only broken where a hyphen actually appears in the name. Thus

digit-char-p could be broken between digit and char, or between char and p,

but not elsewhere. Because we justify left and right, this restriction can result in odd type

spacing in some lines.

A note on the prompt
The prompt for Allegro CL is USER(N):, where N is the expression number (so USER(1)

is the first prompt, USER(2) the second, etc.) Most transcripts in this manual use the sim-

plified prompt cl:. This (we hope) avoids confusion about the expression numbers.

3.2 An outline of the manual

This manual contains the following chapters:

1. Installation: Complete installation instructions for your platform.

2. Release notes and technical memoranda: The newest technical information

and clarifications will appear here in between software releases. Keep all

incoming memoranda here.

3. Introduction: The chapter you are reading.

4. Technical overview: A general discussion of object-oriented databases. A

technical overview of AllegroStore is included.

5. Tutorial: A brief introduction to the workings of AllegroStore. Everyone who is

going to use the program should do the tutorial.

6. Programmer’s guide: This chapter contains specialized programming

information and discussion on all parts of the database structure.

7. Reference guide: Every AllegroStore macro, function, variable, and other object

is discussed in detail here.

8. Database maintenance and administration: This is the first of three chapters

included as a reference from the Object Design documentation.

9. Administration utilities: Describes the utilities used in tuning ObjectStore

databases and their directories. Directory Manager database utilities are included.

10. User utilities: Describes user-level utilities for creating and manipulating

ObjectStore databases and their directories.

There is an index after the last chapter. The last page is an information sheet describing

how to contact Franz Inc.
AllegroStore 2.1 18

3.3 Comments and suggestions

We are pleased to hear from our users in order to improve AllegroStore. We invite your

comments and suggestions. The address to which to write, either by post or by electronic

mail, is on the Information sheet at the very end of this manual.

3.4 Reporting bugs

We are committed to the highest standards of software engineering. This release of

AllegroStore was tested both internally and in the field. Nevertheless, as with all computer

programs, it is possible that you will find bugs or encounter behavior that you do not expect.

In that event, we will do our utmost to resolve the problem. But, resolving bugs is a

cooperative venture, and we need your help.

What follows here is essentially identical to the bug-reporting instructions for Allegro

CL. If you have read section 1.7 of the Allegro CL User Guide, also called Reporting bugs,

you know exactly what to do.

Before reporting a bug or a suspected bug, please study this document, the Allegro CL
User Guide and Common Lisp: the Language (2nd edition!) to be sure that what you expe-

rienced is indeed a bug. If the documentation is not clear, this is a bug in the documentation:

AllegroStore may not have done what you expected, but it may have done what it was sup-

posed to do.

A report that such and such happened is generally of limited value in determining the

cause of a problem. It is very important for us to know what happened before the error

occurred: what you typed in, what AllegroStore printed out. A verbatim log may be needed.

If you are able to localize the bug and reliably duplicate it with a minimal amount of code,

it will greatly expedite repairs.

It is much easier to find a bug that is generated when a single isolated function is applied

than a bug that is generated somewhere when an enormous application is loaded. Although

we are intimately familiar with AllegroStore, you are familiar with your application and the

context in which the bug was observed. Context is also important in determining whether

the bug is really in AllegroStore or in something that it depends on, such as the operating

system.

Please include the following information in bug and suspected-bug reports to us.

Incomplete information is likely to delay or complicate our response.

• Lisp implementation details. All the necessary details are provided by

evaluating the following forms (which produce an output file bug-rep-file -- but

you can use any filename, of course) and send us the contents of the file:

(excl:dribble-bug "bug-rep-file")
allegrostore:*allegrostore-version*
(dribble)

• Information about you. Tell us who you are, where you are and how you can be

reached (an electronic mail address, a postal address, and your telephone

number), your AllegroStore license number, and in whose name the license is

held.
AllegroStore 2.1 19

excl:dribble-
bug
• A description of the bug. Describe clearly and concisely the behavior that you

observe.

• Exhibits. Provide us with the smallest, self-contained Lisp source fragment that

will duplicate the problem, and a log (e.g. produced with dribble or

dribble-bug) of a complete session with AllegroStore that illustrates the bug.

A convenient way of generating at least part of a bug report is to use the

excl:dribble-bug function mentioned above. Typing

(excl:dribble-bug "filename")

causes implementation and version information to be written to the file specified by

filename, and then records the Lisp session in the same file. Typing

(dribble)

will close the file after the bug has been exhibited. excl:dribble-bug is defined in the

online manual page doc/pages/operators/excl/dribble-bug.htm.

Note that if whatever you type to duplicate the bug loads in files of yours either directly

or indirectly, attach a complete listing of the source version of these files to your session

log. The following dialogue provides a rudimentary template for a bug report.

USER(5) (dribble-bug "bug.dribble")
USER(6) allegrostore:*allegrostore-version*
;; Now duplicate your bug . . .
USER(7) (dribble)

Send bug reports to either the electronic mail or postal address given on the information

sheet at the end of this manual. We will investigate the report and inform you of its resolu-

tion.

We will meet you more than half way to get your project moving again when a bug stalls

you. We only ask that you take a few steps in our direction.

Patches
All complex software products contain bugs and errors. Some bugs can be fixed with a

patch, which is a short file containing a correction to a specific problem. Patches have sev-

eral advantages as a way to fix bugs:

• Because they are short, they can be sent by electronic mail. Electronic mail is

preferable to sending a tape (or other physical media) since it is fast, goes directly

to the right person, and avoids problems with shippers and receiving departments,

to say nothing of customs agents.

• Because they fix a specific problem and do not otherwise change the Lisp, they

do not constitute a new release. This allows us to keep track of exactly what

version of AllegroStore you have.

• If the patch itself causes a problem (it is rare, but it can happen), it is very easy

for you to back it out. We do not have to send you anything, you just rebuild

AllegroStore without the patch and you are back where you started.

See the information on getting and installing patches in the HTML file [Allegro direc-
tory]/doc/introduction.htm.
AllegroStore 2.1 20

3.5 Upcoming technical memoranda

We may issue Technical Memoranda between releases of AllegroStore. These are num-

bered articles documenting changes in the software.
AllegroStore 2.1 21

[This page intentionally left blank.]
AllegroStore 2.1 22

Chapter 4 Technical overview

This chapter is an overview of the AllegroStore object-oriented database management sys-

tem (ODBMS) and how it provides a solution to building CLOS based groupware applica-

tions.

4.1 Product description - What does AllegroStore do?

AllegroStore provides full-fledged database functionality for CLOS programmers. Allegro-

Store is a high-performance object-oriented database management system which offers

Allegro CL users the power of persistent object storage with fast retrieval and update of

object data. AllegroStore provides query processing, transaction-based operations, and per-

mits concurrent access to objects in a client/server environment. AllegroStore also offers

standard database features such as deadlock detection, exception handling (integrated into

the Lisp condition system), referential integrity, and inverse functions.

AllegroStore combines proven database engine technology from industry leader Object

Design with CLOS and a rich set of development tools. The result is a productive develop-

ment environment for the design and delivery of commercial applications. AllegroStore can

handle large-scale database applications without sacrificing performance.

AllegroStore is seamlessly integrated with Allegro CL and CLOS, the Common Lisp

Object System. CLOS provides the incremental compilation, automatic memory

management, method discrimination and specialization, multiple inheritance and dynamic

redefinition.

Note that you must be licensed to use AllegroStore. It is not part of the standard Allegro

CL package. You must install ObjectStore (which is provided to AllegroStore customers)

for AllegroStore to work.

4.1.1 AllegroStore features

Persistent object access
AllegroStore uses ObjectStore as its database manager. Persistent Lisp objects are

described to ObjectStore in a C-structure format which enables ObjectStore to query,

access and modify persistent Lisp objects. This allows AllegroStore to use fewer machine

resources than would be expected in a standard large Lisp system (where all of the data is

present in virtual memory).

ObjectStore itself supports high-performance data manipulation by mapping the parts of

the database that contain the objects directly into the Lisp system's virtual address space.

Only the objects being directly referenced are mapped in. Other objects (including the

objects that are the values of slots of directly referenced objects) are not mapped in until
AllegroStore 2.0 23

they too are directly referenced, so even large objects with many slots incur minimal data-

base access overhead.

Using the ObjectStore Virtual Memory Mapping Architecture (VMMA), AllegroStore

can make the speed of dereferencing pointers to persistent objects the same as that for tran-

sient objects, namely the speed of a single “load” instruction.

Minimal locking overhead
A problem in databases which are simultaneously accessed by many users who are able to

modify the data is efficient locking. When one user wishes to make a change to data, other

users cannot access that data until the change is completed (for they might otherwise see

partially modified and thus inconsistent data). AllegroStore uses an internal algorithm for

locking objects, typically locking the page or pages on which data resides. Only a single

lock action is needed for an entire page, which provides significant performance gains over

other locking mechanisms.

Locking granularity
Why is page locking optimal in most cases? Early designs for object-oriented databases

focused on trying to lock each object separately. Although early architects felt that per-

object locking would give the user the highest throughput in terms of concurrent access, the

reality turned out to be quite the opposite. While object-level locking can in some cases

reduce the potential for concurrency conflicts, it does so at the cost of introducing locking

overhead on every object. Since object-oriented applications use composite objects built

with objects often several levels deep, accessing, locking, and transporting data on a per-

object basis turns out to have disastrous consequences for performance. Furthermore, by

increasing the length of each transaction, object-level locking actually increases the poten-

tial for concurrency conflict in many cases.

Even a simple transaction may touch several thousand such objects and will create unac-

ceptable overhead just doing the lock acquisition. Further, the system must track the status

of every locked object in it. This leads to an overhead rate that escalates in a non-linear fash-

ion as the system maintains the “waits for” graph needed for deadlock detection. In addi-

tion, object-level locks negatively affect coding productivity, because the developer must

explicitly manage all locks, which is difficult and error-prone.

Minimal data caching overhead
Even when many users access a shared database, very often the next user to use a data item

will be the same as the previous user. In other words, while concurrent access must be

allowed and must work correctly, many data items will be used mainly by one user over a

short span of time. AllegroStore uses a caching mechanism that allows a user to re-access

previously retrieved objects without experiencing the overhead for refetching or relocking

those objects. This data caching means that when a sequence of transactions accesses the

same objects, there is a high probability that the data accessed in the next transaction will

already be cached in workstation memory.
24 AllegroStore 2.0

Figure 1. When a client requests a group of objects, clustering and data
caching minimize disk and network overhead.

Minimal per-object network overhead
Since network accesses are expensive operations, reducing the number of data transfers is

critical to the success of distributed object-oriented database management systems.

AllegroStore batches objects to be transmitted between client and server, and typically only

one network request is used to send a group of referenced objects into the client cache. This

strategy minimizes network traffic and allows the client to proceed through a transaction

without contacting the server until a transaction is committed.

Minimal disk access overhead
Often an application will use only a portion of a database, and that portion will be (or can

be arranged to be) stored contiguously in a small section of the database. With Allegro-

Store's automated clustering facility, related objects are clustered together in the database,

enhancing locality of reference.

Clustering increases performance (or throughput), since disk access time for contiguous

data is faster than random access, because disks can typically read or write many sequential

blocks in the time it takes to move the disk head to a random location. AllegroStore's object-

level clustering feature allows programmers to increase performance (as well as minimize

concurrency conflicts) by grouping only those objects that belong together on a disk page.

In future versions, AllegroStore programmers will be able to tune the clustering process.

Transparent lock management
AllegroStore manages the locking of database objects in a way that is both automatic and

transparent. Persistent data is just like ordinary heap-allocated (transient) data; once there

is a pointer to it, the object can be used in the ordinary way.

Application

AllegroStore

Cache

Operating
System

Reduces disk and network
overhead

Database server
AllegroStore 2.0 25

AllegroStore automatically takes care of locking, and keeps track of what has been mod-

ified. AllegroStore's locking model insures integrity by automatically managing a transac-

tion's read and write sets. Any object that has been updated by a transaction will be written

out to stable storage when the transaction commits.

In comparison other object database systems require the programmer to lock each object

explicitly, adding a great deal of complexity to the task of application coding. Forgetting to

call a lock subroutine can result in loss of data, because the changes will not be flushed to

disk. This can corrupt the database, because concurrent accesses will not be serialized. For-

getting to release a lock will cause other programs to wait forever. AllegroStore's automatic

and transparent locking protects the integrity of the database against many kinds of pro-

grammer error.

4.2 Relationships

What are relationships?
Relationships are useful in modeling complex objects such as designs, parts hierarchies,

documents, and multimedia information. Each relationship is composed of two or more

objects that are constrained to be consistent with one another in a particular fashion. The

constraints on the data members composing the relationship are declared by the user.

Example
In the example below, we illustrate a parts hierarchy in a car. A set of tires are parts of cars.

We make a database of tires and then constrain a set of tires to be part of an automobile. We

can query over the automobiles and see the tires for each automobile as well. We define the

tire class with the code below. First two notes.

• For readers unfamiliar with CLOS. When evaluated, the following code

defines a class of objects named tire. It also defines one slot: the brand.

‘:allocation :persistent’ means the brand will be stored in the

permanent database. :initarg :brand means the brand can be specified

when an instance of a tire is created by specifying an argument labeled :brand.

‘:metaclass persistent-standard-class’ says that data about tires

will be stored in the permanent database.

• For users familiar with tires. The brand is of course only one of several

necessary pieces of information about a tire (width, rim size, etc. are all also

necessary). However, this is a simple example.

(defclass tire ()
 ((brand :allocation :persistent :initarg :brand))
 (:metaclass persistent-standard-class))

Now we receive two new tires, so we create instances of tires and store them in the database

in the file tires.

(with-database (db "tires")
 (with-transaction ()
 (make-instance 'tire :brand 'michelin)
 (make-instance 'tire :brand 'pirelli)))

A query will print these out:
26 AllegroStore 2.0

cl: (with-database (db "tires")
 (with-transaction ()
 (for-each ((obj tire))
 (format t "Tire brand is ~s~%" (slot-value obj 'brand)))))
Tire brand is michelin
Tire brand is pirelli
nil
cl:

Now we define the auto class. It contains a tires slot where data on the tires on the

auto is stored. Thus we have a relationship between the persistent tire class and the persis-

tent auto class.

(defclass auto ()
 ((tires :type (set-of tire)

:allocation :persistent :accessor tires :initarg :tires))
 (:metaclass persistent-standard-class))

We create an instance of an auto. We also create five tire instances and associate them

with the new auto (the cheap tire is the spare):

(with-database (db "cars")
 (with-transaction ()
 (make-instance 'auto :tires (list
 (make-instance 'tire :brand 'goodyear)
 (make-instance 'tire :brand 'goodyear)
 (make-instance 'tire :brand 'goodyear)
 (make-instance 'tire :brand 'goodyear)
 (make-instance 'tire :brand 'cheap)))))

We can execute a query to print all tires currently on all automobiles in the database. (Of

course, so far we only have one auto in the database, and five tires: The michelin and pirelli

tires defined above are in another database.)

cl: (with-database (db "cars")
 (with-transaction ()
 (for-each ((c auto) (w (tires c)))
 (print w))))

#<tire in /db/mjm/cars p: #x72f0004 @ #xad479a>
#<tire in /db/mjm/cars p: #x72f001c @ #xad536a>
#<tire in /db/mjm/cars p: #x72f0034 @ #xad57f2>
#<tire in /db/mjm/cars p: #x72f004c @ #xad5a2a>
#<tire in /db/mjm/cars p: #x72f0064 @ #xad5c62>
nil

And, just as above, we can list all tires in the database, even though they were defined as

slots of an instance of an auto:

cl: (with-database (db "cars")
 (with-transaction ()
 (for-each ((obj tire))
 (format t "Tire brand is ~s~%" (slot-value obj 'brand)))))
Tire brand is goodyear
Tire brand is goodyear
Tire brand is goodyear
Tire brand is goodyear
AllegroStore 2.0 27

Tire brand is cheap
nil
cl:

Referential integrity
AllegroStore provides referential integrity which is automatically enforced as an update

dependency. When an object is deleted, all objects which have slots that point to the deleted

objects are updated.

To see this, let us expand the definition of a tire to include a barcode slot. Note we use

the :inverse option to define the inverse function code-to-tire, which tells what

tire has a specific barcode. See chapter 5 Tutorial and section 6.9 Inverse functions for

more information on inverse functions. Also, the redefinition is in a with-database,

ensuring the definition of the tire class in the database is the same as the one in memory:

(with-database (db "cars")
 (defclass tire ()
 ((brand :allocation :persistent :initarg :brand)
 (barcode :allocation :persistent :initarg :barcode
 :inverse code-to-tire))
 (:metaclass persistent-standard-class)))

Now we assign a barcode to each tire in the database:

cl: (with-database (db "cars")
 (with-transaction ()
 (let ((bc 1))
 (for-each ((obj tire))
 (setf (slot-value obj 'barcode) bc)
 (setf bc (1+ bc))
 (format t "Tire with barcode ~d has brand ~s~%"
 (slot-value obj 'barcode)
 (slot-value obj 'brand))))))
Tire with barcode 1 has brand goodyear
Tire with barcode 2 has brand goodyear
Tire with barcode 3 has brand goodyear
Tire with barcode 4 has brand goodyear
Tire with barcode 5 has brand cheap
nil

Now, assume a driver of the single auto in our database has a puncture. While putting on

the cheap spare, the bad tire rolls down the hill, into the river, and floats away. The driver

tells us it is the tire with barcode 3. We first make sure there is such a tire by using the

inverse function code-to-tire:

cl: (with-database (db "cars")
 (with-transaction ()
 (code-to-tire 3)))
(#<tire in /db/mjm/cars (closed-database) @ #xcedfba>)

We now delete the instance of that tire, and then look at the tires associated with our auto

(since code-to-tire returns a list of one tire, we use car to extract the tire from the

list):
28 AllegroStore 2.0

cl: (with-database (db "cars")
 (with-transaction ()
 (delete-instance (car (code-to-tire 3)))))
#<tire in /db/mjm/cars (closed-database) @ #xd0400a>

Now we look at the tires associated with our auto, and find there are only four. The

deleted one is gone:

cl: (with-database (db "cars")
 (with-transaction ()
 (for-each ((c auto) (w (tires c)))
 (print w))))
#<tire in /db/mjm/cars p: #x72f0004 @ #xd6c342>
#<tire in /db/mjm/cars p: #x72f001c @ #xd6d852>
#<tire in /db/mjm/cars p: #x72f004c @ #xd6da8a>
#<tire in /db/mjm/cars p: #x72f0064 @ #xd6dcc2>
nil
cl:

Garbage collection
Persistent objects are of two types: persistent CLOS instances and other Lisp objects.

AllegroStore uses a simple reference counting garbage collector, which imposes some

limitations on how objects are stored in the persistent database.

In typical CLOS programming, circular references between CLOS instances (either

directly through a chain of CLOS instances, or indirectly through Lisp objects such as hash

tables) are common. AllegroStore permits such circular references since persistent CLOS

instances are always reachable by querying over the classes of the instances.

If a persistent class is explicitly deleted, all instances of that class are also automatically

deleted and immediately garbage collected. Any other persistent objects pointing to the

deleted CLOS instances are automatically updated using referential integrity.

When the slot of a persistent CLOS instance is set to a regular Lisp object, a copy of that

object is stored in the database. Thus, every regular Lisp object in the database has a refer-

ence count of exactly 1. If the slot of the persistent CLOS instance is set to another object,

then this Lisp object is deleted.

Currently we enforce the limitation that the Lisp object must contain no circularities.

This limitation is present because the code to delete objects or to scan objects to keep

referential integrity assumes no circularities. This limitation may be removed in a later

release. AllegroStore automatically detects any attempt to store circular objects and signals

an error.
AllegroStore 2.0 29

4.3 Distributed object management

Client/server architecture
AllegroStore supports cooperative access through its flexible client/server architecture

which gives the best use of the computational power of the client workstation.

AllegroStore's client/server implementation means that:

• servers can support many client workstations,

• workstations can simultaneously access multiple databases on many servers, and

• a server and client can be co-resident on the same machine.

The server and the client communicate via a network when they are running on different

hosts, and by operating system facilities such as shared memory, local sockets, etc., when

they are running on the same host.

4.3.1 The Server

What is a server?
In multi-user configurations, computers dedicated to running server processes are referred

to as servers. In the AllegroStore environment, the server process manages physical data on

disk and arbitrates among client processes making requests for the data. The server process

maintains locking tables, provides deadlock detection, checkpointing, buffer management,

and license management, and handles logging.

Restart/recovery
Recovery is based on a log, using a write-ahead log protocol. Transactions involving more

than one server are coordinated using the two-phase commit protocol. The server also pro-

vides backup to long-term storage media such as tapes, allowing full backups as well as

continuous archive logging. When there is contention for an object, the server overrides the

default client behavior of encaching locks for future use, and calls back the lock so that the

competing transactions can proceed.
30 AllegroStore 2.0

Figure 2. AllegroStore provides a powerful distributed client/server
architecture for distributed object computing.

4.3.2 The client

What is a client?
Systems that run application processes to access the servers over the network are referred

to as clients. AllegroStore uses the ObjectStore client libraries to provide the interface

between the user's application and the database server. These automatically manage the log-

ical view of the data including sets, queries, versions, transaction management, memory

management, and relationships among objects.

Much of the query and DBMS processing occurs on the client side of the network. This

contrasts sharply with traditional relational DBMS systems in which the server is largely

responsible for handling all query processing, optimization, and formatting. When each cli-

ent does its own work, the aggregate computing power of the network is used, and the server

process can be on the same machine as the client processes. This allows more flexibility in

configuration: any potential client machine is also a potential server.

The client environment includes the AllegroStore Cache Manager, which maintains a

cache of objects accessed by all the client processes on a machine. In single-system config-

urations both the client processes and the server process exist on the same computer.

Server

Directory Manager

Data Storage

Deadlock Control

Backup/Restore

Recovery

Transaction Control

Client
Communication

API

Query

Versions & Configuration

Memory Management

Cache Management

Schema Services

Server Communication

Collections & Relationships

Transactions

Client

U
se

r
V

is
ib

le
AllegroStore 2.0 31

4.4 Concurrency control in a client/server environment

What is concurrency control?
Concurrent access by multiple clients enabled by AllegroStore's client/server architecture

creates the potential for one set of updates to interfere with another. The prevention of this

interference is called concurrency control. AllegroStore handles simultaneous access to

objects with transactions. A transaction in this case means a unit of work that is handled by

the application and determined by the user. The act of reading or writing to the database

must be within a transaction.

The concurrency control scheme employed for conventional transactions is based on a

serializable transaction management approach.

Client/server locking model
AllegroStore's locking model ensures integrity by automatically managing a transaction's

write set. Any object that has been updated by a transaction will be written out to stable

storage when the transaction commits.

This contrasts with more primitive approaches that require the program to mark which

objects have changed by calling a subroutine for each such object. Neglecting to call this

subroutine can result in loss of data since the changes will not be flushed to disk. Allegro-

Store locking, by contrast, is both automatic and transparent.

Lock management
Locking information is cached on both the client and server, to minimize the need for net-

work communication when the same process performs consecutive transactions on the

same data. A copy of an object in a client cache is marked as either shared mode or exclu-

sive mode. The server keeps track of which objects are in the caches of which clients, and

with which modes. The client holding the data in a cache is said to hold a read lock if the

data is in shared mode and a write lock if the data is in exclusive mode. (‘Read’ and ‘write’

refer to what the client holding the lock is doing.)

When a client requests an object from the server and the server notices that the object is

in the cache of some other client, the server will check to see if the modes conflict. If they

do, the server sends a message to the client holding the lock, asking it to remove the object

from its cache. This is called a “callback” message, since it goes in the opposite direction

from the usual request.

When the client holding the lock receives the callback, it checks to see if the lock is cur-

rently in use, and if not, relinquishes the object immediately, and removes the copy of the

object from its cache. If the object is in use, the client replies negatively to the server, and

the server forces the requesting client to wait until the holder is finished with the transac-

tion. When the holding client commits or rolls back, it then removes the copy of the object

from its cache, and the server can allow the waiting client to proceed.

Example
In Figure 3 below, objects are locked for read and write on client demand. At the end of the

transaction, objects are unlocked and modified objects are written to the server log. Another

client's attempt to write to a locked object is blocked until the lock is released. In the exam-
32 AllegroStore 2.0

ple, if Client 1 has a object is required by Client 2's transaction, the server sends a callback

notice to Client 1 using the shared object. Client 2 will receive the object as soon as Client

1's transaction is through.

Figure 3. Data integrity is guaranteed in distributed environments

Deadlock detection
On rare occasions, the system may roll back a transaction either because of a network fail-

ure or because it has determined that the transaction is involved in a deadlock. By default,

the transaction is restarted at the first statement following the start of the transaction. The

transaction will continue to be retried until the transaction is successful or the maximum

number of tries has occurred.

Transaction Commits Objects Released

Client Cache

Objects Requested

Client Cache

Objects Called Back

Server

Client 2

Client 1
AllegroStore 2.0 33

4.5 Heterogeneous operation

What is heterogeneity?
Heterogeneous operation means that

• data are stored in the database using a portable format that does not depend on

any particular architecture's data format, alignment requirements, byte ordering,

or floating-point representation;

• the client or server do not need to run on platforms of the same type;

• different clients can access a database simultaneously;

• a database created on one platform can be moved to a different server on a

different heterogeneous platform.

AllegroStore is for the most part heterogeneous. All 32-bit platforms perform heteroge-

neous operation with other 32-bit platforms. However, heterogeneous operation is not sup-

ported between 32-bit and 64-bit platforms because doing so would have compromised the

integrity of certain Lisp datatypes.
34 AllegroStore 2.0

4.6 An administrator's view of AllegroStore

AllegroStore uses the basic set of ObjectStore database management facilities.

What is a database?
When an application allocates a persistent object, it specifies a database to contain that stor-

age. An AllegroStore “database” is simply a named area on the disk that serves as a con-

tainer for objects. These named areas may be simply files, or for certain high speed

applications, areas on the disk managed by the ObjectStore server. An application designer

may choose to store all the objects for an application in a single database or in multiple

small databases. Unlike many other database systems, there is no requirement that the user

predetermine the size of the database.

Choice of native or ObjectStore file system
ObjectStore provides the user with two ways to store databases physically. The fastest per-

formance comes when the ObjectStore server manages a raw disk partition. Alternatively,

databases may be stored as host operating system files. This support for native file systems

lets users treat databases as any other files so that users may employ standard operating sys-

tem utilities for organizing and managing AllegroStore databases. There are many situa-

tions where this is convenient. For instance, file databases can be accessed from machines

that can access the file using normal file protocols. Many users will prefer to store Allegro-

Store databases in working directories along with normal files.

Database management utilities
ObjectStore database management utilities are designed to look very much like the system

utilities of the host operating system. Object Store utilities on Unix looks much like Unix

system utilities. The ObjectStore database utilities manage:

• Directories (initialize the file system, lists, directory contents, create new

directories, move directories)

• Databases (report size, report content, delete, copy, verify the validity of the

contents, backup and restore)

Performance monitoring
ObjectStore provides performance statistics that system administrators can use to tune

applications and systems. Available utilities provide information on both client and server

processes such as:

CPU usage,

page traffic,

block I/O operations,

message traffic,

logging activity,

transaction activity, and

buffer activity.
AllegroStore 2.0 35

In addition, a utility is provided to monitor each client process connected to a particular

server. Information is reported on the active transactions and the number of blocks locked

on behalf of the client process.

Restart/recovery
ObjectStore takes responsibility for restart/recovery and guarantees data integrity. A trans-

action is an atomic unit of work that is applied to the database. One of the advantages of

transaction-based data management is that you can decide not to apply changes made dur-

ing your transaction. You can undo your changes back to the beginning of the current trans-

action by throwing out of the with-transaction body. When this is done, persistent

data is rolled back to its initial state at beginning of the transaction, all locks are released

and the other processes are allowed to access the pages that the aborted transaction had

locked.

In the case of a disruption to the system, ObjectStore insures recovery via a logging

mechanism. All after-images of data (redo records) updated by the client are held in a redo

log on the server. The redo log is used as a staging area on the server for changes to the

database. It is structured so that writes to the log always write contiguous sections of the

disk. This is important because any transaction that writes data must wait until the server

has insured that the changes are represented persistently on the server disk. Writing contig-

uous extents to the log provides the fastest possible response from the server during a trans-

action commit.

Access control
ObjectStore provides the developer with tools to specify the appropriate level of access

control for directories and for each database within a directory. Access control within

ObjectStore is provided in a manner which is analogous to the operating system file access

control system. Each database is automatically accessible to its creator.

ObjectStore provides utilities to assign users to groups that are assigned permissions.

The permissions assigned are either read only, write, or execute. User identification and

groups are protected by the operating system's password protection mechanism.

On operating systems that provide advanced security feature, ObjectStore uses the fea-

ture to provide greater security for databases. Because ObjectStore has a client/server archi-

tecture, each ObjectStore server handles requests from many different users and must take

responsibility for enforcing access control to files containing databases.

For instance, on Sun systems the ObjectStore server has four optional modes to control

read/write access for databases:

1. Authentication required: NONE

2. Authentication required: SYS

3. Authentication required: DES

4. Authentication required: UNIX login

In future releases, enhancements will include support for the Kerberos protocol which is

expected to be widely available on all major operating systems.
36 AllegroStore 2.0

4.7 Continuous operation

Support for mission-critical applications requires a set of features that guarantee high avail-

ability of object stored data. These enhancements make it possible to run ObjectStore appli-

cations in a non-stop fashion, so a continuous stream of transactions can be issued against

a database twenty-four hours a day.

These enhancements include non-stop database backup facilities, and non-stop archive

logging facilities.

Non-stop database backup
Non-stop database backup, also know as “fuzzy backup”, is used for backing up databases

or file systems. (Note the term “data item” as used below, will mean the data being backed

up, whether it is a database, or a complete database system). There are three main compo-

nents in the fuzzy backup:

1. The temporary log

2. The backup medium

3. The parallel log

The temporary log is the place where redo records are written as part of recovery pro-

cessing so that in the case of a system failure it is only necessary to replay this log against

the material database. The temporary log is periodically flushed (known as checkpointing)

by propagating redo records to the material database. The backup medium is the output

device onto which the backup is written. It may be a random access device, e.g. a disk, or

a sequential device, e.g. a tape. The parallel log is a second copy of the temporary log that

is only written to during backup processing and, unlike the temporary log, is not garbage

collected.

Fuzzy backup is conceptually simple. At the start of the backup, the parallel log is

enabled so that all subsequent writes to the data item are written to the temporary log (as

always) as well as the parallel log. Once enabled, the data item is copied to the backup

medium, creating the fuzzy copy of the data. It is called fuzzy because processes are

allowed to update the database while the backup is taking place. This is possible because

the parallel log captures the results of all the update transactions, which are appended to the

backup medium. To restore a fuzzy backup, the data item is restored and then the redo

records that were in the parallel log are applied to the restored data item.

Archive logging protects against media failure
Although the fuzzy backup system provides increased protection against media failure, the

recovered data is only as recent as the most recent backup copy. Archive logging increases

reliability by writing a duplexed copy of the log on media with independent failure mode.

Should there be a system failure, the temporary log is used for recovery purposes. For media

failure the archive log is used for recovery.

The archive is also conceptually simple: all redo records are written to the temporary log

and the (duplexed) archive log. In the event of media failure, the latest backup copy of the

database is restored (by restored all full backups and subsequent incremental backups), and

the archive log is replayed against the data to make it transaction-consistent.
AllegroStore 2.0 37

[This page intentionally left blank.]
38 AllegroStore 2.0

Chapter 5 Tutorial

This chapter provides an introduction to using AllegroStore. Many features are demon-

strated, but often without a great deal of detail. This chapter is worth scanning by any user,

since it provides some programming tips as well as examples.

5.1 Getting started

Put the databases on the server machine
Although it is possible to have a database file on a machine different from the machine run-

ning the ObjectStore server, doing so is somewhat involved (see Technical Memorandum #

AS-2). Use database files on the same machine as the server runs for purposes of this tuto-

rial.

Use the allegrostore package
Functions, macros, and classes and so on in AllegroStore are named by symbols in the

allegrostore package. Programs using AllegroStore should work in a package which

uses the allegrostore package. If you are running AllegroStore interactively, evaluate

(use-package :allegrostore)

In this manual we have assumed that form has been evaluated, so we do not qualify

allegrostore symbols in examples. (However, we often use the qualifier when a sym-

bol is first mentioned in the text.)

The nickname for the allegrostore package is astore.

Assumed background
AllegroStore is derived from the Common Lisp Object System (CLOS). CLOS is an object-

oriented programming language and an extension of Common Lisp. We assume that you

already understand how to use CLOS. In section 6.2, several introductory books on CLOS

are listed.

The code samples shown here are provided in a separate file included in the distribution,

in case you want to use them to follow along. The file is called tutorial.cl.

Further things before you start the tutorial
Before you begin running the tutorial you should verify that your shell environment vari-

ables are set up correctly. There are three steps to the process.

• The environment variable OS_ROOTDIR should point to the directory where
you installed Objectstore. Here is how to verify that the variable is set from the

Unix shell:
39 AllegroStore 2.1

Creating a
database
% echo $OS_ROOTDIR

To verify that the variable is set from the DOS shell:

c:\> echo %OS_ROOTDIR%

• Your AS_CONFIG_PATH variable should point to the directory where the
Allegrostore configuration database is stored (this directory is usually the

Allegro CL installation directory).

To test whether the AS_CONFIG_PATH file has been set from a Unix shell

% echo $AS_CONFIG_PATH

To test it from a DOS shell:

c:\> echo %AS_CONFIG_PATH%

• Start a Lisp that includes the AllegroStore code. We assume you are running

in a package that uses the allegrostore package during the tutorial. To

verify, evaluate (use-package :allegrostore) in the Lisp that you have

started (it is not an error to evaluate this form when the allegrostore
package is already used but an error will be signaled if the AllegroStore code has

not been loaded and, therefore, the allegrostore package does not exist).

If you haven’t been able to verify any one of these steps: see chapter 1 Installation
guide. If you have verified all three steps, you are now ready to proceed with the tutorial.

with-database and with-transaction
It is very important that when you open a database, you later close it, and also important

that when you start a transaction, you complete it. As we describe in many places, with-
database opens its argument database, evaluates its argument forms and closes the data-

base when complete. And with-transaction starts a transaction, evaluates its argu-

ment forms, and then ends the transactions.

Therefore, if you use those two macros, you will never leave a transaction unfinished or

a database unclosed. That is why all of our examples have code wrapped in with-
database and with-transaction.

However, you may find that you want to open a database and keep it open for a while,

and to start a transaction and do things interactively for a while before completing the trans-

actions. See section 6.17 Interactive transactions for information on how to do these

things. We recommend that users who are just starting out use with-database and

with-transaction, as done in the code samples.

Our running example
We set up a database for a public library in the running example in this chapter.

5.2 The database

We will be using the data storage system of a Public Library as our example database. Sup-

pose we have just started a library and we only have three books. Here is how we would

create a database to describe those three books.
AllegroStore 2.1 40

Define the book class
We define the book class. We give it slots for author and title. As we describe below, book

is a persistent class (meaning instances will be stored in the database) and its slots are per-

sistent slots (meaning their value will be stored in the database).

(defclass book ()
 ((title :allocation :persistent
 :initarg :title
 :accessor title)
 (author :allocation :persistent
 :initarg :author
 :accessor author))
 (:metaclass persistent-standard-class))

Note two things in the defclass form:

• the :metaclass argument

• the :allocation argument of :persistent.

‘:metaclass persistent-standard-class’ tells Lisp that all objects of class

book will be persistent. Persistent objects will be stored in a database.

Specifying ‘:allocation :persistent’ in the slot definitions tells Lisp that the

value of this slot will also be stored in the database. AllegroStore permits the user to specify

on a slot-by-slot basis whether the slot's value should be stored persistently.

Create a database and put some stuff in it
Now we create out database and we create three instances of books which we store in the

database.

(with-database (db "mylib.db" :if-exists :supersede)
 (with-transaction ()
 (make-instance 'book :title "Dandelion Wine" :author "Ray Bradbury")
 (make-instance 'book :title "Marcovaldo" :author "Italo Calvino")
 (make-instance 'book :title "Baidarka" :author "George Dyson")))

Note the following:

• The allegrostore:with-database macro is similar in syntax to Lisp's

with-open-file macro. with-database opens, or if necessary creates,

a database and automatically closes it when control leaves the body of the

with-database form. The ‘:if-exists :supersede’ argument tells

the system to create a new database file, deleting an existing file of that name if

there is one. We do this at the beginning of a tutorial so you can start a fresh

example. Of course, you do not add the argument when opening an existing

database whose data you want to examine!

• As we describe in more detail below, the definition of the book class is

automatically stored in the database when instances of book are stored (notice

we did not have a database open when we defined the class above). That means

another user can open mylib.db without having to define the book class first.
41 AllegroStore 2.1

Transactions

Displaying the
contents of the

database
Transactions
The make-instance forms are wrapped with the macro allegrostore:with-
transaction. A transaction is a sequence of database operations. At the end of a trans-

action the program either commits the transaction or rolls it back. If the transaction is com-

mitted, then all of the changes made to the database are visible to other programs using the

database. If the transaction is rolled back, then all changes are undone.

The with-transaction macro starts a transaction and then evaluates the forms in

the macro’s body. If control falls through the body of the macro, then the transaction is com-

mitted. If control leaves the body of the macro before it has completed evaluation (e.g., as

a result of a of throw or go), then the transaction is rolled back. It is unlikely that anything

will prevent the three make-instance calls from completing in the example above, and

thus this transaction will commit.

Important: transactions may be automatically retried (run multiple times) before

committing. Code within a transaction should be free of side-effects, except for

changes to the database. See the section 6.5 Transactions, particularly the informa-

tion under the heading Transaction restarts.

Database operations can only be done if a database is open and a transaction is active. If

we had attempted (make-instance 'book) without a database being open and the

surrounding with-transaction, the system would have signaled an error.

For more information on multiple client situations and transaction rollbacks, or for infor-

mation on transactions finishing and retrying: see section 6.5 Transactions.

Displaying and verifying the contents of the library
Next, we'll verify that we have actually stored something in the database. Here is a function

that will print a list of all the books in a library.

(defun print-books-in-library (name)
 (format t "Books in library ~a~%" name)
 (with-database (db name :if-does-not-exist :error)
 (with-transaction ()
 (for-each ((b book))
 (format t "Title: ~a Author: ~a~%" (title b) (author b))))))

We use it to verify the contents of the database:

print-books-in-library calls allegrostore:for-each to scan the data-

base for all objects of a given class. AllegroStore keeps track of all objects of each class in

the database. Unlike normal Lisp objects, a persistent object does not disappear due to gar-

bage collection when there are no more pointers to it. In order to delete a persistent object,

you must call delete-instance on it (we'll have an example of that later).

Now, suppose you exit the Lisp process which you used to build the database and then

start Lisp again. Because the database isn’t open in the restarted Lisp, the book class is not

cl: (print-books-in-library "mylib.db")
Books in library mylib.db
Title: Dandelion Wine Author: Ray Bradbury
Title: Marcovaldo Author: Italo Calvino
Title: Baidarka Author: George Dyson
t
cl:
AllegroStore 2.1 42

Changing the
schema
defined. So what happens if you define print-books-in-library and evaluate

(print-books-in-library "mylib.db")? It will open the database and print the

list of books just as it did the first time.

That is because the database contains not only instances of persistent classes, but also

persistent class definitions. When the mylib.db database is opened, AllegroStore notices

that it contains book objects but the book class isn't defined in the current Lisp, so it

defines book according to the definition stored in the database. As a result, the accessor

functions author and title are also defined. If book were already defined in Lisp, but

in a different way, AllegroStore would resolve the differences as described in Changing the
schema just below.

Changing the schema
The set of class definitions stored in the database is called the schema of the database.

CLOS makes changing the schema of the database very easy. You need only redefine a class

using defclass. CLOS determines what has changed in the old definition and updates

old objects to obey the new class definition. AllegroStore applies the CLOS model of

schema changes and automatic object updating to persistent objects.

Suppose we want to attach a barcode to each book in our library, and to add that infor-

mation to the book instances already in the database. We can redefine the book class by

adding a barcode slot, as follows:

(defclass book ()
 ((title :allocation :persistent
 :initarg :title
 :accessor title)
 (author :allocation :persistent
 :initarg :author
 :accessor author)
 (barcode :allocation :persistent
 :initarg :barcode
 :accessor barcode))
 (:metaclass persistent-standard-class))

Two definitions of book. The alert reader may have noticed that we have redefined

the book class in memory (i.e. in Lisp) but have not (yet) changed the definition in

the database. Therefore, memory and the database are inconsistent. We could have

wrapped the defclass form in a with-database, and that would have kept the

definitions in sync. Or, having created the inconsistency, we can resolve it (as we do)

by specifying the argument :use :memory when we next access the database (that

means update the database definition with the memory definition). If we do neither

of these things, we will get a continuable error when we access the database, and

among the restarts will be one to store the memory definition in the database.

Suppose we bought a set of bar code stickers which begin at number 10001. Here is a

program that goes through the whole database and assigns each book a bar-code-number.

(defparameter *next-bar-code-number* 10001)

(defun assign-barcodes (library-name)
 (format t "Assigning barcodes to new books in ~a~%" library-name)
 (with-database (db library-name :if-does-not-exist :error :use :memory)
 (with-transaction ()
 (for-each ((b book))
43 AllegroStore 2.1

Object
interrelations
 (cond ((not (slot-boundp b 'barcode))
 (setf (barcode b) *next-bar-code-number*)
 (format t "Book ~a by ~a assigned barcode ~s~%"
 (title b)
 (author b)
 (barcode b))
 (incf *next-bar-code-number*)))))))

We'll run it by evaluating (assign-barcodes "mylib.db"). The output will look

like:

cl: (assign-barcodes "mylib.db")
Assigning narcodes to new books in mylib.db
Warning: class BOOK in memory doesn’t match definition in database
 [rest of warning message deleted]
Book Dandelion Wine by Ray Bradbury assigned barcode 10001
Book Marcovaldo by Italo Calvino addigned barcode 10002
Book Baidarka by George Dyson assigned barcode 10003
t
cl:

As we pointed out in the indented note above, we've added the arguments :use
:memory to the first argument to with-database. AllegroStore notices that the defi-

nition of book in the database differs from the one in Lisp's memory when we open the

database. Specifically, the definition of book in memory contains the barcode slot, and

the definition in the database does not. Since the :use :memory argument was specified,

AllegroStore signals a warning but does not stop execution. If that argument was not sup-

plied, a condition would be signaled asking for a choice between the memory and database

versions.

By adding :use :memory to the with-database form, we tell AllegroStore that it

should resolve the conflict by choosing the memory definition as the correct one. After the

resolution is done, the database definition of book has been modified to match the memory

definition.

When assign-barcodes is run, it looks at each book object in the database. As

each book object is accessed, it is updated to include the barcode slot. Since we didn't

specify an :initform for the barcode slot, the slot is initially unbound.

Object interrelations
You can store information in an object database by having objects point to other objects.

For example, we can add a class called patron to our database to represent the people who

will borrow books from our library. We can represent the fact that a patron is borrowing

a book by having one of the slots in the patron object point to the set of books that the

patron has borrowed.

(defclass patron ()
 ((name :allocation :persistent
 :initarg :name
 :reader patron-name)
 (borrows :allocation :persistent
 :type book
 :set t
 :accessor borrows
 :inverse borrower))
 (:metaclass persistent-standard-class))
AllegroStore 2.1 44

Retrieving
specific stored
instances of a

class
The patron defclass introduces two new slot options, :set and :inverse. The

option :set t states that this slot will contain an unordered collection of Lisp objects.

Since in this case we also specify :type book, we are stating that this slot will always

contain a set of pointers to book objects.

We'll explain :inverse under the heading Inverse functions below.

Let's add a few patrons to the library:

(with-database (db "mylib.db")
 (with-transaction ()
 (make-instance 'patron :name "Bob Smith")
 (make-instance 'patron :name "Lynda Jones")))

Retrieving items from the database
To make it easy to check out books by title, we'll write a function which will return an

instance of book once given the title and author. We should have three different books in

our library at this point, but we’ll add some error-checking just to be safe.

Note that this function must, of course, be run within a with-transaction form.

(defun get-book (given-title given-author)
 (let ((books (retrieve 'book
 :where ‘((title equal ,given-title)
 (author equal ,given-author)))))
 (cond ((null books)
 (error "This book isn't in the library: ~a by ~a"
 given-title given-author))
 ((> (length books) 1)
 (error "There is more than one book: ~s by ~s"
 given-title given-author))
 (t (first books)))))

Note the allegrostore:retrieve query function. Query functions access or

retrieve all objects of the given type which satisfy a certain conditions (see section 6.10

Queries and interators for more information). The conditions are expressed in the :where
argument and are written in a form we call a where-clause-list.

A where-clause-list is a list of where-clauses. Each where-clause is a list of form:

(accessor-name supplied-predicate supplied-value)

which directs AllegroStore to call the accessor-name function on each object. The

value returned by accessor-name is tested against supplied-value by the sup-
plied-predicate. (In the first where clause in our get-book function, accessor-
name is title, which recall accesses the title slot of a book object; supplied-pred-
icate is the Lisp function equal; and supplied-value is the value of the given-
title argument -- that is the effect of the preceding comma.)

If the supplied-predicate returns true, then the where-clause is satisfied. A

where-clause-list is satisfied if all where-clauses are satisfied.

Odd order. Note that the contents of where-clauses are ordered in non-Lisp fashion

(the predicate goes in the middle rather than at the beginning). This order is used for

historic reasons, but it does serve to emphasize that a where clause is not a standard

Lisp form but a list with a special interpretation.
45 AllegroStore 2.1

Changing one of
the attributes of

an existing
instance

Searching the
database and
retrieving an

instance
Now we can write a function that checks a book out to one of our patrons.

(defun check-out (library-name patron-name title author)
 (with-database (db library-name)
 (with-transaction ()
 (let ((patron-object
 (first (retrieve 'patron
 :where ‘((patron-name equal
 ,patron-name))))))
 (cond ((null patron-object)
 (error "No such patron: ~s" patron-name))
 (t (push (get-book title author) (borrows patron-object))
 (format t "~s has borrowed ~s by ~s~%" patron-name
 title author)))))))

Adding a book to the list of books borrowed by a patron means pushing it onto the

borrows list. borrows is a list of pointers to other books the patron has already bor-

rowed. Note, by the way, that check-out does not ensure that the book is not already

checked out. This fits with a library model since a patron typically has the book in hand at

the check-out desk.

The borrows slot is a set slot (because :set twas specified when we defined the slot

in the defclass form), which means that it always contains a collection of zero or more

objects. Lisp expects a list as the value of a set slot (the push macro adds elements to a list

to create a new list). If an :initform is not specified, then a set slot is initially bound to

nil, the empty list.

Let's check out a book:

(check-out "mylib.db" "Lynda Jones" "Baidarka" "George Dyson")

And the output should look like:

Searching the database for an instance in a slot
Now suppose someone says, “I can't find Baidarka by George Dyson. Who borrowed it

from the Library?” Looking at the that book in our database does not tell us who has it since

there is no slot in a book object to indicate its location. One way to find out is to review all

the patrons and see who has that book in their borrows list.

(defun who-has-1 (library-name title author)
 (with-database (db library-name)
 (with-transaction ()
 (let ((book (get-book title author)))
 (for-each ((p patron))
 (cond ((member book (borrows p) :test #'eqo)
 (format t "~s has it~%" (patron-name p))
 (return-from who-has-1 nil))))
 (format t "No one has that book checked out~%")))))

cl: (check-out "mylib.db" "Lynda Jones" "Baidarka" "George Dyson")
"Lynda Jones" has borrowed "Baidarka" by "George Dyson"
nil
cl:
AllegroStore 2.1 46

Inverse
functions
We use the function allegrostore:eqo to compare two objects for equality. eqo is

eq for objects (why it should be used rather than eq is explained in section 6.12 Implicit
object creation). Then we can do the query, and the output would be:

Inverse functions
The who-has-1 function can take a long time to run, especially when there are a large

number of patrons, since it has to examine every patron object. It turns out that there is

already a faster function that will, given a book object, return the name of the patron bor-

rowing it. The name of this function is borrower, and we already defined it inside of the

definition of patron class. Here it is again:

(defclass patron ()
 ((name :allocation :persistent
 :initarg :name
 :reader patron-name)
 (borrows :allocation :persistent
 :type book
 :set t
 :accessor borrows
 :inverse borrower))
 (:metaclass persistent-standard-class))

The :inverse slot definition
The :inverse slot definition argument tells AllegroStore to create a function which does

the inverse of the :accessor or :reader function. Inverse functions (like readers and

accessors) are defined on a slot. When the inverse function is given an object or a Lisp value

that may be the value of that slot, it returns all the objects (if there are any) whose slot con-

tains that object or Lisp value.

In most cases, inverse functions return a list of all objects having the value in the slot.

However, if the slot is specified :unique t (meaning at most one object will have a spe-

cific value in the slot -- a slot holding a serial numbers, for example), the inverse function

knows that there is at most one object with the value in the slot, so it returns that single

object (not in a list), or nil if no object has the value in the slot.

Note that inverse functions use information stored automatically in Lisp and in the data-

base. This information identifies all objects that contain a pointer to the object we are trying

to find, and so only those objects have to be examined. In most situations, there are few such

objects.

If the value of the slot is a Lisp value that is not a persistent object, Lisp maintains a hash

table indicating the objects that point to the value. If, for example, we had defined an inverse

function for the name slot of patron, the system would use the hash table since the type

of the name is not specified and so can be any Lisp value that can be stored in the database.

Back to our example, borrower is the inverse function of patron’s borrows slot. It

returns a list of patrons borrowing the book. We can use borrower to write a better ver-

sion of who-has-1, called who-has-2:

cl: (who-has-1 "mylib.db" "Baidarka" "George Dyson")
"Lynda Jones" has it
nil
cl:
47 AllegroStore 2.1

Deleting
instances
 (defun who-has-2 (library-name title author)
 (with-database (db library-name)
 (with-transaction ()
 (let ((p (first (borrower (get-book title author)))))
 (cond (p (format t "~s has it~%" (patron-name p)))
 (t (format t "No one has that book checked out~%")))))))

Since only one patron can check out a given book at a time, we can safely assume that

the list will either be empty or have one element. Thus we can use first to extract the

patron from the list. Note that the borrows slot is a set slot, and set slots cannot also be

:unique. Therefore, the inverse function will return a list.

who-has-2 is much more efficient than who-has-1. Given a book object, it can

find the patron borrowing that book with just a few pointer traversals in the database. It will

work just as efficiently if the database grows to a million patrons, which is something that

is definitely not true of who-has-1, which has to examine each patron in order to find a

book, rather than examining only those patron objects known to point to the book object.

Both who-has-1 and who-has-2 find the book instance with get-book. That

function examines every book until it finds the one with the right author and title. Therefore,

if our book collection grows large (say, to a million books), who-has-2 will also be slow.

(who-has-1 will be even slower, of course, since it has to traverse the same number of

books, and all the patrons!)

When the collection grows large, it would be more efficient to use inverse functions to

look up all books that have a certain title, and then look through those for a matching author

(or vice versa). We'll leave that as an exercise for the reader. (Hint: you have to redefine the

book class so the title slot has an :inverse specified and do not forget that titles may

not be unique.)

Deleting instances
Persistent objects are retained in the database unless they are deleted with

allegrostore:delete-instance. Consider what happens when patron Bob Smith

borrows Dandelion Wine by Ray Bradbury,

(check-out "mylib.db" "Bob Smith" "Dandelion Wine" "Ray Bradbury")

When he gets home, Bob’s dog chews the book up. Bob comes to the library and pays for

the book. The librarian then calls delete-instance on the Dandelion Wine book

object (with the database open and within a transaction, of course) and the book is no longer

in the collection. (See the code below.)

But what has happened to the value of the Bob Smith's borrows field? It used to contain

a set of at least one object, a pointer to the book object for Dandelion Wine. The librarian

did not specifically modify that field in the database. But, if you check the borrows field

after the delete-instance, you'll find that the field no longer contains the book object

Dandelion Wine.

If we delete the instance with the following (rather than the form above), we will see that

the book disappears from Bob’s borrows field. Here is the complete transcript:
AllegroStore 2.1 48

Referential
integrity
cl: (check-out "mylib.db" "Bob Smith" "Dandelion Wine" "Ray Bradbury")
"Bob Smith" has borrowed "Dandelion Wine" by "Ray Bradbury"
cl: (with-database (db "mylib.db")
 (with-transaction ()
 (let ((bob (first
 (retrieve 'patron
 :where '((patron-name equal "Bob Smith"))))))
 (format t "Before delete, bob is borrowing ~s~%"
 (borrows bob))

(format t "Deleting the book Dandelion Wine by Ray Bradbury~%")
 (delete-instance (get-book "Dandelion Wine" "Ray Bradbury"))
 (format t "After the delete, bob is borrowing ~s~%"
 (borrows bob)))))
Before delete, bob is borrowing (#<book in /db/pclos/mylib.db
 p: #x72f0004 @#x10583d2>)
Deleting the book Dandelion Wine by Ray Bradbury
After the delete, bob is borrowing nil
nil
cl:

Let us also look at the library inventory:

cl: (print-books-in-library "mylib.db")
Books in library mylib.db
Title: Marcovaldo Author: Italo Calvino
Title: Baidarka Author: George Dyson
nil
cl:

Referential integrity
AllegroStore maintains referential integrity; all of the pointers inside the database point to

valid database objects, never to places where an object, now deleted, used to be stored.

Because AllegroStore maintains referential integrity, the programmer needn't put explicit

tests in his code to check each pointer reference for validity. When an object is deleted,

AllegroStore finds all references and replaces them with the appropriate value as follows:

• If the reference comes from within a set (as in the borrows slot), then the

reference is simply removed.

• If the reference is from a non-set slot, then what happens depends on the

initform of the slot. If initform is nil, the value of the slot is set to nil.

Otherwise, the value of the slot is replaced with the value representing an

unbound value. (The programmer can arrange for other actions, e.g. by using

:before methods to delete-instance. See the description of delete-
instance, and also collect-references and map-references --

which discover all reference to an object --in chapter 7 Reference guide.)

5.3 Persistent class slots

CLOS defines two types of slots, :instance (the default) and :class.

The value of an instance slot is specific to an instance. Changing it affects one instance

only. A :class slot is accessed like a normal slot, but there is only one copy of the slot

for all objects of the class. Thus, if you change the value of the slot in any instance, the slot

will be changed in all instances of that class.
49 AllegroStore 2.1

We have already mentioned :persistent slots, which are like :instance slots

except their values are stored in the database. AllegroStore provides in addition the

:persistent-class slot, which acts like a :class slot except that, again, the value

of the slot is stored in the database. Let us revisit some code we wrote earlier, and see where

we can benefit by using a :persistent-class slot.

The code below is taken from the previous section under the heading Changing the
schema. Recall that we changed the definition of the book class, to provide for a bar-
code slot. That slot should contain a unique number identifying the book. We also defined

the parameter *next-bar-code-number* to hold the next bar code number (to be

assigned to the next book added to the database.

(defclass book ()
 ((title :allocation :persistent
 :initarg :title
 :accessor title)
 (author :allocation :persistent
 :initarg :author
 :accessor author)
 (barcode :allocation :persistent
 :initarg :barcode
 :accessor barcode))
 (:metaclass persistent-standard-class))

(defparameter *next-bar-code-number* 10001)

(defun assign-barcodes (library-name)
 (format t "Assigning barcodes to new books in ~a~%" name)
 (with-database (db library-name :if-does-not-exist :error :use :memory)
 (with-transaction ()
 (for-each ((b book))
 (cond ((not (slot-boundp b 'barcode))
 (setf (barcode b) *next-bar-code-number*)
 (format t "Book ~a by ~a assigned barcode ~s~%"
 (title b)
 (author b)
 (barcode b))
 (incf *next-bar-code-number*)))))))

So what is wrong? This code is run in Lisp. At the end of the day, the librarian shuts Lisp

down and goes home. The parameter *next-bar-code-number* is then lost. The

next day, a new shipment of books arrive and the librarian starts to add them to the database.

However, the database contains no easily-accessible record of the next available bar code

number. As things stand, the librarian will have to examine every book to find the largest

bar code number used. Only then can a new book be accessioned.

A better solution is to define a persistent-class slot in the book class that identifies the

next available bar code number. Then the information will be available whenever a new

instance of book is created. And, when a number is used and thus the next available one

increased, it is updated in every book instance. Here is how we can define the book class to

include a persistent-class slot for the next available barcode. We follow with a function that

finds any books without barcodes and assigns barcodes to those books.
AllegroStore 2.1 50

Moving an object
from one

database to
another
(defclass book ()
 ((title :allocation :persistent
 :initarg :title
 :accessor title)
 (author :allocation :persistent
 :initarg :author
 :accessor author)
 (barcode :allocation :persistent
 :initarg :barcode
 :accessor barcode)
 (next-barcode :allocation :persistent-class
 :initform 10004
 :accessor next-barcode))
 (:metaclass persistent-standard-class))

(defun assign-barcodes (library-name)
 (format t "Assigning barcodes to new books in ~a~%" library-name)
 (with-database (db library-name :if-does-not-exist :error :use :memory)
 (with-transaction ()
 (for-each ((b book))
 (if* (not (slot-boundp b 'barcode))
 then (setf (barcode b) (next-barcode b))
 (format t "Book ~a by ~a assigned barcode ~s~%"
 (title b)
 (author b)
 (barcode b))
 (incf (next-barcode b)))))))

(You might argue that an additional slot in each book object is wasteful, since it increases

the size of every book object. But this is not correct. The persistent class slots are stored

with the class definition, not with the instance, and thus it appears only once in the data-

base.)

5.4 Multiple databases

The examples so far have shown us accessing a single database. It is possible to have more

than one database open at the same time, although it is not supported to have pointers

between the databases.

Moving an object from one database to another can be done by creating a copy of an

object in the 'to' database and deleting the copy in the 'from' database. Here is a function

which does just that:

(defun move-book (from-library to-library title author)
 (with-database (db from-library)
 (with-transaction ()
 (let ((book (get-book title author)))
 (with-database (db to-library)
 (make-instance 'book
 :title (title book)
 :author (author book)))
 (delete-instance book)))))

We can test it out by moving one of our remaining books from mylib.db to newlib.db:
51 AllegroStore 2.1

(move-book "mylib.db" "newlib.db" "Marcovaldo" "Italo Calvino")
(print-books-in-library "mylib.db")
(print-books-in-library "newlib.db")

The output looks like:

(Readers who have been skipping about may wonder what happened to Dandelion Wine
by Ray Bradbury. It was chewed up by a dog in section 5.2, under the heading Deleting
instances.)

The to-library database doesn’t have to exist before the transfer because we used

with-database. with-database will create the database and open it if it is not

already on the disk.

Note that we do this in one transaction and that the with-transaction form can be

outside of the with-database form. We didn't copy the barcode when we moved the

book, since different libraries may use different barcode numbers for the same book.

That’s the end of the tutorial.

Books in library mylib.db
Title: Baidarka Author: George Dyson

Books in library newlib.db
Title: Marcovaldo Author: Italo Calvino
AllegroStore 2.1 52

Chapter 6 Programmer’s
guide

Users of AllegroStore can be broadly divided into three categories:

• Administrators. These users are responsible for setting up databases, providing

standard functionality (for reading and writing data), maintaining databases, etc.

• Advanced users. These users will typically use databases set up by

administrators. They will be able to write programs that query the database in

particular ways and perhaps modify the data based on the results of the queries.

• Regular users. These users also typically use databases set up by administrators

and they will use the standard query and modify functions (that are typically

written by administrators or advanced users). They are not usually expected to

know how to write specialized programs that query or modify the database.

Of course, these categories blur into one another. A regular user (say a data entry clerk)

may learn about programming in hopes of a promotion; an advanced user may be called

upon to do administrative work, and an administrator will usually be able to write custom

programs. And everyone will probably do data entry from time to time. But these categories

are useful to keep in mind.

This chapter tells how to write specialized programs to query and modify a database.

This material is written for Advanced users and Administrators. Chapters 8, 9, and 10 give

information on setting up and maintaining databases.

A quick example
Let’s illustrate the functions of the types of users listed above by considering a phone com-

pany.

Consider a long distance telephone company. Their database contains customers; each

customer’s record will contain (or point to) a list of calls made, money owed, and money

paid.

The administrator will set up the database and write functions for accessing the data and

modifying it.

The company employs customer service representatives. They access the database by

using the functions written by the administrator. These functions allow the service repre-

sentatives to answer standard customer questions and modify the data.

The telephone company’s marketing department decides to have a promotion. Any client

who makes 200 calls during March will get a $50 credit. A programmer will write a pro-

gram specifically for this purpose: it will examine every record, count the calls made in

March, and if the number of calls is greater than 199, apply the credit.

(We will not actually write such code. This example was simply to show where the types

of users listed above might appear.)
AllegroStore 2.1 53

6.1 Organization of this chapter

This chapter is divided into several sections, each dealing with a specific topic.

1. Organization of this chapter. The section you are now reading.

2. A review of CLOS concepts. AllegroStore is based on CLOS. This section

review some CLOS concepts and terms. AllegroStore’s new metaclass,

persistent-standard-class.

3. The database. What a database file is, and how AllegroStore connects to it. How

to name, create, move, copy, and open a database. The current database.

4. The schema. What a schema is, how it is defined, modified, and reconciled with

its stored definition once it has been modified.

5. Transactions. How transactions work to provide consistent database information

to simultaneous users.

6. Slots. What types of slots are available, and what type of data can be stored in

them. Operations on slots. How to return values from the database with methods

and inverse functions. Querying speed trade-offs for inverse functions.

7. Persistent hash tables. When hash tables are used, and how changes in Lisp

objects are reflected in the database. Why persistent hash tables cut down on the

cost of converting objects from database format to Lisp format and back again.

8. Blobs. Dealing with large data sets.

9. Persistent ftype arrays. Arrays of foreign (rather than Lisp) types.

10. Inverse functions. What inverse functions are, and how they speed up querying.

11. Queries and iterators. Searching for data by two methods: iteration over a group

vs. search-for-a-certain-condition. Why iteration is less memory-intensive.

12. Pointers. Which pointers are allowed, and when they are valid. How persistent

objects are pointed to in the database. About preserve-pointer: when

pointers become invalid, and how to make a pointer last through multiple

transactions.

13. Implicit object creation. How accessing a persistent object more than once

creates more than one transient object, and these objects are not eq.

14. Object deletion. How object deletion works.

15. Referential integrity. How AllegroStore finds all references to a just-deleted

object and resolves them.

16. Object update. How lazy and eager updating work. Automatic object updating.

How to find references to an object before updating or deletion.

17. Multiprocessing. AllegroStore and multiple processes within Lisp.

18. Interactive transactions. When learning and testing, it may be useful to keep a

transaction open. This section tells you how.

19. Persistent object check out and check in.

20. Reducing page lock contention.
54 AllegroStore 2.1

21. Read-only processing.

22. Multi version concurrency control (MVCC) processing.

23. Long transactions.

24. Notifications.
AllegroStore 2.1 55

6.2 A review of CLOS concepts

AllegroStore is a database for CLOS objects. We assume that the reader is already familiar

with CLOS, the Common Lisp Object System, and it is beyond the scope of this document

to provide even a very basic introduction. We recommend that users who need more infor-

mation about CLOS consult the following books:

• For the technical specification: Common Lisp, the Language (2nd edition), by Guy

Steele, Jr. 1990. Published by Butterworth Heinemann. (Do not get the first edition.)

• For a good introductory text for CLOS: Object-oriented Programming in Common
Lisp, a programmer’s guide to CLOS, by Sonya Keene, 1989. Published by Addison

Wesley.

• For an introduction to the MetaObject Protocol: The Art of the Metaobject Protocol,
by G. Kiczales, J. des Rivières, and D. Bobrow, 1991. Published by MIT Press.

In this section we will very briefly review some CLOS concepts and terms. We will show

the standard defining forms, so that a user of this document can quickly analyze code sam-

ples without having to refer to the more complete texts referenced above.

Classes
A CLOS application typically defines a hierarchy of classes. A class is defined with super-

classes (from which it inherits attributes, including some slots) and slots (which can hold

data). Typically, the class hierarchy models the real world situation of interest. Classes can

have subclasses, which increase specificity. For example, a company may define a class of

personnel, with subclasses employee and contractor. Employees may be further

broken down into technical, clerical, and managerial.

Classes are defined with the defclass macro. Note the {}’s, *’s, and []’s. A * means

the indicated form may appear as many times as necessary (or not at all). A form sur-

rounded in brackets ([]’s) may appear once or not at all. Braces ({}’s) simply indicate a con-

struct to which we can append a *. Neither braces or brackets appear in an actual call.

(defclass class-name ({superclass-name}*) ({slot-specifier}*) [(:default-initargs initarg-list)]

[(:documentation string)]

[(:metaclass metaclass-name)])

class-name

should be a

symbol.

superclass-names

are symbols. Often

the empty list - () -

in simple examples,

meaning use a de-

fault.

See info under Slots

heading below.

:default-initargs and

:documentation are often not

specified in simple examples.

A new class is also a CLOS object. Its class is defined by

the :metaclass object. The two standard metaclasses are

standard-class (do not store instances in database) and per-

sistent-standard-class (do store instances in database). See

info under heading Metaclasses below if you intend to use

metaclasses other than those two.
56 AllegroStore 2.1

For example, here is the definition of the patron class from chapter 5 Tutorial:

(defclass patron ()
 ((name :allocation :persistent
 :initarg :name
 :reader patron-name)
 (borrows :allocation :persistent
 :type book
 :set t
 :accessor borrows
 :inverse borrower))
 (:metaclass persistent-standard-class))

The class name is patron. There are no superclasses specified (so the superclass

defaults to persistent-standard-object). There are two slots: name and

borrows. There are no default initargs and no documentation string. The metaclass is

persistent-standard-class.

Slots
A class has defined with it a set of slots. Each slot has a name and can hold a Lisp value or

a set of Lisp values. Slots can be defined when the class is defined (as the name and bor-
rows slots of the patron class above). Slots can also be inherited from superclasses, if

any are specified. Slots are defined with a form that looks like the following (as above, the

braces - {}’s - simply identify a construct and do not appear in the actual form while the *

indicates the construct may appear as many times as necessary or not at all):

(name {arg-label arg-value}*)

name is a symbol naming the slot. arg-label is a keyword (a symbol starting with a

colon). arg-value is often a symbol which either provides a name or provides informa-

tion about the slot, but it is sometimes something else, for example a list. We will not go

into detail here about all the slot options, but we will mention the :allocation option.

Each slot has an allocation type, the value of the :allocation option. The two allo-

cation types in standard CLOS, :instance (the default) and :class, AllegroStore

allows two additional types :persistent and :persistent-class. These are ana-

logs of :instance and :class, with the additional specification that the slot value is

stored in the database. See section 6.6 Slots below for more information.

A program can retrieve the value of any slot using the slot-value function.

A program can also define an accessor function for a slot with the :accessor option.

Whether or not an accessor is defined, the slot value can always be accessed with slot-
value. (In the definition of the patron class above, borrows is specified as the accessor

function for the borrows slot.)

The value in a slot can be changed with setf and slot-value:

(setf (slot-value object ’slot-name) newvalue)

 or with setf and the accessor function, if there is one:

(setf (accessor-function-name object) newvalue)

Refer to section 7.2.4 Schema manipulation for some special consideration about the

slot :initforms and class :default-initargs options.
AllegroStore 2.1 57

Instance creation
Having defined the class, we can create instances with make-instance. The first argu-

ment to make-instance is the class object (or class name) which will be the class of the

instance created. The following form creates an instance of patron:

(make-instance ’patron :name "John Smith")

Note that only the name slot has an initarg, so only that slot can be initialized in the

make-instance form. The borrows slot must be updated after the instance is created.

(Whether or not to have an initarg depends on what you are modeling. The patron class

defined above is the patron of a library. New patrons of a library always have a name, but

that cannot borrow books until they get a card and go to the checkout desk. Therefore, there

is no reason to have a borrows initarg.)

When a persistent object is retrieved from a database, a transient copy of the object is

recreated in the Lisp heap so that code can manipulate it. The AllegroStore implementation

takes care of intializing this transient copy when it is retrieved, and writing back to the data-

base any changes made to the object's slot values at the end of each transaction.

The recreation and initialization of this transient copy presents a few issues not encoun-

tered in normal CLOS operation. In the programmer's model, of course, the object is not a

freshly created one but rather is the same object as was earlier stored in the database. But

in the implementation's model, the object is indeed a new object, and some aspects of nor-

mal object initialization must be performed in order to set its slot values and to do any other

initialization that the object's metaclass may require.

AllegroStore recreates a transient instance of a persistent-standard-object by calling

allocate-instance, then individually setting the values of its persistent slots, and

finally by calling shared-initialize, passing a list of the object's transient slots but

without passing any additional intialization arguments from the default-initargs. The net

result is that a transient slot will be initialized to the value resulting from executing its :init-

form, if any, but will not be initialized from default-initargs. The default-initargs are used,

of course, when the object is first created, i.e. by make-instance.

Metaclasses
A class defined with defclass is itself a CLOS object, and as such has a class of its own.

This class is called the metaclass of the class being defined. The metaclass determines how

an instance of the class being defined is created. The default metaclass is standard-
class. standard-class knows how to construct CLOS objects in Lisp's memory.

Here we define the auto class with metaclass standard-class:

(defclass auto ()
 (bumper tires engine doors)
 (:metaclass standard-class))

In fact, the :metaclass standard-class line is not necessary since standard-
class is the default metaclass.

AllegroStore defines a new metaclass called persistent-standard-class.

Instances with metaclasspersistent-standard-class are created both in Lisp and

in the current open database (an error is signaled if there is no database open).

To change the auto class into one whose instances are persistent, we need to change the

:metaclass argument.
58 AllegroStore 2.1

(defclass auto ()
 ((bumper :allocation :persistent)
 (tires :allocation :persistent)
 (engine :allocation :persistent)
 (doors :allocation :persistent))
 (:metaclass persistent-standard-class))

Notice that we also specified the :allocation types of each of the slots as

:persistent. This means their values will also be stored in the database along with the

auto instance. It is not necessary to define all (or any) slots as persistent and there are situ-

ations where you only want some of the slots to be persistent (to avoid wasting space in the

database with information that need not be permanently stored). But remember that classes

and slots are not persistent (stored in the database) unless they are defined to be so. The

default in all cases in not-persistent.

Defining your own metaclasses
This is a note for advanced CLOS users. You may wish to define you own metaclasses

which are subclasses of persistent-standard-class. This is of course permitted

but note that there is a missing link in the connection between a database and Lisp: meta-

class definitions are not stored in the database (although the name of the metaclass is

stored). Therefore, you must load the definition of the metaclass prior to opening a database

containing instances with metaclass other than persistent-standard-class.

6.3 The database

AllegroStore uses the ObjectStore persistent storage manager written by Object Design.

ObjectStore supports two kinds of databases: file databases and Directory Manager data-
bases.

A file database is stored in a normal file.

A Directory Manager database is stored in a section of the disk managed by ObjectStore.

Because Directory Manager databases are harder to use, we won’t discuss them in this part

of the manual. You can read more about them in section 8.10 Directory manager data-
bases.

Database naming conventions
Here are some possible ways a database can be named.

• A local filename, either relative or absolute. Here are examples of relative

filenames, on Unix and on DOS:

on Unix: march/inventory

on DOS: march\inventory

And here are some absolute filenames:

on Unix: /records/sales/june

on DOS: d:\records\sales\june

• A host name and an absolute filename:

On Unix: tiger:/dbs/people

On DOS: tiger:c:\dbs\people
AllegroStore 2.1 59

The Cache
Manager

The Database
Server
• A Directory Manager name and a filename:

On Unix: pieces::/records/beatles

On DOS: pieces::\records\beatles

Punctuation rules for database names:

A Directory Manager filename is distinguished by a name followed by two con-

secutive colons.

A host and filename database name contains a single colon.

Everything else is a local name.

Special cases:

On DOS machines, a single character followed by a colon is interpreted as a local

device name and not a host name

A colon is treated as a normal filename character if it follows a slash.

To create or open a database, AllegroStore connects to a process running on the same

machine called the Cache Manager. If the Cache Manager process isn't currently running

on the machine, AllegroStore will start it running.

The Cache Manager then contacts the Database Server process that controls access to

the database. The Database Server for a given file is the machine controlling the disk on

which the file is stored.

• If you are creating or opening a database, and you supply a filename like

fred:/usr/barney/rocks, then this explicitly states that the Database Server is the

machine fred and the database file is /usr/barney/rocks, which must be on one of
the disks connected to the machine fred. (Actually, you can set things up so the

server can be on a different machine. See Technical memorandum # AS 2 for

more information.)

• If you supply a local filename, then that filename may refer to a file on a local

disk, or it may refer to a file on a disk on some other machine in the network (if

the system supports a network filesystem).

The Cache Manager will determine which machine owns the disk on which the database

lies, and will contact the Database Server on that machine. If the Database Server is not run-

ning, then the open database process will fail. AllegroStore cannot start a Database Server

process automatically.

Even if the database file is on the local machine, accessing a database requires that three

processes be running:

1. the Lisp process running AllegroStore

2. the Cache Manager
60 AllegroStore 2.1

3. the Database Server

Remember! Unless you have followed the instructions in Technical Memoran-

dum # AS-2, the Database Server must run on the same machine as the disk where

the database sites are located. For more information, see section 8.4 The Server.

Moving and copying databases
If you plan to move or copy AllegroStore databases, be aware that the database server pro-

cess may be caching some information that belongs in the file. Copying a file with cp (on

Unix) or copy (on DOS) may result in an incomplete database file.

The ObjectStore bin subdirectory supplied with AllegroStore contains replacement file

management functions that are database-aware. You should use the ObjectStore functions

oscp for copying files, osmv for renaming them, and osrm for deleting them.

See the sections on oscp, osmv, and osrm in chapter 10 User utilities.

Creating the database
Creating or opening a database is done by using the with-database macro or with the

open-database function. These are similar to Lisp's with-open-file macro and

open function.

The default behavior for with-database and open-database is to open the data-

base if it exists, otherwise to create it. Use the :if-exists and :if-does-not-
exist keywords to alter this behavior.

with-database opens a database, evaluates the forms in the body of the macro, and

closes the database when control leaves the body of the macro. We encourage you to use

with-database because it ensures that the database always gets closed at some point if

an error should occur. open-database does not ensure that. A database opened with

open-database must be closed explicitly.

In the following code sample,with-database callsfunction1,function2, and

function3 on the database called autotire.db. Once function3 completes, autotire.db
is closed.

(with-database (db "autotire.db" :if-exists :supersede)
 (with-transaction ()
 (function1)
 (function2)

 (function3)))

Network

machine Bmachine A

Lisp
Cache

Manager

Database

database file

Note: machine A and machine B may be the same machine!

Server
AllegroStore 2.1 61

The current database
More than one database can be open at the same time, but only one database is considered

the current database. The current database is the implicit argument to functions such as

make-instance and set-schema. The variable *db* holds the pointer to the current

database.

The with-database macro opens a database and designates it as “current” for the

duration of the macro's body by binding *db* to that database.

If you use the open-database function, then you must use with-current-
database or set-current-database to set the current database before doing any

database operations. The following is a typical call to open-database, with set-
current-database setting the value of *db*:

(set-current-database (open-database "db-name" [other options])

See sections 7.2.1 and 7.2.3 for formal definitions of *db* and the various functions and

macros mentioned here.

6.4 The schema

What is a schema?
In an AllegroStore database, the schema is a set of CLOS class descriptions. Changing the

schema is a simple operation. The schema can be modified while the database is open sim-

ply by redefining one of its classes in Lisp. The redefined class definition will propagate

into the database, and instances of that class will be changed to fit the new schema as they

are accessed. This dynamic updating can occur while other programs are accessing the

database.

In contrast, in a traditional database, the schema is a description of the records stored in

the database and changing the schema is a major operation. All users must stop using the

database, and then the whole database must be updated all at once. Programs using a tradi-

tional database will need to be recompiled after an update if they have the old schema com-

piled into them.

How a schema is set
The rules regarding which classes make up the schema of a database:

1. The class definition for each object in the database must be in the schema.

2. If class X is in the schema, and class Y is one of X's direct-superclasses, then class

Y must be in the schema.

Classes may be added to the schema automatically or explicitly. The default behavior is

to add classes to the schema automatically whenever an object whose class isn't already in

the schema is added to the database.

Whether or not classes are added automatically is controlled by the function

allegrostore:set-schema function. That function can also be used to control pre-

cisely which classes are in the schema. Schemas where classes must be added explicitly are

said to be in exact mode. In exact mode it is an error to attempt to store an object in the

database whose class isn't already in the schema.
62 AllegroStore 2.1

See the section 7.2.4 Schema manipulation in chapter 7 Reference guide for more

information.

How schema differences are reconciled
When AllegroStore opens a database, it synchronizes the definitions of classes in the data-

base's schema with the definition of the classes in its Lisp memory. This synchronization is

called schema resolution, which works as follows. When AllegroStore opens a database, it

looks at all the class definitions in the database. For each class definition, there are three

possibilities:

1. There is no class with the same name in Lisp's memory. In that case, the class

definition in the database is used to define a class in Lisp's memory.

2. There is a class with the same name and same definition in Lisp's memory. In that

case, there is no work need be done.

3. There is a class in Lisp’s memory with the same name and different definition.

This is the complicated case since the differences must be resolved. Either the

database or the memory definition of the class must be used. The program can

specify which definition to use in the with-database or open-database
calls (with the :use keyword argument -- see the formal definitions in section

7.2.3 Database manipulation for information on the :use argument).

If the program does not specify how to resolve the difference, AllegroStore will

signal a allegrostore-class-mismatch condition. You can set up the

condition handler in the usual Common Lisp way to handle the condition. Unhan-

dled, it results in a continuable error with using the memory definition and using

the database definition among the restarts. In the following transcript, we define

a class in a database and close it, redefine the class in Lisp, and then re-open the

database (without specifying the :use argument).

USER(1): (use-package :astore)
T
USER(2): (defclass tire () ((brand :allocation :persistent
 :initarg :brand))
 (:metaclass persistent-standard-class))
#<PERSISTENT-STANDARD-CLASS TIRE>
USER(3): (with-database (db "test-tires.db")
 (with-transaction () (make-instance 'tire :brand 'firestone)))
#<TIRE in /db/mjm/test-tires.db (CLOSED-DATABASE) @ #xc5d7da>
;; We now redefine the class in memory (the database is currently closed).
USER(4): (defclass tire () ((brand :allocation :persistent :initarg :brand)
 (rimsize :allocation :persistent))
 (:metaclass persistent-standard-class))
#<PERSISTENT-STANDARD-CLASS TIRE>
;; When we re-open the database, we get an error:
USER(4): (setq *db* (open-database "test-tires.db"))
Error: class TIRE in memory doesn't match definition in database
"/db/mjm/test-tires.db"
 direct-superclasses:
 memory: (PERSISTENT-STANDARD-OBJECT)
database: (PERSISTENT-STANDARD-OBJECT)

 direct-slots:
memory: ((:NAME BRAND :TYPE T :ALLOCATION :PERSISTENT :INITARGS (:BRAND))

 (:NAME RIMSIZE :TYPE T :ALLOCATION :PERSISTENT))
AllegroStore 2.1 63

 database: ((:NAME BRAND :TYPE T :ALLOCATION :PERSISTENT :INITARGS
 (:BRAND)))
metaclasses:
 memory: PERSISTENT-STANDARD-CLASS
 database: PERSISTENT-STANDARD-CLASS

 [condition type: ALLEGROSTORE-CLASS-MISMATCH]

Restart actions (select using :continue):
 0: Use the definition of TIRE from the database on disk
 1: Use the definition of TIRE and all other classes from the database on
 disk
 2: Use the definition of TIRE currently in memory
 3: Use the definition of TIRE and all other classes currently in memory
 4: Rollback the current transaction, returning nil
 5: Rollback the current transaction, and restart it
[1] USER(6):

See section 6.15 Object update for more information on how schema changes are han-

dled.
64 AllegroStore 2.1

6.5 Transactions

A quick illustrative example
Suppose you have a personnel database. There is an object representing each employee in

which the employee's name and salary is stored. There is also an object representing the

company in which the total of all employee salaries is stored. You want the total salary to

always be the sum of the individual employee salaries.

Consider the database operations necessary to give an employee a 5% raise:

• Find the employee object in the database,

• retrieve the employee’s salary,

• multiply it by 1.05,

• and store it back in the database.

• Access the company object,

• access the total salary amount,

• add to it the amount of the employee's salary increase,

• store the value back into the total-salary slot of the company object.

If the program should fail after it increased the employee's salary but before the total-

salary was increased, then the database would be left in an inconsistent state. All database

operations necessary to change a salary should be grouped together in such a way that either

all of them happen or none of them happens. This grouping is called a transaction.

Transactions prevent database inconsistency; all changes to the persistent data take place

inside of a with-transaction form.

What is a transaction?
A transaction is a sequence of database operations.

Each transaction is atomic: either all of the database operations made during the transac-

tion are made permanent or none of them are made at all.

When all of the operations are made permanent, we say that the transaction was

committed. When none of them are made, we say that the transaction was rolled back.

When a transaction is rolled back, all of the database objects revert to the state they were in

prior to the transaction.

Transactions give each program the illusion that it is the only program accessing the data-

base. That is, if a program were to:

• start a transaction,

• access all employee objects, and

• add up their salaries,

then it would find that its computed total matched the total-salary contained in the company

object. This would be true even if other programs were accessing the database and changing

employees and salaries. A consistent view of the database is only ensured within a single

transaction.
AllegroStore 2.1 65

If multiple transactions are used to perform computations like this one (or any activity

requiring access to stored data), then a consistent view of the database is not guaranteed. If

the program just described above were modified to:

• start a transaction,

• add the employee salaries,

• end the transaction,

• start a new transaction, and

• access the total-salary from the company object,

then it might find that the value of total-salary doesn't match what it just computed from the

employee salaries. Between the time that the program ended its first transaction and started

its second one, another program could have accessed the database and changed the total-

salary.

A model for transactions
The following model will show how transactions are implemented. It will provide users

with a mental image of what is going on and make the discussion more concrete. It will not
explain the inner workings of AllegroStore (the actual implementation is different in ways

we briefly describe afterwards). This model will show that the permanent database is

always consistent because any change is either done completely or not done at all.

Assume that the model is a personnel database. We’ll go through the steps required to

increase the salary of an employee, Betty Scrivener, by 10%.

The database is a file containing a description of the class hierarchy and a record of each

instance in the database. All of the data associated with a particular instance is located in a

specific location on the disk which contains the database file. Betty’s employee instance

resides in one spot on the disk, say between hexadecimal address bytes 12a5e and 131ab,

for example. The company instance resides in another specific spot on the disk.

In our model, the system does the following when we give Betty a raise:

1. Marks (by setting a flag at the beginning of the B.Scrivener instance data,

byte 12a5e) the Betty Scrivener instance as ‘in use’. This prevents other database

clients from reading the data until the transaction commits (finishes properly).

2. Copies the data associated with the B.Scrivener instance to a temporary

location.

3. Makes the changes to the salary slot in the temporary location. (The only

change in the permanent location so far is to mark the instance as being ‘in use’.)

4. Marks (by setting another flag at the beginning of the company instance) the

company instance as ‘in use’.

5. Copies the data associated with the company instance to a temporary location.

6. Makes the changes to the total-salary slot in the temporary location.

7. Copies both modified instances back into the permanent database file.

8. Changes the ‘in use’ marks to ‘available’.

By making all the changes in the temporary location, the permanent record is not affected

until it is known that all the necessary changes can be made. If they cannot be made, the

transaction rolls back.
66 AllegroStore 2.1

To roll back a transaction, the system must delete the information in the temporary loca-

tion and change the ‘in use’ flags to ‘available’.

To commit the transaction, the system must copy the modified data into the permanent

database and change the ‘in use’ flags to ‘available’.

If another client tries to access an instance that is ‘in use,’ it must wait until the instance

becomes ‘available.’ The data can never be worked on simultaneously by two clients.

See About commit and About roll-back in the section 7.1.

The real database
Two comments on how the real database differs from our simplified model.

• Pages of memory are locked rather than specific instances. When a with-
transaction touches an instance, the page or pages in memory containing the

instance data are locked, not just the instance data. Locking a page is simply faster

and more efficient than locking specific instances.

• There are read-locks and write-locks, rather than just one type. A read-lock

says ‘Do not change this page until I am finished with it’ but does not prevent

others also reading it. A write-lock says ‘I am about to modify this page, so do

not even look at it’. Using two kinds of locks allows a larger number of

simultaneous transactions.

The differences between our simplified model and the real implementation are invisible

to users. They only affect the actual efficiency and performance of database programs, not

what the programs actually do.

The problem of deadlocks
Suppose that two different clerks are attempting transactions in the personnel database:

The company has promoted and transferred an employee, Tom Bombadil. One clerk

wants to access the T.Bombadil instance, give him a raise, and change the total-
salary slot in the company instance. Another clerk wants to grab the company
instance, change the employees-located-here, and change Tom’s record to reflect

his new work-site.

The first clerk starts a transaction which accesses the T.Bombadil instance, marks it

as ‘in use,’ and tries to grab the company instance. The second clerk has also started a

transaction, and has already marked the company instance as ‘in use’ and is trying to grab

the T.Bombadil instance.

Well, that is a problem. Clerk 1 has T.Bombadil and cannot free it until the company
instance is free. Clerk 2 has the company instance and cannot free it until T.Bombadil
is free. This is a deadlock.

Deadlocks are detected and resolved by a separate program called the Database Server.

That program runs constantly, checking on each transaction. It notices when a transaction

is blocked because an instance is ‘in use’ and determines what the problem is. If it detects

a deadlock, it sends a message to one of the transactions telling it to roll back and try again

later.

Suppose this message goes to the transaction started by Clerk 2. That transaction rolls

back, making the company instance available. The transactions started by Clerk 1 can now

complete, freeing the T.Bombadil instance. Clerk 2’s transaction can now restart and it

will likely find that it can complete.
AllegroStore 2.1 67

How are deadlocks detected? It is beyond the scope of this document to describe that.

The Database Server implements a complicated (but very efficient) algorithm to detect

deadlocks.

How are deadlocks resolved? There is a default setting, but the database administrator

can provide different rules for deadlock resolution based on various criteria. See the essay

About deadlock resolution in section 7.1.

How are transactions started and committed or rolled back?
AllegroStore transactions are started and ended by the with-transaction macro. In

the example below, with-transaction starts a transaction, calls the functions fun1,

fun2 and fun3, and then commits the transaction.

(with-transaction ()
 (fun1)
 (fun2)

 (fun3))

The transaction will be rolled back if one of the functions fun1, fun2 or fun3 does a

non-local exit, such as a throw to a catch tag or does a go to a prog tag outside the

with-transaction form.

(catch 'foo
 (with-transaction ()
 (some-database-action)
 (throw 'foo nil) ; will roll back the transaction

))

Nested transactions and top-level transactions
A nested transaction is a transaction started while another transaction is in progress. The

following diagram shows a nested transaction:

Allegrostore does not support nested transactions. It is not an error, however, to nest with-
transaction forms. The inner forms are just treated differently.

(with-transaction ()
 (function1)
 (with-transaction ()
 (function2)
)
 (function3))

transaction nested
with-transaction
68 AllegroStore 2.1

When AllegroStore encounters one with-transaction form called within another

with-transaction form, the inner with-transaction is converted to a progn.

The code in our diagram above, for example, is converted as follows:

Why is this important? Here is the principle to remember:

Changes to the permanent database are not guaranteed to have occurred
just because a with-transaction form completes without error.

Therefore the following code fragment may be erroneous:

(with-transaction ()
 (process-data))
(format t "Data has been processed~%")

If this with-transaction form is nested inside another, the report printed by the

format statement is not guaranteed to be true. If the outer with-transaction form

is rolled back (or perhaps fails because of an error), the changes made by process-data
will not have occurred when the report is printed (and if there is an error, may never occur!)

Top-level transactions: committed when complete
A top-level with-transaction form is one that is not contained within another with-
transaction form. When a top-level with-transaction form completes, the

changes to the database called for within the form are guaranteed to have been made.

The with-transaction macro has a keyword argument :top-level. When this

argument is specified non-nil, an error will be signalled if the with-transaction
form is in fact nested within another. The following code, therefore, is not erroneous:

(with-transaction (:top-level t)
 (process-data))
(format t "Data has been processed~%")

The transaction-active-p function
The function transaction-active-p returns true if a transaction is active (i.e. a

with-transaction form is being executed) and returns nil otherwise. Our code frag-

ment that reports that the ‘Data has been processed’ could also be done correctly this way:

(with-transaction ()
 (process-data))
(if (null (transaction-active-p))
 (format t "Data has been processed~%"))

(The format statement will not execute when the transaction is nested, so the program-

mer should think of a fallback method of reporting the success. However, the ‘Data has been

processed’ statement will not be printed erroneously.)

(with-transaction ()
 (function1)
 (progn
 (function2)
)
 (function3))

transaction nested
with-transaction
AllegroStore 2.1 69

Transaction restarts
We have already described in our database model how a transaction sets a flag to indicate

that data is ‘in use.’ That flag is called a lock.

A lock is a declaration that a certain program has certain access rights over a set of

objects in the database. The Database Manager uses locks to ensure that multiple programs

accessing a single database don't clash.

During a transaction, an AllegroStore program obtains locks on pages of the database it

is accessing. When the transaction completes (with a commit or roll back), all locks are

released. Should a program require a lock that another process has, it will wait forever
(unless it meets a deadlock) to obtain that lock before giving up and signalling a condition.

Forever is the default.1

If program Z requires a lock that program Y has, and then program Y requires a lock that

program Z has, we have a deadlock. Neither Z nor Y can continue. AllegroStore detects this

situation and selects either program Z or program Y for a transaction restart.2

Here are the details on what a transaction which must roll back can and should do:

Suppose program Z must roll back. A condition is signalled in program Z which causes

it to do a transaction roll back, freeing all its locks, and then control to returns to the top of

the with-transaction form, which starts executing again.

Code in a with-transaction form may execute many times
The rollback and restart are all done automatically, invisibly to users. Note the important
implication of this arrangement: the body of a with-transaction form can be exe-

cuted more than once. You must program with this in mind and avoid including actions that

cannot safely be evaluated many times.

Here is a (correct) example which will build a list of all of the different automobile names

in a tire company’s database:

(defun show-autos-1()
 (with-database (db "autotire.db" :if-does-not-exist :error)
 (let ((namelist
 (with-transaction ()
 (let ((names nil))
 (for-each ((a auto))
 (push (auto-name a) names))
 names))))
 (dolist (name namelist)

 (format t "~%~A" name)))))

Why build a list of auto-names and then print the names after the body of the for-each
was executed? If a transaction restart occurs in the middle of the with-transaction,

control is thrown back to the top of the transaction. A list of names partially printed from

inside of the for-each would begin printing again after a restart, but you would not get

a signal that the transaction had restarted. You might not be aware that the output, which

could show some names printed more than once, wasn’t accurate.

Note that we do print within transactions in some examples in this manual. That makes

the examples easier, but it is not good practice!

1. See About read-locks and write-locks in section 7.1 for instructions on how to reset

the default wait time for a lock.

2. See the About deadlock resolution in section 7.1 for details on how a process gets

selected to roll back and restart.
70 AllegroStore 2.1

6.6 Slots

Slots typically contain the data of an instance. The issue in AllegroStore is whether the data

in a slot is persistent (stored in the database) or transient (stored only in memory while Lisp

is running).

Types of slots
CLOS has two types of slots: instance (the default) and class (often called shared).

A class slot is accessed like a instance slot, but there is only one copy of the slot for all

objects of the class. Thus, if you change the value of slot, the change will be visible to all

objects of that class.

AllegroStore adds two new kinds of slots to persistent classes. The complete list of slot

types, denoted by their slot descriptions, are shown in the following table.

:persistent slots
A :persistent slot is like an :instance slot except that a :persistent slot’s

value is stored in the database.

:persistent-class slots
A :persistent-class slot is like a :class slot except that a :persistent-
class slot’s value is stored in the database.

Non-persistent slots
An instance of a persistent class can have non-persistent slots. The value of non-persistent

slots are stored in Lisp’s memory, not in the database.

Why would you want non-persistent slots? One example is to store values derived from

the values of persistent slots which are of interest to some user of the database. Since the

values can be derived from already-stored data, they do not need to be stored on the disk.

Remember the personnel database example? An employee who wants a long vacation

might ask the Personnel department to calculate how many vacation days he would have

earned by next summer. The personnel officer who does the calculations could make them

based on two or three of the persistent slots in the database.This data won’t be needed after

the employee gets an answer to his question; storing it as persistent data wastes valuable

disk space. It is best to keep it in a non-persistent slot.

Of course, if the derived value requires complicated calculations and is of a type needed

very often, it might be better to calculate it and store it in a persistent slot. Decisions on

whether to save on CPU time at the expense of disk space are usually made by the database

administrator.

Slot type Description

:allocation :instance the default, a non-persistent slot

:allocation :class a non-persistent shared slot

:allocation :persistent a persistent slot

:allocation :persistent-class a persistent shared slot
AllegroStore 2.1 71

Set-valued slots
Persistent slots are either single- or set-valued. A set-valued slot contains a unordered col-

lection of objects. A single-valued slot holds a single value (which may itself be a list, of

course) and is also called a scalar slot.

The advantage of storing a list of values in a set-valued slot over storing the list in a scalar

slot is that a program can do a query over elements in a set-valued slot without constructing

the entire list in Lisp's memory. Also, set-valued elements may be successfully used

as inverse function arguments.

The accessor for a set-valued slot returns a list of the values stored in the slot. You must

store a list of values (or nil) in a set-valued slot:

(setf (accessor-name object) (list object1 object2 object3))

The slot-cons method is the recommended way to add new values to a set-valued slot:

(slot-cons object ’accessor-name object4)
 ;; object4 is added to object’s accessor-name set-valued slot

There are two ways in which a slot can be declared to be a set slot in a defclass slot

description. One way is to specify :set t and the other is to specify :type (set-of
X) where X is some Lisp type. Here are two are equivalent ways to specify that the value

of the borrows slot is a set of book objects:

(defclass patron ()
 ((name :allocation :persistent
 :initarg :name
 :reader patron-name)
 (borrows :allocation :persistent
 :type book ;; we specify :type
 :set t ;; and :set t
 :accessor borrows
 :inverse borrower))
 (:metaclass persistent-standard-class))

(defclass patron ()
 ((name :allocation :persistent
 :initarg :name
 :reader patron-name)
 (borrows :allocation :persistent
 :type (set-of book) ;; :type is used to specify a set
 :accessor borrows
 :inverse borrower))
 (:metaclass persistent-standard-class))

Set-valued slots are never unbound. If there are no values stored, the value of the slot is

nil. You can specify :set t and not specify a type. In that case, any Lisp object can be

in the set.

What type of values can be stored in slots
The values stored in the persistent slots of an object are encoded on the disk in a manner

that is independent of the Lisp that stored them. This allows other Lisp processes to access

the database and read the slot values. As a result of this encoding, some information is lost.

For example: if you store a list of numbers in a persistent slot, and then access that slot,

you will get back a list that is equal (not eq) to the original list that you stored in the slot.
72 AllegroStore 2.1

Another consequence of this encoding is that it only makes sense to store a restricted set

of types of objects in the database. The following table lists those types. Users can add addi-

tional allowable types (as we describe below the table).

Type of the value to
be stored in the slot

Notes

integer fixnums or bignums can be stored. Note that bignums are stored

as program-defined types (which are described at the end of the

table below).

float Only double floats are stored in the database. If a program

attempts to store a single float, the single float is converted to a

double float (silently) and the double float is stored.

symbol Only part of symbols are stored. Specifically, the symbol name

and package are stored The property list, symbol-value, and func-

tion value are not stored.

nil The symbol nil can be stored.

list Non-circular lists can be stored. The values in the lists should be

objects that are capable of being stored in the database.

simple-vector A simple vector of Lisp objects (of the types listed in this table)

can be stored in the database.

string Simple strings can be stored in the database.

array Arrays with element type t, bit, (unsigned-byte 1, 8, 16, 32), and

(signed-byte 8, 16, 32). If the element type is t, elements must be

types in this table.

0-dimensional arrays cannot be stored.

The fact that an array is adjustable is stored, as is the fact there is

a fill pointer and the fill pointer value (the whole array is stored).

Raw arrays (all arrays with :element-type specified as an

unsigned-byte or signed-byte type) are stored more efficiently and

accessed and set much faster than type T arrays.

character Characters can be stored.

class The name of the class and the fact that it is a class object are both

stored. In order for Lisp to retrieve a stored class object success-

fully, the class definition must exist in the image doing the

retrieval or be in the database schema.

hash-table Hash tables can be stored in the database. But note that the cost of

encoding the hash table to store and decoding to read, along with

the space used and the time to transfer make this an undesirable

option. See section 6.7 Persistent hash tables below for another

alternative.

pathname Pathnames can be stored.

persistent object Persistent objects in the same database.

Table 6.1: Lisp types that can be stored in a database
AllegroStore 2.1 73

Program-defined types
You may wish to have additional types stored in the database. To do this, you must define

methods on the generic functions astore::encode-in-database and

astore::decode-from-database telling Lisp how to encode and decode the types.

The standard way to do this is to figure out how to encode the value, perhaps in a string,

perhaps a list, or in some other type that can be stored. Reading back must then decode the

coded data.

Note that the type information is not stored in the database. The Lisp image must know

how the type is defined. This is not a problem for standard Lisp types but if you have defined

the type, you must ensure the Lisp image knows about it (typically by evaluating the defi-

nition).

Bignums are already a type that can be stored in the database (see the integer entry in

the table above), but if they were not, the code below would add them. We show it because

it is a simple example that gives the flavor of how to add more complicated types.

Here are the methods to store and retrieve bignums. (Again, bignums are already an

acceptable type. This code is for illustration only.).

;; This method returns two values, the first being some symbol
;; and the second being something that can be stored in the database
(defmethod astore::encode-in-database ((object integer))
 (values 'read-from-string (write-to-string object :radix t :base 10)))

;; The decode method specializes on the symbol you decided to return
;; as the first value in the encode method:
(defmethod decode-from-database ((kind (eql 'read-from-string)) val)
 (read-from-string val))

Now let us look at a more complicated example. Suppose we define the newborn struc-

ture (with defstruct):

(defstruct newborn
 (pounds :type integer)
 (ounces :type integer)
 sex)

So, how to encode a newborn? One way is a list of 3 items, two integers and the value of

sex (which will be the symbol m or the symbol f). This will work since all those types can

already be stored in the database (they are all in the table above). There are other ways to

encode as well (write the values to a string, or in a vector).

Remember that the astore::encode-in-database must return two values, the

first a symbol (which typically names the type) and the second the data.

astore::decode-from-database must specialize using the first value returned

by the encode method. We will encode on the symbol newborn and decode with (eql
’newborn) -- that rather than on newborn because newborn is not defined as a class.

Program-defined types Additional types can be stored when methods for storing them are

defined by the programmer. See the information under the head-

ing Program-defined types below.

Table 6.1: Lisp types that can be stored in a database
74 AllegroStore 2.1

In the following transcript show us doing the correct definitions, setting up a database and

trying (without defining the necessary methods) to store a newborn. That fails (with the

error message shown). We then define the methods and things work.

cl: (use-package :astore)
T
cl: (defstruct newborn (pounds :type integer)
 (ounces :type integer) sex)
NEWBORN
cl: (setq baby (make-newborn :pounds 7 :ounces 4 :sex 'm))
#S(NEWBORN :POUNDS 7 :OUNCES 4 :SEX M)
cl: (setq *db* (open-database "fam.db"))
#<db /db/mjm/fam.db active (1)>
cl: (defclass family ()
 ((name :allocation :persistent :initarg :name)
 (members :allocation :persistent :set t :initarg :members))
 (:metaclass persistent-standard-class))
#<PERSISTENT-STANDARD-CLASS FAMILY>
cl: (with-transaction ()
 (make-instance 'family :name "The Smiths"
 :members (list baby)))
Error: Cannot encode object #S(NEWBORN :POUNDS 7 :OUNCES 4 :SEX M) of type
 NEWBORN in the database
 [condition type: ALLEGROSTORE-ERROR]

Restart actions (select using :continue):
 0: Rollback the current transaction, returning nil
 1: Rollback the current transaction, and restart it
[1] cl: :cont 0
NIL
cl: (defmethod astore::encode-in-database ((object newborn))
 (values 'newborn
 (list (newborn-pounds object)
 (newborn-ounces object)
 (newborn-sex object))))
#<STANDARD-METHOD ALLEGROSTORE::ENCODE-IN-DATABASE (NEWBORN)>
cl: (defmethod astore::decode-from-database ((kind (eql 'newborn)) val)
 (make-newborn :pounds (first val) :ounces (second val)
 :sex (third val)))
#<STANDARD-METHOD ALLEGROSTORE::DECODE-FROM-DATABASE ((EQL NEWBORN) T)>
cl: (with-transaction ()
 (make-instance 'family :name "The Smiths"
 :members (list baby)))
#<FAMILY in /db/mjm/fam.db (DEAD-POINTER) @ #xb28e8a>
cl: (with-transaction ()
 (for-each ((f family))
 (format t "Family members ~S~%"
 (slot-value f 'members))))
Family members (#S(NEWBORN :POUNDS 7 :OUNCES 4 :SEX M))
NIL
cl: (close-database *db*)
NIL

Things will work fine as long as you are in this Lisp image. But another Lisp image must

have the newborn structure defined, or it will not be able to read the members slot. We try

this in a new Lisp image:

cl: (use-package :astore)
T

AllegroStore 2.1 75

cl: (setq *db* (open-database "fam.db"))
#<db /db/mjm/fam.db active (1)>
;; We now try to examine the members slot of our family. It fails
;; because there is no method to read a newborn in this Lisp image.
cl: (with-transaction ()
 (for-each ((f family))
 (format t "Family members ~S~%"
 (slot-value f 'members))))
Error: An object of type NEWBORN was stored in the database but there is no
 decode-from-database method to decode it
 [condition type: ALLEGROSTORE-ERROR]

Restart actions (select using :continue):
 0: Rollback the current transaction, returning nil
 1: Rollback the current transaction, and restart it
[1] cl: :pop
;; So we try to define the encode method, and it fails because
;; there is no newborn type.
cl: (defmethod astore::encode-in-database ((object newborn))
 (values 'newborn
 (list (newborn-pounds object)
 (newborn-ounces object)
 (newborn-sex object))))
Error: No class named: NEWBORN.
 [condition type: PROGRAM-ERROR]

Restart actions (select using :continue):
 0: Try finding the class again
[1c] cl: :pop
;; So we define newborn, and the encoding and decoding.
;; Now things work:
cl: (defstruct newborn (pounds :type integer) (ounces :type integer) sex)
NEWBORN
cl: (defmethod astore::encode-in-database ((object newborn))
 (values 'newborn
 (list (newborn-pounds object)
 (newborn-ounces object)
 (newborn-sex object))))
#<STANDARD-METHOD ALLEGROSTORE::ENCODE-IN-DATABASE (NEWBORN)>
cl: (defmethod astore::decode-from-database ((kind (eql 'newborn)) val)
 (make-newborn :pounds (first val) :ounces (second val)
 :sex (third val)))
#<STANDARD-METHOD ALLEGROSTORE::DECODE-FROM-DATABASE ((EQL NEWBORN) T)>
cl: (with-transaction ()
 (for-each ((f family))
 (format t "Family members ~S~%"
 (slot-value f 'members))))
Family members (#S(NEWBORN :POUNDS 7 :OUNCES 4 :SEX M))
NIL
cl: (close-database *db*)
NIL

The right thing to do is place all the definitions, encoding and decoding methods into a

file that is read into Lisp before the database is opened.
76 AllegroStore 2.1

6.6.1 Caching Persistent Slot Values

If you access persistent slot values multiple times during transactions, you should be able

to improve performance by using either manual caching or automatic caching, which is

turned on by using the new :cached persistent slot definition keyword.

This section has the following headings:

When will caching improve performance?

How does caching improve performance?

Manual caching

Automatic caching

Manual caching vs. Automatic caching

What about write caching?

When stale caches are reinitialized

Slot values other than CLOS instances are eq with automatic caching

When will caching improve performance?
Caching should improve performance when you average 2 slot read accesses per slot per

instance during a transaction. For example, if you process 10,000 instances in a transaction,

accessing slot A's value 4 times in 4,000 instances, 1 time in 5,000 instances, and not at all

in 1,000 instances, then caching should improve performance, because ((4 * 4,000) +

5,000)/10,000 = 2.1.

A slot access is any operation the reads a persistent instance's persistent slot.

Note that writing a slot value many times during a transaction may cancel out this benefit.

See the write caching section below for more information.

How does caching improve performance?
AllegroStore does not allocate memory for persistent slots when allocating a persistent

instance. Every time a slot-value read is made, foreign function calls are made to retrieve

the slot value. Since the database page is locked while a transaction is active, you can be

certain that only you can change the slot's value. If the returned value is cached in the

instance, than the cached value may be used during the rest of the transaction, resulting in

performance improvements because foreign function calls are then avoided. If a slot's value

is accessed many times during a transaction, the performance improvements will be signif-

icant.

Manual caching
Manual caching is done using parallel transient slots. See the Astore 1.3 manual's 6.18 Per-

sistent Object Check Out and Check In section for an example of how to cache using tran-

sient slots.
AllegroStore 2.1 77

Automatic caching
Automatic caching is done by including :cached t in the persistent slot definition, as in:

(defclass foo ()
 ((id :allocation :persistent :accessor id :initarg :id :cached t)
 (id2 :allocation :persistent-class
 :accessor id2 :initarg :id2 :cached t)
 (id3 :allocation :persistent :accessor id3 :initarg :id3))
 (:metaclass persistent-standard-class))

Manual caching vs. Automatic caching
Automatic caching is easy to use because you don't have to change anything other than the

persistent class definition.

Manual caching requires more work, and you have to take care of any issues related to

cache value staleness. See automatic cache refresh section below for more information

about cache value staleness. With manual caching, you can decide when to use caching and

when to not; with automatic caching, it is all or nothing. Depending on your schema design

and application's instance processing patterns, you may be able to achieve the best perfor-

mance by using manual caching, if you are willing to do the work - this is especially true if

you write a slot's value many times during a transaction (see the information under the next

heading). For many applications, automatic caching can significantly improve performance

without requiring new design/test/debug cycles.

Be aware that the overhead associated with automatic caching can be avoided only by

not specifying :cached t for all slots in a persistent class.

What about write caching?
When using automatic caching, slot value writes automatically update the backing cache,

but also use foreign function calls to update database memory. That means that if you write

a slot's value many times during a transaction, you do not gain performance improvement,

and you pay a cost because you are constantly updating the cache. The overall effect

depends on whether you read the value more often than write the value.

Automatic caching does not cache write operations because subsequent inverse function

calls or query operations will not reflect the changes made during the transaction. If you use

manual caching, you are free to cache write operations, keeping in mind that query opera-

tion results will reflect the database state BEFORE the current transaction started.

When stale caches are reinitialized
Automatic caching automatically reinitializes a cache value for a persistent instance's

cached slot under these conditions:

• delete-instance has been called on any instance since the last time the

cache value has been accessed

• the cache value was last set in a previous transaction than the current one

• slot-svref or (setf slot-svref) has been called on the slot in

question

• slot-cons has been called on the slot in question

• slot-delete has been called on the slot in question
78 AllegroStore 2.1

Slot values other than CLOS instances are eq with automatic
caching
As long as the cache value does not become stale (see above section), non-CLOS instance

slot values (such as lists) are eq. Without caching, accessing such slots' values return lists

that are equalp.

6.7 Persistent hash tables

Hash tables are data objects used to store information where the lookup key is another data

object. AllegroStore implements a special type of hash table called a persistent hash table.

Before describing how to use a persistent hash table, we will describe our motivation for

building it.

Why use persistent hash tables?
Lisp objects in the database are stored in a specially encoded form. In order to perform a

Lisp operation on an object in the database, it first must be converted into a normal Lisp

object in Lisp's memory. Three steps are required to change the value of an object in the

database and have that change reflected in the database:

1. the object must be converted into a Lisp object in Lisp's memory

2. the value of the Lisp object must be changed

3. the modified object must be stored back into the database

The cost to convert from database format to Lisp format and back to database format

again is small for small objects. However, the conversion cost is significant for an object as

large as a hash table. To alleviate this problem, we've implemented hash tables that can be

used without being first converted into an object in Lisp's memory.

Properties of persistent hash tables
A persistent hash table is like an equal hash table, except that the table is always stored in

the database. The keys and values of the hash table are persistent values.

Creating and manipulating persistent hash tables
A persistent hash table is created with make-instance:

(make-instance 'persistent-hash-table)

A persistent hash table is operated on by the functions generic-gethash,

generic-remhash and generic-maphash, which take arguments similar to the cor-

responding standard Common Lisp functions (gethash, remhash and maphash).

See section 7.2.10 Persistent hash tables for more information.

6.8 Blobs

Blobs are a persistent class you can use to allocate raw persistent storage without creating

a parallel Lisp object.
AllegroStore 2.1 79

Why use blobs?
If you need large blocks of persistent storage that you can treat as C memory, accessing and

setting the memory using the ACL foreign types functionality, then blobs provide the most

efficient way to generate and manipulate that storage.

Like persistent hash tables, blobs allow you to change a part of the allocated persistent

memory without converting a large database object to a corresponding Lisp object, making

the change, and then converting the modified Lisp object back into database format.

Properties of blobs
Blobs contain two properties - a name and a data pointer. The name can be optionally used

to retrieve the blob directly when it is not accessible in a slot of some other persistent class

instance. The data pointer contains an address that can be used as an argument to foreign

types functions to access or modify the blob's persistent memory.

Manipulating a blob data pointer with foreign types functionality is a low level

operation, so you must take into account architectural dependencies. For example,

some architectures require that an integer pointer start at a word (4 byte) boundary.

Users wishing to access blobs from multiple architectures must also account for

big-endian/little-endian differences when reading and writing blob data.

Creating and manipulating blobs
Here is an optimized example that allocates a 100 byte blob, and then stores the

integers from 0 to 100 in those bytes:

(defclass thing ()
 ((slot :allocation :persistent))
 (:metaclass persistent-standard-class))

(with-database (db "foo.db" :if-exists :supersede)
 (with-transaction ()
 (let ((foo (make-instance ’thing)) pptr)
 (setf (slot-value foo ’slot) (make-instance ’blob :size 100))
 (setf pptr (blob-data (slot-value foo ’slot)))
 (dotimes (i 100 nil)
 (setf (ff:fslot-value-typed ’(:array :unsigned-char) :c

(+ pptr (* i (ff:sizeof-fobject :unsigned-char))) 0) i)))))

Here’s code that will read them and print them out at a later time:

(with-database (db "foo.db")
 (with-transaction ()
 (let* ((thing (first (retrieve ’thing)))
 (pptr (blob-data (slot-value thing ’slot))))
 (dotimes (i 100)
 (print (ff:fslot-value-typed ’(:array :unsigned-char) :c

(+ pptr (* i (ff:sizeof-fobject :unsigned-char))) 0))))))

See section 7.2.11 Blobs for more information.

Blobs and files
You may use blobs to store and access files.

To store a file as a blob, you need to know the number of bytes in the file and the file

name. Here is an example:
80 AllegroStore 2.1

(with-database (db "foo.db")
 (with-transaction ()
 (let ((b1 (make-instance 'blob :name "file1" :size 40000000)))
 (blob-read b1 "file1.data")))) ;; file1.data is the file name

Here is how to write a blob out to a file:

(with-database (db "foo.db")
 (with-transaction ()
 (let ((b1 (first (retrieve 'blob
 :where '((blob-name equal "file1"))))))
 (blob-write b1 "file1.data.copy"))))

6.9 Persistent Ftype (Foreign Type) Arrays

Persistent ftype arrays, like blobs, is a persistent class you can use to allocate raw persistent

storage without creating a parallel Lisp object. They are more flexible than blobs because

their raw persistent storage may contain pointers to other persistent objects or memory

areas, which is not possible with blobs.

This section has the following headings:

Why use persistent ftype arrays?

When are persistent ftype arrays the wrong choice?

Persistent ftype array properties

Creating and manipulating persistent ftype arrays

Special Note - getting the best foreign type access performance

Using pointers to persistent Lisp objects

Dynamically determining foreign type definitions

Freeing persistent foreign type array memory

Discarding unneeded foreign types from a database

Using tags to retrieve an initial persistent address

The operators and variables associated with this facility are described in section 7.2.12 in

chapter 7 Reference Guide.

Why use persistent ftype arrays?
If you have large amounts of data that may be represented by C structures, then persistent

ftype arrays provide better performance than persistent CLOS instances. Performance gains

are possible because parallel Lisp objects are not maintained, foreign function calls are not

needed to access and set C foreign structure slots, and persistent memory fragmentation can

be significantly reduced.

You access and set persistent ftype array data using ACL foreign type functionality,

thereby accessing the persistent memory directly in the ObjectStore persistent address

space. This reduces the demand on Lisp heap memory, because parallel Lisp objects are not

required, and the overhead associated with ObjectStore->Lisp and Lisp->ObjectStore mar-

shalling is avoided. Also, persistent ftype array data is not managed by the AllegroStore ref-

erential integrity system, which again reduces operating overhead. Unlike persistent CLOS

instances, where accessing a single instance may require many different ObjectStore mem-
AllegroStore 2.1 81

ory pages, persistent ftype array data is laid out contiguously in memory, thereby improving

underlying ObjectStore performance.

In the examples below, using persistent ftype arrays resulted in a 39% speedup during

object creation, a 72% speedup during an object traversal heavy calculation, and a 41%

speedup during a simple iteration step.

Persistent ftype arrays also provide a simple mechanism for sharing data with Object-

Store C++ or Java programmers. Note that for complex applications, a more robust protocol

such as CORBA may be necessary for effective object sharing.

When are persistent ftype arrays the wrong choice?
Once a persistent ftype is defined in a database, that definition can never be changed. If you

have a dynamic application that changes class definitions during run time, then it is not a

good idea to replace such a class with a persistent ftype. Note, however, that you can define

new foreign types dynamically during run time.

Persistent foreign type arrays contain foreign data such as integers, floating point values,

strings, and pointers. If you can't represent your objects using these atomic types, then you

may have to stick to persistent CLOS instances. Note, however, that persistent foreign type

array data can contain pointers to persistent CLOS instances.

Using persistent foreign type arrays requires greater programming care. Programming

with foreign types usually involves "pointer arithmetic" calculations - if your code that does

such calculations contains bugs, you may corrupt your database and crash the Lisp. In

essence, you face the same opportunities and challenges ObjectStore C++ programmers

face - good performance is attainable, but a buggy program causes much more damage and

usually requires more time to debug.

Since the AllegroStore referential integrity system does not cover persistent ftype array

data, you must manage that data yourself. For example, if a pointer in persistent ftype array

data points at a persistent CLOS instance, and that instance is subsequently deleted, Alle-

groStore will not transparently change the pointer value to 0. If the pointer is subsequently

dereferenced, it may point at an unexpected data element, or it may point at memory outside

the current ObjectStore managed address space. Writing to the address in such a situation

may corrupt the database or crash the Lisp. Again, this is the same challenge that Object-

Store C++ programmers face.

Persistent ftype array properties
Persistent ftype array instances contain four properties - a name property that can be option-

ally used to retrieve the instance directly when it is not accessible in another way, a number

of elements property that reports how large the data array is, a type property that specifies

which foreign type has been allocated, and a data property, which contains a pointer that is

used to access or set the array's persistent memory.

Creating and manipulating persistent ftype arrays
To show how to use persistent ftype array, we will define a simple task, solve it first using

persistent CLOS instances, and then solve it again using persistent ftype arrays.

The task:

Given a list of 10,000 random numbers between 0 and 99, create a database containing

one object for each random number and an array of 100 objects, one for each integer

between 0 and 99. Each random number object must point to the appropriate array element,

and each array element must contain the number of random number objects that point to it.
82 AllegroStore 2.1

A persistent CLOS solution:

;; there will be 100 of these
(defclass random-element-group ()
 ((value :allocation :persistent :accessor value :initarg :value)
 (sum :allocation :persistent :accessor sum :initform 0))
 (:metaclass persistent-standard-class))
;; there will be 10,000 of these
(defclass random-element ()
 ((value :allocation :persistent :reader value :initarg :value)
 (group :allocation :persistent
 :type random-element-group :accessor group))
 (:metaclass persistent-standard-class))
;; there will be one of these - the array will
;; contain the 100 random-element-group instances
(defclass random-element-group-array ()
 ((groups :allocation :persistent :accessor groups :initarg :groups))
 (:metaclass persistent-standard-class))
 ;; generate the random number objects
;; random-numbers is a special variable
;; containing the 10,000 random numbers
(defun generate-random-elements ()
 (with-database (db "random.db" :if-exists :supersede)
 (with-transaction ()
 (declare (type fixnum i))
 (dotimes (i 10000)

(make-instance 'random-element :value (nth i random-numbers))))))
(defun generate-summary ()
 (with-database (db "random.db")
 (with-transaction ()
 (let ((group-array (make-array 100 :element-type 'random-element-
group)))
;; create the 100 instances corresponding to 0-99
 (dotimes (i 100)
 (declare (type fixnum i))
 (setf (aref group-array i)
 (make-instance 'random-element-group :value i)))
 (make-instance 'random-element-group-array :groups group-array)
;; for each random-element object, set the group
;; slot appropriately and increment the group sum
 (for-each ((object random-element))
 (setf (group object) (aref group-array (value object)))
 (incf (sum (group object))))
 t))))
 ;; print out the sums
(defun print-summary ()
 (with-database (db "random.db")
 (with-transaction ()
 (let ((group-array
 (groups
 (first (retrieve 'random-element-group-array)))))
 (dotimes (i 100)
 (declare (type fixnum i))
 (format t "~s: ~s~%" i (sum (aref group-array i))))
 t))))
AllegroStore 2.1 83

A persistent foreign type solution:

;; there will be 100 of these
(def-foreign-type random_element_group (:struct
 (value :int)
 (sum :int)))
;; there will be 10,000 of these
(def-foreign-type random_element (:struct
 (value :int)
 (group (* random_element_group))))
;; subclassed so we can distinguish from array
;; containing random_element objects
(defclass random-element-group-array (persistent-ftype-array)
 ()
 (:metaclass persistent-standard-class))
 (defun generate-random-elements ()
 (with-database (db "random.db" :if-exists :supersede)
 (with-transaction ()
 ;; add the persistent ftypes we need to the database
 (add-persistent-ftype (list 'random_element 'random_element_group))
 ;; allocate the memory for the random element
 ;; objects and get the pointer

(let* ((random-elements-array (make-instance 'persistent-ftype-array
 :type 'random_element :n 10000))
 (random-elements-data (persistent-ftype-array-data
 random-elements-array)))
 (declare (type fixnum random-elements-data))
;; we do the pointer arithmetic ourselves for
;; optimal performance - SEE SPECIAL NOTE BELOW
 (let ((address random-elements-data)
 (increment (sizeof-fobject 'random_element)))
 (declare (type fixnum address increment))
 (dotimes (i 10000)
 (declare (type fixnum i))
 (setf (fslot-value-typed '(:array random_element 1) :c
 address 0 'value (nth i some-numbers))
 (incf address increment))
)))))
(defun generate-summary ()
 (with-database (db "random.db")
 (with-transaction ()
 (let* ((group-array (make-instance 'random-element-group-array
 :type 'random_element_group :n 100))

(group-array-data (persistent-ftype-array-data group-array))
 (random-elements-data
 (persistent-ftype-array-data
 (first (retrieve 'persistent-ftype-array)))))
 (declare (type fixnum group-array-data random-elements-data))
;; set up the 100 objects related to 0-99
 (let ((address group-array-data)
 (increment (sizeof-fobject 'random_element_group)))
 (declare (type fixnum address increment))
 (dotimes (i 100)
 (declare (type fixnum i))
 (setf (fslot-value-typed

'(:array random_element_group 1) :c address 0 'value) i)
 (incf address increment)))
 (let ((address random-elements-data)
 (increment (sizeof-fobject 'random_element)))
84 AllegroStore 2.1

 (declare (type fixnum address increment))
 ;; set the group slot appropriately and increment the sum
 (dotimes (i 10000)
 (declare (type fixnum i))
 (let ((group-address

(fslot-address-typed '(:array random_element_group 1) :c
 (+ group-array-data
 (* (fslot-value-typed

'(:array random_element 1) :c address 0 'value)
 (sizeof-
fobject 'random_element_group))) 0)))
 (declare (type fixnum group-address))

(setf (fslot-value-typed '(:array random_element 1) :c
address 0 'group) group-address)

(incf (fslot-value-typed '(:array random_element_group
1) :c group-address 0 'sum))
 (incf address increment))))
 t))))
 (defun print-summary ()
 (with-database (db "random.db")
 (with-transaction ()
 (let ((group-array-data (persistent-ftype-array-data
 (first (retrieve 'random-element-group-array)))))
 (declare (type fixnum group-array-data))
 (let ((address group-array-data)
 (increment (sizeof-fobject 'random_element_group)))
 (declare (type fixnum address increment))
 (dotimes (i 100)
 (declare (type fixnum i))
 (format t "~s: ~s~%" i (fslot-value-typed '(:array
random_element_group 1) :c address 0 'sum))
 (incf address increment)))
 t))))

Special Note - getting the best foreign type access performance

In ACL 5.0 and ACL 5.0.1, the Lisp compiler can inline foreign type memory access

calls to achieve optimal performance. However, there is a current limitation when using

arrays - the compiler will not inline array accesses where the array access offset is not a con-

stant.

For example,

(dotimes (i 100)
 (setf (fslot-value-typed '(:array random_element 1)
 :c random-elements-data i 'value) (nth i some-numbers)))

will not be inlined.

(let ((address random-elements-data)
 (increment (sizeof-fobject 'random_element)))
 (dotimes (i 10000)
 (setf (fslot-value-typed '(:array random_element 1) :c address 0
'value) (nth i some-numbers))
 (incf address increment)))

will be inlined.

The performance gains associated with inlining are significant - in the above example,

the inlined version will run more than twice as fast as the non-inlined version.
AllegroStore 2.1 85

Using pointers to persistent Lisp objects
To use pointers to persistent Lisp objects:

1. Use a (* :void) structure member type for the structure member that will contain

a pointer to a persistent Lisp object.

2. Use the astore::lisp-value-to-pptr function to obtain a persistent address for the

Lisp object you wish to point to, as in:

 (astore::lisp-value-to-pptr obj)

3. Use the astore::pptr-to-lisp-value function to transform a persistent pointer to a

Lisp object into its Lisp analog, as in:

 (astore::pptr-to-lisp-value address *db*)

While lisp-value-to-pptr will work with any Lisp object that can be stored in a persistent

instance slot, it is a good idea to limit usage to persistent CLOS instances. You will get bet-

ter performance if you handle strings, integers, floating point values, and arrays using for-

eign types, and other Lisp objects such as lists and symbols may be represented using the

basic foreign types. Also, currently, if you call lisp-value-to-pptr on an object other than a

persistent CLOS instance, an object will be created in ObjectStore that you won't be able

to later delete.

Remember that AllegroStore referential integrity does not cover persistent foreign type

array data. If you delete a persistent CLOS instance with delete-instance, it is your respon-

sibility to insure that no pointers in persistent foreign type array data point at the address

that is now deleted.

Dynamically determining foreign type definitions
You can use for-each or for-each* to iterate over all persistent-ftype-array and persistent-

ftype-array subclassed instances, and use the persistent-ftype-array-type method to retrieve

the foreign type associated with that instance. Then, given a foreign type of interest, use the

describe-ftype function, as in:

(describe-ftype "mydb.db" 'my_struct)

A string will be returned that contains the foreign type definition. Note that when dealing

with type symbols, the AllegroStore persistent ftype array facility ignores packages; thus,

you can only store one definition called 'my_struct.

Freeing persistent foreign type array memory
If you call delete-instance on a persistent-ftype-array instance, the persistent memory asso-

ciated with the instance will also be freed. It is your responsibility to insure that pointers in

remaining persistent-ftype-array instance data do not point to memory that is now deleted.

Discarding unneeded foreign types from a database
Stored foreign type definitions cannot be removed from an existing database. However, if

you delete all persistent-ftype-array instances that refer to a given foreign type, dump the

database using asdump, and then create a new database from the dump file using asre-
store, the resulting database will not contain the unneeded foreign type.
86 AllegroStore 2.1

Using tags to retrieve an initial persistent address
An alternate way to retrieve the initial persistent address to be used for subsequent naviga-

tion involves database tags. Tags allow you to directly retrieve a persistent address without

first retrieving a persistent-ftype-array instance and then using the persistent-ftype-array-

data method. Here is an example:

Setting the tag:

(def-foreign-type foo_struct (:struct (f1 :int)))
(defun test-tag ()
 (with-database (db "foo.db" :if-exists :supersede)
 (with-transaction ()
 (add-persistent-ftype 'foo_struct)
 (let* ((foo (make-instance 'persistent-ftype-array
 :type 'foo_struct :n 1))
 (foo-data (persistent-ftype-array-data foo)))
 (setf (fslot-value-typed '(:array foo_struct 1) :c
 foo-data 0 'f1) 123)
 (set-dbtag "xxx" foo-data)))))

Using the tag:

(defun verify-tag (db-string)
 (with-database (db db-string)
 (with-transaction ()
 (let ((data (get-dbtag "xxx")))
 (when (= data 0)
 (error "couldn't find tag"))
 (when (/= (fslot-value-typed '(:array foo_struct 1) :c
 data 0 'f1) 123)
 (error "value didn't retrieve correctly"))))))

Note that a well-behaved database should contain no more than a few dozen tags.

Tags are an easy way to make persistent foreign type array data available to ObjectStore

C++ or Java programmers. The relevant methods are os_database_root::find() and

os_database_root::get_value().

6.10 Inverse functions

Readers and accessors
When a slot is defined with defclass a functions (actually a methods) can be created that

will read and write the value of that slot from an object. Thus, the :reader option defines

a reader method (reads the value) and the :writer option defines a writer method (sets

the value). The :accessor option provides a shorthand for supplying both at once (with

the name supplied providing the reader and (setf <name supplied>) providing the writer).

See the description of defclass in the ANSI spec for a complete description.

Consider the following example, which uses the tire database:

(defclass tire ()
 ((brand-name :allocation :persistent :accessor tire-brand-name))

 (:metaclass persistent-standard-class))
AllegroStore 2.1 87

The defclass for tire defines the method tire-brand-name. Given a tire object,

tire-brand-name will return the value of the brand-name slot. (setf tire-
brand-name) will set the value of the brand-name slot, typically with a form like

(setf (tire-brand-name tire-instance) new-brand-name)

The problem of finding an object given a slot value
Suppose we have a value that may be stored in the brand-name slot of one or more tire

objects, and we want to find those tire objects. For example, we want to find all the tires in

our database with brand-name michelin. The naive, brute force way to do this is to

examine the brand-name slot of every tire object, and if the value is michelin, add it

to our list. (We can use the query facility, described in section 6.10, to examine every tire

object.)

The problem with this algorithm is, if the database gets large, it can take a long time to

examine every object. To solve this problem, AllegroStore has an :inverse option to a

slot definition. If this option is specified and given a symbol as an argument, that symbol

will name an inverse function that, given a value, will return all objects of the class whose

slot contains the specified value.

Inverse functions
To repeat, if the :inverse slot option is specified with a symbol name as an argument,

that symbol will name a function that returns all instances of a class with a specified value

in the slot. In our tire, example, we could define the class as follows:

(defclass tire ()
 ((brand-name :allocation :persistent :accessor tire-brand-name
 :inverse brand-name-tire))

 (:metaclass persistent-standard-class))

brand-name-tire, when passed a symbol naming a brand name (like michelin)

will return a list of all tire objects that have brand-name michelin.

Inverse functions are really methods specialized on the type of the slot they are inverting.

In the tire example, the type of the slot is not specified (with the :type option), so the

method specializes on type t.

Note that only :persistent slots can have :inverse specified. :persistent-
class slots cannot.

Developers examining persistent class definitions with metobject protocol methods will

see one extra slot that AllegroStore adds for each slot that has an associated inverse func-

tion. The added slot’s name will be:

.inverse-table--%class%-%slot%

where %class% is the class name, and %slot% is the slot name.

Inverse functions speed up querying, but may cost
An inverse function will return the answer much more quickly than a query over a collec-

tion of objects. However, there is a trade-off. Maintaining the inverse relation table can be

expensive in certain cases.

Virtually no cost when slot :type is a persistent object: if the type of the slot in which

the inverse function is defined is a persistent class, then there is no cost to having an inverse

function -- since all persistent objects keep track of those objects that point to them.
88 AllegroStore 2.1

Can be a cost when slot :type is unspecific or a non-persistent type: if the type of the

slot includes non-persistent objects (and particularly when no :type option is specified in

the slot definition), then a table must be built that holds the inverse information, and that

table is updated with each store into the slot. It is those tables which can become large. The

extra space in memory for the tables must be balanced against the extra space in the data-

base for additional persistent data.

If you can guarantee that all slot-values will be fixnums, you can improve performance

by specifying :type integer in the persistent slot definition. Note, however, that if you

specify :type integer and then store a value other than a fixnum, you will experience

undesirable results.

Unique slot values
Many tires can be Michelin tires, so if the system has found one such tire, it must keep look-

ing to see if there are more. Some slot values, however, are unique. A serial number, for

example, is (typically) unique. Once you have found an object with a given serial number,

you need look no further. If you know that the value in a certain slot will be different in each

object, then you should specify the slot option :unique t as in this form for the serial

number of an automobile:

(defclass auto ()
 ((serial-number :inverse number-to-auto :unique t))

(:metaclass persistent-standard-class))

Inverse functions ordinarily return a list (even if there is only one element). However,

specifying :unique t makes the inverse function (number-to-auto, in this case)

return either nil or exactly one value. It won't return a list of one value as it would if

:unique t were not given.

Specifying a slot :unique imposes a cost when storing, since the system does check

that no other existing slot has the specified value. It reduces the cost of fetching (as we said

above). A :unique slot can not also be a set slot.

Remember, inverse functions are actually methods specialized on the declared type of the

slot. So if this code is evaluated:

(defclass auto ()
 ((serial-number :type integer :inverse number-to-auto
 :unique t))

 (:metaclass persistent-standard-class))

then the following method:

(defmethod number-to-auto ((x integer)) ...)

will be defined.

There is one consequence of the fact that number-to-auto is a generic function: if

you call number-to-auto on an object for which the generic function is not specialized,

(like(number-to-auto'foo)), you get a method not found error message, because

foo is not an integer.
AllegroStore 2.1 89

The
for-each
macro

for-each and
:where
6.11 Queries and iterators

Query functions enable the user to access objects from that database that satisfy certain cri-

teria. There are two types of query functions:

• those that allow the program to iterate over all objects in the database satisfying

a certain condition (the iterators like for-each and for-each*)

• those that return a list of all objects satisfying a certain condition (the non-
iterators, like retrieve)

The iterator forms should be used whenever possible, since they allow you to operate on

objects without storing all of them simultaneously in Lisp's memory.

Iterators
The three iterators are for-each, for-each* and for-each-class.

for-each is a macro that permits you to create nested iterators.Consider the following

class definitions:

(defclass auto ()
 ((name :allocation :persistent :accessor auto-name)
 (model-year :allocation :persistent :accessor auto-model-year)
 (price :allocation :persistent :accessor auto-price)
 (wheels :allocation :persistent :set t :accessor auto-wheels))

 (:metaclass persistent-standard-class))

(defclass wheel ()
 ((brand :allocation :persistent :accessor wheel-brand))
 (:metaclass persistent-standard-class))

The following form will iterate over the database and print every object whose class is

auto or a subclass of auto:

(for-each ((a auto)) (print a))

The following form will again iterate over each auto, and for each auto it will iterate over

each wheel of that auto:

(for-each ((a auto) (w (auto-wheels a)))
 (format t "auto: ~s, wheel ~s~%" a w))

Suppose we wanted to print Firestone wheels and their associated autos. We could do so

with the :where clause:

(for-each ((a auto)
 (w (auto-wheels a))
 (:where (equal (wheel-brand w) ’firestone)))
 (format t "auto: ~s, wheel ~s~%" a w))

The form of the first argument to the for-each macro is a set of variable binding
clauses plus optional special clauses such as the :where clause shown above. A variable

binding clause consists of a variable and an expression which denotes a sequence of objects.

There are three valid expressions:

1. a symbol, which denotes a class name.
90 AllegroStore 2.1

Restricting the
search to the

class (no
subclasses)

for-each*
2. (accessor-name variable), which denotes the value of the slot returned by

calling accessor-name on the value of the given variable. The slot being

accessed must be a :persistent or :persistent-class slot and it must

be a set slot (i.e., declared as :set t or :type (set-of some-type)).

3. (slot-value variable 'slot-name). (This is really the same as 2 above,

for slots which do not have an accessor or reader predefined.)

The :where clause, if given, may contain any Lisp expression. If this expression is true,

then the body of the for-each is executed. The :where clause may appear anywhere in

the list of variable binding clauses, but it is always evaluated just before evaluating the body

of the for-each.

A for-each variable binding clause such as (a auto) will bind a to any object that

is of class auto or a subclass of auto. If you wish to have it only bind a to objects of class

auto, then you should add (:subclasses nil) to the list of variable binding clauses.

(:subclasses nil) instructs clauses only to act on the classes specified, not on any

of their subclasses. There may be more than one clause that iterates though objects of a

class, and the :subclasses option applies to all of them.

for-each* is another iterator like for-each, but it has a very different calling tem-

plate and works quite differently. In a for-each* form, AllegroStore iterates over the

objects of a single class (and unless otherwise specified, its subclasses), and calls a given

function on objects that satisfy a special predicate clause called a where clause. Note that a

for-each* where clause is quite different from a for-each where clause.

The form of a for-each* where clause is very restricted: it is a conjunction of a

sequence of binary tests comparing slot accessors with constants. For example,

(for-each* #'(lambda (auto) (print (auto-name auto)))
 'auto
 :where '((auto-model-year >= 1990) (auto-price > 12000)))

will print the names of all automobiles in the database which are 1990 models or later and

which cost more than $12,000.

The :where argument is a sequence of lists of three items:

(accessor-name binary-function other-argument)

1. The accessor-name, which must be an accessor or reader for the given class.

2. The binary-function, which must be a function of two arguments:

• the first argument is the result of calling the accessor-name on

the object from the database

• the second argument is the other-argument

3. The other-argument, which effectively must be a constant since it is not

evaluated. (Experienced Lisp users will be able to have other-argument
evaluated by back-quoting the :where clause and preceding the other-
argument with a comma. Inexperienced Lisp users should stick to constants,

which are in any case more efficient. Constants include, among other things, all

numbers, strings, and symbols.)
AllegroStore 2.1 91

for-each-class

Non-iterators
for-each* also takes the :subclasses keyword argument if you want to specify

that objects of subclasses of the given class aren't to be considered. See the discussion of

the :subclasses argument for for-each above.

We should emphasize that for-each* is un-Lispy (particularly in the way the predi-

cate goes between the two arguments rather than before). It is a format imported from

another database system and grafted into Lisp.

for-each-class is an iterator macro that binds a variable to each class in the schema

and then evaluates the body of the macro.

For example, to count all the objects in the database:

(let ((count 0))
 (for-each-class (cl)
 (for-each* #'(lambda (obj) (incf count)) cl :subclasses nil))
 (format t "There are ~d objects in the database~%" count))

Non-iterator: retrieve
The function retrieve will return a list of all objects of a specified class satisfying a

given predicate. Its calling template is similar to for-each* (without the function
argument). The following form will return a list of 1990 or more recent model cars which

cost more than $12,000.

(retrieve 'auto
 :where '((model-year >= 1990) (auto-price > 12000)))

retrieve works by calling for-each* with, as the function argument, a func-

tion that collects the objects selected by the :where clause into a list. Note that if there are

many such objects, the resulting list can be quite large and can use a fair amount of space.

Always use an iterator if possible in preference to a non-iterator.

6.12 Pointers

A persistent object in the database can point to other persistent objects in the same database,

or to simple Lisp objects (lists, vectors, integers, or strings1) which are recreated in the Lisp

heap when they are referenced in the database. A normal Lisp object can point to a persis-

tent object in the database. This release of AllegroStore does not allow cross-database

pointers; thus a persistent object in one database cannot point to a persistent object in

another database.

If you have a pointer, which you believe to be the pointer to an object, is it valid? We

discuss that point next.

The validity of pointers
A persistent object consists of two parts: one part is transient and is stored in Lisp's heap

and one part is persistent and is stored in the database on disk. The transient part points to

the persistent part with a persistent pointer (or pptr), as illustrated in the following diagram.

1. For a complete listing of simple Lisp objects which can be stored, see the table in the

section on What type of values can be stored in slots.
92 AllegroStore 2.1

The persistent part of an object will not change its location on the disk during a transac-

tion: this is an important feature of transactions. Once a transaction completes, other users

(or the Database Manager) may shuffle objects around on the disk, making a persistent

pointer that was valid in a previous transaction now point to garbage. Thus, persistent point-

ers have a limited lifetime.

AllegroStore prevents programs from using invalid pointers by tagging each persistent

pointer with the name of the transaction in which it is valid. The following example shows

how AllegroStore detects an invalid persistent pointer.

(defclass employee () () (:metaclass persistent-standard-class))
(defvar *m* nil)
(with-database (db "company.db" :if-exists :supersede)
 (with-transaction nil
 (print (setq *m* (make-instance 'employee))))
 (with-transaction nil

 (print *m*)))

The persistent class employee is defined, and an object is created and assigned to the

variable *m*. *m* is an instance of employee; it has a non-persistent part and a persistent

part.

When the object is first printed, control is still inside the transaction where the persistent

pointer is valid. Object *m* first prints like this:

#<employee in /acme/company.db p: #x65f123 @ #x2127g5>

When *m* is next printed, control is outside the transaction in which the persistent pointer

it contains is valid. Object *m* next prints like this (we use a smaller type to fit it on one

line):

#<employee in /acme/company.db p: #x65f123 (dead-pointer) @ #x2137g5>

The dead-pointer description means that the pointer inside the employee object *m*
from the transient to the persistent part is invalid, because the transaction in which it was
valid is over.

After the transaction is over, the program can still (using the value of *m*) access the

non-persistent slots of the object, but it is an error to access the persistent slots. The persis-

tent slots still exist in the database, they are just unreachable via the value of *m*.

transient part

Lisp pointer

persistent part

Lisp Heap Persistent Heap
(on disk)

pptr
AllegroStore 2.1 93

preserve-
pointer
In order to get a valid pointer to the same employee object, the program must start a

transaction and use the query functions to locate it. You must have a valid pointer to a per-

sistent object to access its persistent slots.

There is a way to make a persistent pointer last through multiple transactions. If, while

the persistent pointer is still valid, the preserve-pointer function is called on a

persistent object, AllegroStore will allocate a reference object that enables it to update the

persistent pointer value in each new transaction.

For example, suppose we called preserve-pointer when we created the

employee object:

(defclass employee () () (:metaclass persistent-standard-class))
(with-database (db "company.db" :if-exists :supersede)
 (with-transaction nil
 (print (setq *m* (preserve-pointer (make-instance 'employee)))))
 (with-transaction nil

 (print *m*)))

then what we would see printed would be:

#<employee in /db/acme/company.db p: #x72f0004 (ref) @ #xa126ca>
#<employee in /db/acme/company.db p: #x72f0004 (ref) @ #xa126ca>

In this case, the *m* object can be referenced in subsequent transactions and the printed

representation reflects that.

Once the database is closed, the reference is no longer valid.

6.13 Implicit object creation

We mentioned above that a persistent CLOS object is composed of two parts: a transient

part in Lisp's heap and a persistent part in the database. In versions of AllegroStore prior to

1.2, it was possible to have two distinct transient parts pointing to the same persistent

object. As a result, the transient parts were not eq. Instead, they were eqo. Starting with

version 1.16, an extension allowed programmers to ensure that eqo transient parts were

also eq, as described in Technical memorandum AS-3 ‘Making transient copies of persis-

tent objects eq’.

In version 1.2, all transient parts which should be eq are eq automatically. For this rea-

son, Technical memorandum AS-3 does not apply to AllegroStore 1.2.

6.14 Object deletion

Persistent objects differ from normal Lisp objects in two important ways:

1. Persistent objects are not collected by a garbage collector. They remain in the

database even when there are no references to them from other Lisp objects.

2. Persistent objects can be explicitly deleted with the delete-instance
function. An object can be deleted even if other objects point to it. Section 6.14

Referential integrity section describes how AllegroStore handles this situation.
94 AllegroStore 2.1

6.15 Referential integrity

AllegroStore maintains referential integrity. This means that all pointers inside the database

point to valid database objects, never to places where an object, now deleted, used to be

stored.

Because AllegroStore maintains referential integrity, the programmer needn't put explicit

tests in his code to check each pointer reference for validity. When an object is deleted,

AllegroStore finds all references and replaces them with the appropriate value. Two cases

are listed next:

• If the reference comes from within a set (as in the borrows slot of the patron

class in our library example), then the reference is simply removed.

• If the reference is from a non-set slot, then the reference is replaced with the value

representing an unbound value, unless the slot’s initform is nil, in which

case the value is replaced with nil.

If the reference is not described by the two bullets above, see the definition of delete-
instance in chapter 7 Reference for information on how the object updating is handled.

If desired, it is possible to find all the references to an object before calling delete-
instance, and then employ a different strategy for replacing references. We describe that

under the next heading.

Finding references to an object (collect-references)
As we described above, AllegroStore will make sure that all pointers to a deleted object in

the database are eliminated once the object is deleted. This will involve the modification of

data objects stored in the database.

Some applications may wish to know beforehand which objects will be modified if an

object is deleted. The collect-references and map-references functions exist

to find and process references to a persistent object.

We'll use the auto and wheel classes for this example of using references. The

wheels slot of an auto is a set of wheel objects, each wheel object representing a brand

of wheel that we can use on this automobile. Suppose we delete a wheel object from the

database; we would want to know which auto instances this deletion would affect. Here are

the class definitions:

(defclass auto ()
 ((name :allocation :persistent :initarg :name :accessor auto-name)
 (wheels :initarg :wheels :allocation :persistent :type (set-of wheel)
 :accessor auto-wheels))
 (:metaclass persistent-standard-class))

(defclass wheel ()
 ((brand :allocation :persistent :initarg :brand :accessor whell-brand))
 (:metaclass persistent-standard-class))

Here is a :before method for deleting an instance of class wheel. The method maps

a function over each database object that refers to the wheel object, which is about to be

deleted. If the object is anauto object and refers to thewheel object through thewheels
slot, then the method issues a warning message.
AllegroStore 2.1 95

(defmethod delete-instance :before ((w wheel))
 (map-references #'(lambda (obj slot-name)
 (cond ((and (typep obj 'auto)
 (eq slot-name 'wheels))

(warn "Auto ~s is losing a wheel ~s that it uses"
 (auto-name obj)
 (wheel-brand w)))))
 w))

The next function builds a database and tests the delete-instance method we

wrote:

(defun testcase ()
 (with-database (db "inventor.db" :if-exists :supersede)
 (with-transaction ()
 (let ((ford (make-instance 'auto :name 'ford))
 (chevy (make-instance 'auto :name 'chevy))
 (mazda (make-instance 'auto :name 'mazda))
 (goodyear (make-instance 'wheel :brand 'goodyear))
 (firestone (make-instance 'wheel :brand 'firestone))
 (michelin (make-instance 'wheel :brand 'michelin)))
 (setf (auto-wheels ford) (list goodyear firestone))
 (setf (auto-wheels chevy) (list goodyear))
 (setf (auto-wheels mazda) (list michelin firestone))

 ;; now try deleting something
 (format t "Beginning delete test~%")
 (delete-instance firestone)
))))

Running the test case looks like this:

cl: (testcase)
Beginning delete test
Warning: Auto ford is losing a wheel firestone that it uses
Warning: Auto mazda is losing a wheel firestone that it uses
t
cl:

6.16 Object update

In our examples of a library and an auto, we often decided that our class definitions were

inadequate and updated them. Thus, for example, we started with the following definition

of a book in the library:

(defclass book ()
 ((title :allocation :persistent
 :initarg :title
 :accessor title)
 (author :allocation :persistent
 :initarg :author
 :accessor author))
 (:metaclass persistent-standard-class))

A little later, we decided that a barcode slot would be useful, to store a unique identifier

of a book (often called an inventory or accession number), so we redefined book as follows:
96 AllegroStore 2.1

(defclass book ()
 ((title :allocation :persistent
 :initarg :title
 :accessor title)
 (author :allocation :persistent
 :initarg :author
 :accessor author)
 (barcode :allocation :persistent
 :initarg :barcode
 :accessor barcode))
 (:metaclass persistent-standard-class))

Now, we had instances of book in our database when we redefined the class. What hap-

pened to them? When the class definitions of objects in the database are changed, AllegroS-

tore doesn't immediately update the objects. It uses a lazy algorithm for updating; it only

updates objects when they are accessed. This allows the programmer to control when

objects get transformed.

As each object is updated, the standard CLOS generic function update-instance-
for-redefined-class is called to do the work. By defining methods on this generic

function, a programmer can personalize the updating process, for example, to retrieve the

values of slots that are being deleted.

Handling object update automatically
AllegroStore permits the structure of its classes to be redefined at runtime. As a result of

redefinition, existing objects of the affected classes will have their structure updated. The

objects are updated according to the standard CLOS protocol. This protocol is a lazy one:

objects are updated when they are next referenced. This is necessary because in CLOS there

is no standard mechanism for locating all the objects of a given class.

AllegroStore can of course locate all the objects of a persistent class and so it can update

all persistent objects in the database as soon as the class is redefined. Lazy updating is the

default, but a program can easily force eager updating by using a query to reference all

objects and accessing a slot at each object.

Lazy updating distributes the cost of the updating over time and thus is less disruptive in

a real-time environment. With lazy updating, one can redefine numerous classes before

causing any objects to be updated. This means that slots can be moved from one class to

another without their values being removed from existing objects.

Object updating begins with the class or classes being redefined. Redefining a class effec-

tively marks all of the current objects of that class and all of its subclasses as out-of-date.

Here is how an out-of-date object is referenced for the first time after redefinition:

1. Space is allocated for the storage of its instance and persistent-
instance slots based on the up-to-date class definition.

2. The instance variables are initialized (see the table below for details).

3. The function update-instance-for-redefined-class is called. This

call is made primarily to allow a program to write a :before or :around
method in order to do application specific actions.

For the purpose of object updating, slots are divided into two types: class-allocated

(:allocation :class and :allocation :persistent-class) and instance-

allocated (:allocation :instance and :allocation :persistent).
AllegroStore 2.1 97

When an object is updated, an old slot may be dropped, it may change classification

(from instance-allocated to class-allocated or vice versa), or it may be unchanged in the new

instance. The following table shows what happens to slot values according to how the slot

is changed:

:

Legend:

• copy means that the value is copied into the new instance,

• init means that the old value is discarded and the new slot is set to the value of

the :initform, if any.

• discard means that the value is thrown away.

• xcopy means that the value is copied when the new class is created, before the

first instance is updated. So, for the purposes of this operation, the value is

discarded/ignored.

Note: Copying a value from a non-set type to a set type will work. Everything other than

lists are stored as the single object in the set while lists are made the set. Thus, the symbol

foo will be stored as the lone value in the set. and the value (a b c) will be stored as

three values in the set. Copying from sets to non-sets also works: all the items in the set are

bundled into a list and that list becomes the value of the scalar slot. But note: it is an error

if the type of a scalar slot does not include lists (in the set to non-set transformation).

6.17 Multiprocessing

Platforms with :os-threads on *features*
On platforms that include :os-threads in *features*, all AllegroStore functional-

ity is available when using Allegro Common Lisp multiprocessing functionality. No special

syntax is required and AllegroStore processing in Lisp lightweight processes other than the

initial Lisp Listener runs just as fast as processing in an application that doesn't use Lisp

multiprocessing.

Note that only one Lisp lightweight process can access AllegroStore functionality at a

time - an internal lock is used to synchronize access. This implies that a short transaction

programming model is best suited for AllegroStore multiprocessing on :os-threads plat-

forms.

On :os-threads platforms, by default the Lisp heap is not released when an AllegroStore

ObjectStore call is made. This means that if the ObjectStore call is waiting for a read or

New slot classification

class instance missing

class xcopy copy discard

instance init copy discard

missing init init ---E
xi

st
in

g
 s

lo
t

cl
as

si
fi

ca
ti

o
n

98 AllegroStore 2.1

write lock, all other Lisp lightweight processes will be waiting also. If the other lightweight

processes are waiting to make an ObjectStore call, then they would wait even if the Lisp

heap were available, since only one lightweight process can make an ObjectStore call at a

time. However, if another Lisp lightweight process were doing other tasks, such as waiting

to process user interface events, then it is desirable to release the Lisp heap when making

an ObjectStore call.

You may control this behavior using the *allegrostore-release-heap* vari-

able. When its value is nil (the default), the Lisp heap is not released during ObjectStore

calls; when its value is non-nil, the Lisp heap is released during ObjectStore calls, allowing

other Lisp lightweight processes to run. The *allegrostore-release-heap* vari-

able is examined before each ObjectStore call, allowing you to selectively control the heap

release behavior.

When choosing to release the heap, keep the following in mind:

• There are time and space costs associated with releasing the heap, even when

other Lisp lightweight processes are just waiting for user interface events. Also,

there are specific higher costs associated with persistent instances with slots

containing long strings or raw arrays.

• When *allegrostore-release-heap* is non-nil, accessing a persistent

raw array or storing a raw array in a persistent instance slot will release the Lisp

heap only when the array is a one dimensional array. When storing a Lisp raw

array in a persistent slot for the first time, the Lisp heap will only be released if

:allocation :lispstatic-reclaimable was included in the make-
array arguments.

Platforms without :os-threads on *features*
On platforms that do not include :os-threads in *features*, in earlier releases,

AllegroStore supported channels but channels are not supported in release 2.0. The same

functionality, with better overall performance, should be possible by running separate Alle-

groStore sessions that communicate via the AllegroStore notification facility. See section

6.24 for information on notifications.

6.18 Interactive transactions during application
development

While developing an AllegroStore application, you may desire at some point to interac-

tively examine a database. Here is an example that shows a simple way to do that:

(with-database (db "mydb.db")
 (with-transaction ()
 (break "Don't forget to return from break when finished")))

Running this code will result in a break during an active transaction. When the break

occurs, you can then interactively evaluate forms that navigate the database or inspect per-

sistent instances. If you return normally from the break, any database changes will be com-

mitted. If you choose an abort restart or do a reset, any changes made during the interactive

period are rolled back.
AllegroStore 2.1 99

Remember that you will have database read or write locks during the interactive transac-

tion; any other application or user will be locked out until you commit or abort the transac-

tion by choosing a restart for the break.

See the 6.22 Long Transactions section for information about another way to initiate

interactive transactions.

6.19 Persistent Object Check Out and Check In

The AllegroStore Manual's Tutorial uses a public library database example to illustrate

AllegroStore persistent class design and programming. In the example, all persistent

instance slot reading and writing occurs within AllegroStore transactions. The library data-

base is updated as each transaction completes and database changes are committed.

Such behavior is optimal for a public library database - when a patron leaves the library,

the database should immediately reflect the books that the patron borrowed. As new books

are added to the collection, the database should immediately reflect the addition. Such

behavior is especially important in libraries with many clerks simultaneously accessing and

updating the same collection database.

There are other kinds of applications, however, that may not require or may wish to avoid

immediate database updates. Consider, for example, a Knowledge-Based Engineering

application that uses AllegroStore to manage assembly and part objects. A design team

member may wish to work with an assembly, trying different parts or modifying part

parameters and reconstructing the assembly. After many iterations, a new design emerges,

and the design team member then wishes to update the assembly that is stored in the data-

base.

The designer will want to go through the iterations "off-line", so that the current assem-

bly and part objects are available to other designers. Also, since reconstructing an assembly

after changing a parameter is a computationally intensive activity with persistent instance

and slot access occurring thousands of times, performance is an issue, since AllegroStore

persistent instance slot access is slower than transient instance slot access.

For such an application, "checking out" persistent objects in a manner that allows manip-

ulation as transient objects outside of AllegroStore transactions is the best way to provide

off-line object manipulation and improve computational intensive application performance.

When design iterations are complete, the designer's off-line changes are "checked in" to the

persistent object database.

In the following sections, the class design and programming steps required to support

persistent object check out and check in are illustrated.

The Example Database
Here are some non-persistent CLOS classes that describe a simple assembly/part system.

(defclass design-object ()
 ((id :accessor id :initarg :id)
 (name :accessor name :initarg :name)))

(defclass assembly (design-object)
;; elements is a list containing part instances or assembly instances

 ((elements :accessor elements :initform nil)))

(defclass part (design-object)
100 AllegroStore 2.1

 ())

(defclass pblock (part) ;; avoid symbol contention
 ((height :accessor height :initform 0.d0)
 (width :accessor width :initform 0.d0)
 (depth :accessor depth :initform 0.d0)))

(defclass cylinder (part)
 ((height :accessor height :initform 0.d0)
 (radius :accessor radius :initform 0.d0)))

A real life assembly/part class design would include slots containing information required

to position sub-assemblies in an assembly, along with rules that govern how relative posi-

tioning changes when part parameters or positioning parameters change. However, for the

purposes of demonstrating persistent object check out and check in, such added complexity

is not needed.

Designing Persistent Classes for Check Out And Check In
The usual way to turn a transient class design into a persistent class design involves speci-

fying the persistent-standard-class metaclass, specifying the :persistent argument for

the :allocation keyword, and optionally using other persistent slot keywords, such as

:unique and :inverse. For example, the code below shows how the design-object

class might be turned into a persistent class for a design that did not require persistent object

check out and check in.

You need to run AllegroStore to use the code contained in the rest of his document. On

Windows, choose one of the ACL startup menu choices that includes AllegroStore. On

Unix, evaluate (require :allegrostore). Also, all the code below assumes you

are in the AllegroStore package (eval a (in-package :astore) form) or you are

using the AllegroStore package (eval a (use-package :astore) form). On Windows, when

using an image containing Common Graphics or the IDE, to prevent symbol conflicts, eval-

uate

(defpackage :allegrostore (:shadowing-import-from :aclwin collect))

before evaluating (use-package :astore).

(defclass design-object ()
 ((id :accessor id :allocation :persistent
 :unique t :inverse find-object :initarg :id)
 (name :accessor name :allocation :persistent :initarg :name))
 (:metaclass persistent-standard-class))

When turning a transient class design into a persistent class design that supports persistent

object check out and check in, add parallel persistent slots for each transient slot, and also

add a transient slot that will let you know when a persistent object has been checked out.

Here is the above assembly/part design, transformed to support persistent object check out

and check in:

(defclass design-object ()
 ((id :accessor id)
 (id-po :accessor id-po :allocation :persistent :unique t
 :inverse find-object :initarg :id)
 (name :accessor name)
 (name-po :accessor name-po :allocation :persistent :initarg :name)
 (checked-out-p :accessor checked-out-p :initform nil))
 (:metaclass persistent-standard-class))
AllegroStore 2.1 101

(defclass assembly (design-object)
;; elements is a list containing part instances or assembly instances

 ((elements :accessor elements)
 (elements-po :accessor elements-po :allocation :persistent
 :initform nil))
 (:metaclass persistent-standard-class))

(defclass part (design-object)
 ()
 (:metaclass persistent-standard-class))

(defclass pblock (part) ;; avoid package problem associate with 'block
 ((height :accessor height)

(height-po :accessor height-po :initform 0.d0 :allocation :persistent)
 (width :accessor width)
 (width-po :accessor width-po :initform 0.d0 :allocation :persistent)
 (depth :accessor depth)

(depth-po :accessor depth-po :initform 0.d0 :allocation :persistent))
 (:metaclass persistent-standard-class))

(defclass cylinder (part)
 ((height :accessor height)

(height-po :accessor height-po :initform 0.d0 :allocation :persistent)
 (radius :accessor radius)

(radius-po :accessor radius-po :initform 0.d0 :allocation :persistent))
 (:metaclass persistent-standard-class))

Note that the above design does not include a persistent slot that contains check out status

information. In a real multi-user environment, a design might include persistent slots that

identify who has checked out an object and differentiate between read-only check outs and

read/write check outs. The methods that control object check out and check in could use

such information to allow or disallow a check out.

Check Out and Check In Methods
;; all methods assume that they are called within a transaction
(defmethod check-out :around ((object design-object) &optional lazyp)
 (declare (ignore lazyp))
 ;; using an around method insures that we set checked-out-p
 ;; first, to prevent infinite recursion
 ;; during full depth check out and also to avoid work when the
 ;; object is already checked out

;; it also allows us to reset checked-out-p to nil if there's a failure
 (if* (checked-out-p object)
 then object
 else
 (handler-case
 (progn
 (setf (checked-out-p object) t)
 (call-next-method)
 (preserve-pointer object))
 (error (condition)
 (progn
 (setf (checked-out-p object) nil)
 (error condition))))))

(defmethod check-out ((object design-object) &optional lazyp)
102 AllegroStore 2.1

 (declare (ignore lazyp))
 ;; copy persistent values into parallel transient slots
 ;; note that we assume the name and id slots will never contain a
 ;; persistent instance or list
 (setf (id object) (id-po object))
 (setf (name object) (name-po object)))

;; the other methods are :after methods, so they are called
;; along with the primary method
(defmethod check-out :after ((object assembly) &optional lazyp)
 ;; assumes that elements is empty list or list containing parts
 ;; and/or assembly instances
 (setf (elements object)
 (let (transient-list)

(dolist (element (elements-po object) (reverse transient-list))
 (push (if* lazyp then (preserve-pointer element) else
 (check-out element))
 transient-list)))))

(defmethod check-out :after ((object pblock) &optional lazyp)
 (declare (ignore lazyp))
 ;; assumes that height, width, depth contain numbers
 (setf (height object) (height-po object))
 (setf (width object) (width-po object))
 (setf (depth object) (depth-po object)))

(defmethod check-out :after ((object cylinder) &optional lazyp)
 (declare (ignore lazyp))
 ;; assumes that height and radius contain numbers
 (setf (height object) (height-po object))
 (setf (radius object) (radius-po object)))

(defmethod check-in :around ((object design-object) &optional lazyp)
 (declare (ignore lazyp))
 (when (checked-out-p object) (call-next-method)))

(defmethod check-in ((object design-object) &optional lazyp)
 (declare (ignore lazyp))
 (setf (id-po object) (id object))
 (setf (name-po object) (name object)))

(defmethod check-in :after ((object assembly) &optional lazyp)
 (setf (elements-po object) (elements object))
 (when (not lazyp)
 (dolist (element (elements object))
 (check-in element t))))

(defmethod check-in :after ((object pblock) &optional lazyp)
 (declare (ignore lazyp))
 (setf (height-po object) (height object))
 (setf (width-po object) (width object))
 (setf (depth-po object) (depth object)))

(defmethod check-in :after ((object cylinder) &optional lazyp)
 (declare (ignore lazyp))
 (setf (height-po object) (height object))
 (setf (radius-po object) (radius object)))
AllegroStore 2.1 103

In the above methods, the lazyp argument specifies whether check out or check in should

also process persistent objects contained in an instance's slots. In a real life assembly/part

system doing a full depth check out of a complex assembly could result in a check out of

thousands of persistent objects. If the intention is to check out the assembly, and then nav-

igate through a particular sub-assembly path, it may be desirable to check out instances "as

you go".

Notice also the use of preserve-pointer. The preserve-pointer function is

crucial for enabling persistent instance reconciliation outside transactions and in subse-

quent transactions. Preserved pointers require that the user have write permission on the

database and that the database remain open between transactions. Thus, you should use

open-database and with-current-database, rather than with-database
when using functionality that involves persistent object check out and check in.

Creating New Instances
As with usual AllegroStore programming, create new persistent instances within a transac-

tion. In an object check in and check out environment, where the majority of object manip-

ulation code will access transient slots, it will usually be easier to create a minimal new

instance, immediately check it out, and then begin working with it as a checked out object.

Some Example Sessions
The following code creates some parts and an assembly. Instance attributes are manipulated

outside of a transaction.

(defun make-an-assembly ()
 (let ((db (open-database "f:/tmp/design.db"))
 part1 part2 assembly)
 ;; make some objects and check them out
 (with-current-database db
 (with-transaction ()
 (setf part1 (check-out (make-instance 'pblock :id 1
 :name "block")))
 (setf part2 (check-out (make-instance 'cylinder :id 2
 :name "cylinder")))
 (setf assembly
 (check-out (make-instance 'assembly :id 3
 :name "assembly")))))
 ;; now work with the checked out objects outside of a transaction
 (setf (height part1) 1.d0)
 (setf (width part1) 2.d0)
 (setf (depth part1) 3.d0)
 (setf (height part2) 4.d0)
 (setf (radius part2) 5.d0)
 (push part1 (elements assembly))
 (push part2 (elements assembly))
 ;; now check the assembly back in, using full depth check in,
 ;; which will check in the parts, also
 (with-current-database db
 (with-transaction ()
 (check-in assembly)))
 ;; we're done, so close the database
 (close-database db)))

The following code simulates a design session using the parts and assembly created above.

It may be run in a separate Lisp session.
104 AllegroStore 2.1

 (defun simulate-design-session ()
 (let ((db (open-database "f:/tmp/design.db"))
 block assembly)
 ;; check out the block
 (with-current-database db
 (with-transaction ()
 (setf block (check-out (find-object 1)))))
 ;; verify that part contains attributes we expect
 ;; note that there is no active transaction
 (format t "part: ~s height: ~s width: ~s depth: ~s~%"
 (name block) (height block) (width block) (depth block))
 ;; modify the height
 (setf (height block) 10.d0)
 ;; check out the assembly
 (with-current-database db
 (with-transaction ()
 (setf assembly (check-out (find-object 3)))))
 ;; print out element heights - notice that our modification
 ;; has not been lost
 (dolist (element (elements assembly))

(format t "part: ~s height: ~s~%" (name element) (height element)))
 ;; check in the block - that's the only thing that changed
 (with-current-database db
 (with-transaction ()
 (check-in block)))
 ;; we're done - close database
 (close-database db)))

Here is the output that running this function produces:

> (simulate-design-session)
part: "block" height: 1.0d0 width: 2.0d0 depth: 3.0d0
part: "cylinder" height: 4.0d0
part: "block" height: 10.d0
18
>

Conclusions
The above example shows another persistent check out/check in design benefit - code that

must be added to support persistent objects is minimal and can be localized to areas away

from where the important processing occurs.

If your persistent object application does not require "real time" persistent object update,

you should consider using object check out and check in; it may make application develop-

ment easier, and the performance advantages (you don't make foreign function calls when

you access transient slots) may be dramatic.

6.20 Reducing Page Lock Contention

If you are developing a multi-client application, where more than one process will be

accessing the same database at the same time, you should be concerned about page lock

contention. Page lock contention occurs when a process attempts to read or write to a data-

base page that another process currently has locked. The page in question will not become

available until the process that has currently locked it completes the transaction it is work-

ing on.
AllegroStore 2.1 105

 Page lock contention occurs when one process has a write lock on a page and another

process seeks a read lock or write lock for that page, or when one or more processes have

a read lock on a page and another process seeks a write lock on that page.

ObjectStore automatically manages what kind of lock a process will request. A write

lock will be requested only when an attempt to write to persistent memory occurs in the

transaction. If all transaction operations are persistent memory reads, then a read lock will

be requested. If a transaction starts out reading and then writes, the initial read lock will be

upgraded to a write lock. The upgrade attempt will result in page lock contention if another

process also currently has a read lock for the page in question.

For most AllegroStore operations, it is obvious whether an operation will read persistent

memory or write persistent memory. For example, if you use a slot accessor to fetch the cur-

rent contents of a persistent slot in a persistent object, you are performing a read operation.

If you use 'setf to change the slot value, you are performing a write operation.

 Here are the non-obvious write operations:

• preserve-pointer

When you create a preserved pointer, a database write occurs. When you close

the database in which a preserved pointer was created, a database write occurs

as the preserved pointer table is deleted.

• fetching a stale instance

If an instance's persistent class definition has changed since the last time the

instance was accessed, AllegroStore will update the instance with a write op-

eration. See the next section about read-only processing to see how to manage

when stale instances get updated, and how to prevent unexpected persistent

class definition changes.

If all transaction operations are read operations when your application runs in multi-user

mode, then page lock contention will never occur. If at least one transaction performs write

operations, then the potential exists for page lock contentions. Here are some strategies for

reducing the chance that page lock contention will occur:

• keep all instances fresh

See the next section about read-only processing for more information.

• keep transactions as short as possible

Short transactions reduce the probability that page lock contention will occur,

and if contention does occur, reduces the time that a process waits for a lock to

be free. If your application is not readily suited to short transactions, consider

using an object check-out mechanism that allows processing outside of trans-

actions. See section 6.18 Persistent Object Check Out and Check In for

more information. Object check-out uses preserved pointers, which require

write locks, but the transactions required to create preserved pointers during

object checkout are very short.

• cluster related objects

If two clients are performing write operations on unrelated database areas, then

lock contention will not occur. Currently, you can only influence object clus-

tering by managing when objects are created or by using a multi-database de-

sign. For example, suppose you have a sales database, and the salespeople who

will use your application manage different geographical areas. If, when creat-
106 AllegroStore 2.1

ing a single sales database, you first create all the California objects, and then

create all the New York objects, the two salespeople responsible for those areas

are unlikely to contend for the same page when updating an object. Alterna-

tively, if you design your application so that the New York objects and Cali-

fornia objects are in distinct databases, then lock contention will be even less

likely.

• consider using MVCC database opens for read-only processing

If your read-only multi-user clients can work with a consistent database snap-

shot, where database updates by other clients are not visible until the current

transaction is completed and a new transaction is started, then you should con-

sider using Multi Version Concurrency Control (MVCC). See section 6.21

Multi Version Concurrency Control (MVCC) Processing for more infor-

mation.

6.21 Read-Only Processing

You can use read-only processing to prevent unwanted attempts to secure a write lock.

When a database is opened in read-only mode, any attempt to write to persistent memory

associated with that database results in an AllegroStore error. When a transaction is started

in read-only mode, any attempt to write to persistent memory during that transaction results

in an AllegroStore error.

 To open a database in read-only mode, specify t as the argument to the :read-only
with-database or open-database keyword argument. To start a read-only transac-

tion, specify t as the argument to the :read-only with-transaction keyword.

 Here are some examples:

 (with-database (db "foo.db" :read-only t)
 ... ;; transaction in which write occurs will result in error
)

(with-database (db "foo.db")
 (with-transaction ()
 ... ;; write can occur in here
)
 (with-transaction (:read-only t)
 .. ;; write in here will result in an error
))

Since creating a preserved pointer involves writing to persistent memory, attempting to

create a preserved pointer during read-only processing will result in an AllegroStore error.

 Attempting to fetch a stale instance during read-only processing will result in an Alle-

groStore error. Stale instances are instances written to a database before their associated

class definition has been updated in the database. There are two ways a class definition can

be updated in the database:

• Intentional class redefinition

You change a class definition, open a database containing the same class, and

use the new definition to resolve the error condition raised by AllegroStore.

• Transparent class definition update
AllegroStore 2.1 107

If a class definition exists in transient memory that matches a class in a newly

opened database, AllegroStore will transparently rewrite the class definition to

the database, even if the two definitions are identical. AllegroStore does this

because it cannot be sure that a change in a persistent superclass did not occur,

and it must rewrite the definition when a superclass changes. This situation

will occur if:

• The class in question is in the image you start when you start your

application.

• The class in question is in a compiled fasl file or Lisp source file you load

into your application.

• You open a database containing the class in question, then open another

database containing the same class.

• You open a database containing the class in question, later close the

database, and then later open the database again.

To prevent transparent class definition update, call the CLOS finalize-inherit-
ancemethod on all persistent class definitions before opening a database. The easiest way

to do this is to add finalize-inheritance calls to the bottom of the last source file

that is loaded when your application is built or loaded. Wrap the calls within an (eval-
when (load)) form.

If you make existing instances stale by redefining a class, you can update all the instances

using the for-each* and allegrostore::validate-instance functions,

as in:

(for-each* #'(lambda (obj) (allegrostore::validate-instance obj))
 'foo :subclasses t)

For very, very large databases, if there is not enough addresses space to update all

instances in a single transaction, use the for-each* function :start-block and :block-

count keywords to break the operation up into smaller transactions, as in:

(dotimes (i 10)
 (with-transaction ()
 (for-each* #'(lambda (obj) (allegrostore::validate-instance obj))
 'foo
 :subclasses t :start-block (* i 10000000)
 :block-count 10000000)))
 ;; process 10,000,000 objects per transaction

6.22 Multi Version Concurrency Control (MVCC)
Processing

You can use MVCC processing to eliminate lock contention in a multi-user environment if:

• The client you are considering using MVCC processing with does not do any

database writes during all transactions.

• The client can effectively operate with a consistent database snapshot - it is not

required to immediately see the results of write operations by another client.

To open a database using MVCC mode, specify t as the argument to the :mvcc with-data-

base or open-database keyword argument.
108 AllegroStore 2.1

Here is an example:

(with-database (db "foo.db" :mvcc t)
 ... ;; read only transactions
)

Here are the benefits related to MVCC processing:

• A client using MVCC database opens will never wait for a read lock, regardless

of what any other client is doing.

• A client not using MVCC database opens seeking to do a database write will not

wait for a write lock if the only other clients accessing the database page in

question are MVCC clients.

Here are issues related to MVCC processing:

• While a MVCC snapshot will always be consistent within itself, multiple

database application developers must be concerned about database sets that are

not consistent with each other. If a non-MVCC client is committing transactions

on multiple databases at the same time that another client is doing MVCC opens,

there is a timing risk that can lead to some of the MVCC opened databases

reflecting the commit changes, and others not reflecting those changes. It is the

programmer's responsibility to prevent this from happening or to detect this

condition and deal with it appropriately.

• If non MVCC clients do massive amounts of database writes while there are

MVCC open databases, the ObjectStore transaction log may grow very large, and

you may run into resource problems, such as not enough disk space.

6.23 Long Transactions

The recommended AllegroStore transaction model is a short transaction model - keeping

transactions short reduces the probability that lock contention or deadlock will occur.

A long transaction model - where large amounts of processing occurs within a single

transaction, or where the application may pause within an open transaction while awaiting

user input, is a safe choice only when you can prevent lock contention. For example, open-

ing a database in MVCC mode guarantees lock contention free read-only processing for the

application doing the open, along with guaranteeing that any other application using the

same database won't encounter lock contention. Another example is an application that

generates a distinct file name (using 'sys:make-temp-file-name, for example) when creating

and using a database during a run session.

Even if you do not plan on developing a multi-user application, you should consider the

risks related to lock contention. For example, a user may start a standalone AllegroStore

application and forget to exit it. If the application is in the middle of a long transaction on

a database file that is used every time the application runs, then no one, including the user

who left the first session running, will be able to do any work until the original session is

terminated.

Most applications that seem best suited for a long transaction model usually also work

well with a short transaction model design involving multiple databases, preserved point-

ers, and transient slots. For example, consider a CAD application where a user's project is

contained in a single database file. In a long transaction model, an entire CAD application

session might occur within a single transaction, with the transaction committing when the
AllegroStore 2.1 109

user saves his work or aborting if the user exits without first saving. In a short transaction

model, a temporary database would be used for the session. When the database user opens

his project, the required objects are copied from the permanent database into the temporary

database, and all object modification is done within the temporary database using short

transactions. If the user wishes to save the session work, the permanent database is

reopened and the relevant objects are updated.

If you decide a long transaction is best and you are sure that lock contention is not an

issue, large amounts of processing and pauses for user interaction may occur within a with-

transaction form. If your application is event driven (such as a Common Graphics or CLIM

application), you may prefer to use a functional analog to the 'with-transaction macro - the

begin-transaction, commit-transaction, and abort-transaction functions.

Here is an example of their use:

;; db is the return value from an earlier
;; successful open-database call
(set-current-database db)
(begin-transaction)
;; myfun returns t if the user wishes to save
(if* (myfun)
 then (commit-transaction)
 else (abort-transaction))

Note that commit-transaction or abort-transaction will raise an error condition if they are

called within a top-level with-transaction form. To force a commit in a top-level with-trans-

action form, cause the form to complete normally. To force a rollback, transfer control out-

side the form; error or throw is a way to do that.

When using the transaction functions instead of the with-transaction macro, special care

must be taken when handling allegro-exception conditions (see the 7.2.XX Conditions sec-

tion). To prevent runtime problems and possible database corruption, you must call abort-

transaction in your condition handler.

6.24 Notifications

Multi-client AllegroStore applications may use notifications to send and receive messages

between client processes.

Why use notifications?
• Notifications are easy to use - there is no need to write your own socket code and

design a messaging protocol

• Notifications may be tied to AllegroStore two-phase commits - you may specify

that notifications be sent only after the transaction in which they were created

successfully commits.

• Notifications allow clients to refer to the same persistent objects - you don't have

to include a unique id slot in a persistent class just so clients can communicate

about a desired instance.

Setting up notifications
To receive notification, a client must subscribe for them. A client subscribes for notifica-

tions concerning a specific instance with the notification-subscribe method:
110 AllegroStore 2.1

(notification-subscribe foo) ;; foo is a persistent instance

This method must be invoked while a transaction is active. Once the subscription is made,

when any client sends a notification regarding the specified persistent instance, a notifica-

tion will be placed in this client's notification queue. The subscription remains in effect as

long as the database remains open.

If you no longer wish to receive notifications regarding an instance you previously called

notification-subscribe on, use the notification-unsubscribe method:

(notification-unsubscribe foo) ;; foo is a persistent instance

This method must be invoked while a transaction is active.

Sending a notification
A client notifies all subscribing clients about a specific instance with the notify method:

(notify foo 1 "this is a string" :on-commit t)
 ;; foo is a persistent instance

The second argument to notify is an integer value that the application can use to distin-

guish kinds of notifications - you are free to use any integer value. The third argument spec-

ifies an arbitrary string that may be used to pass additional information. The :on-commit

keyword argument specifies whether the notification will be sent only if the wrapping trans-

action commits successfully. If the :on-commit argument value is nil, then the notification

will be sent immediately.

Waiting for notifications
Depending on how your multi-client application operates and the expected notification traf-

fic, there are a variety of strategies for notification waiting or polling. The correct strategy

also depends on whether the :os-threads feature is present in the lisp image.

If a client's only current task is waiting for a notification, you can call the notifica-
tion-receive function:

(notification-receive -1)

The -1 argument specifies to wait forever until a notification arrives. The waiting is done in

a manner that does not impinge on computing resources. An integer argument value greater

than -1 specifies the number of microseconds to wait for a notification. If a timeout occurs,

nil is returned; otherwise, a notification object is returned.

Note that notification-receive need not be called within an active transaction.

For clients working on other tasks, periodically checking for pending notifications, and

not expecting heavy notification traffic, you have multiple choices.

You can use notification-receive with a reasonable timeout value or you can poll to see if

there are any pending notifications.

Alternatively, you can use the notification-queue-status function:

(notification-queue-status)

This function returns a list of three integers; the first value is the number of pending noti-

fications, the second value is the number of dropped notifications resulting from queue

overflow, and the third value is the queue size. The default queue size is 50; you can change

the default by setting the OS_NOTIFICATION_QUEUE_SIZE environmental variable

before starting your application.
AllegroStore 2.1 111

On Unix systems, you can also check for pending input on the file descriptor associated

with notification:

(stream-listen (astore::os_notification_get_fd))

The stream-listen method is an Allegro Common Lisp streams method; it returns t if

there is some pending input, nil otherwise.

The notification-queue-status and

astore::os_notification_get_fd functions may be called outside of active

transactions.

If you anticipate heavy notification traffic, a more robust design involves using Allegro

Common Lisp multiprocessing functionality to reduce the chance that notification queue

overflows occur.

Here is an example that is appropriate for architectures where :os-threads is on the fea-

ture list:

(mp:process-run-function
 "receive-notification"
 #'(lambda ()
 (let ((*allegrostore-release-heap* t)
 (notification (notification-receive -1)))
 ;; examine notification or place it in
 ;; global list that other ACL "threads" may examine
)))

The above example process function will terminate after receiving one notification; it is a

simple exercise to add a looping mechanism that will run until you wish to terminate the

notification processing. Note that the *allegrostore-release-heap* symbol is bound to t; this

releases the heap so other threads running Lisp code will continue to run.

Here is a similar example appropriate for Unix architectures where :os-threads is not on

the feature list:

(mp:process-run-function
 "receive-notification"
 #'(lambda ()
 (let ((fd (astore::os_notification_get_fd)))
 (mp:wait-for-input-available fd))
 (let ((notification (notification-receive -1)))
 ;; examine notification or place it in
 ;; global list that other ACL "threads" may examine
)))

Note that Windows is an :os-threads architecture.

Examining notification objects
Once a notification object is received, notification details may be examined using:

database-of

The database-of method returns the database object associated with the

notification.

notification-kind

The notification-kind method returns the kind integer specified by the

notification sender.

notification-string
112 AllegroStore 2.1

The notification-stringmethod returns the string specified by the no-

tification sender.

The above methods may be called outside an active AllegroStore transaction on any Lisp

lightweight process.

notification-object

The notification-object method returns the persistent instance speci-

fied by the notification sender. This method must be called while a transaction

is active. It may fail if any client called unpreserve-pointer on the in-

stance in question since the notification-subscribe call on the particular in-

stance was made. Note that closing a database will result in an implicit unpre-

serve-pointer call on the instance in question.
AllegroStore 2.1 113

114 AllegroStore 2.1

Chapter 7 Reference guide

This chapter is divided into two parts. In the first part, section 7.1 General information,

are essays about various topics. Each is labeled About topic. This part contains the follow-

ing essays:

About saving and restoring databases

About multitasking

About the configuration database

About moving and copying database files

About deleting database files

About persistent standard class

About persistent standard object

About read-locks and write-locks

About schema

About transaction

About commit

About roll back

About shell environment variables

About deadlock resolution

About deleting database files

About shrinking the transaction log

The second part, section 7.2 Definitions, is the reference section proper. It contains for-

mal definitions of the variables, functions, macros, and so on in AllegroStore. The defini-

tions are grouped by general topic (rather than, say, listed alphabetically). Therefore, you

look at the section on Transactions for information on functionality associated with trans-

actions. These sections are numbered, the section number being 7.2.n, where n is the num-

ber in the list below.

1. Variables

2. Database manipulation

3. Databases: saving and restoring

4. Schema manipulation

5. Transactions

6. Object manipulation

7. Query language
AllegroStore 2.1 115

8. References

9. Object identifiers

10. Persistent hash tables

11. Blobs

12. Lock timeouts

13. Conditions

The topics are ordered roughly by complexity. If you read through the chapter from front

to back, you will gain a progressively deeper understanding of the software.

If you are looking for a more general discussion or examples, see the Programmer’s
guide. If you haven’t already done so, please read chapter 5 Tutorial before beginning to

use AllegroStore.

7.1 General information

About saving and restoring databases
The programs asdump and asrestore, documented in detail in section 7.2.2 below,

respectively write the contents of a database to a machine-independent ASCII file and rec-

reate a 1.3 database from such a file. AllegroStore 1.3 can read an AllegroStore 1.2

asdump file.

About multiprocessing (:os-threads version)
All AllegroStore functionality is available when using Allegro CL multiprocessing func-

tionality (see <Allegro directory>/doc/cl/multiprocessing.htm). An internal Lisp lock

forces other lightweight processes wishing to start an AllegroStore transaction to wait until

a lightweight process currently working on a transaction commits or aborts the transaction.

While a lightweight process is in ObjectStore foreign code, other Lisp lightweight pro-

cesses not waiting for the transaction can run Lisp code.

About multitasking (non :os-threads version)
On platforms that do not include :os-threads in *features*, in earlier releases,

AllegroStore supported channels but channels are not supported in release 2.0. The same

functionality, with better overall performance, should be possible by running separate Alle-

groStore sessions that communicate via the AllegroStore notification facility. See section

6.24 for information on notifications.

About the configuration database
The structure of the primitive objects that AllegroStore uses to build the CLOS database are

described in the configuration database. Allegrostore locates and opens the configuration

database file before it opens its first database. The system will perform a sequential search,

and will stop as soon as it locates the file.

The search for the configuration database proceeds as follows:
116 AllegroStore 2.1

1. The file that contains the C-coded part of AllegroStore has the name of the

configuration file stored inside it (using the ossetasp program). AllegroStore

first looks for the configuration file in the location name stored in this file.

2. Next, AllegroStore looks in each directory mentioned in the shell environment

variable AS_CONFIG_PATH. The format of the value of this environment

variable is similar to the shell PATH variable:

• In Unix, a sequence of directory names separated by colons

• In DOS, a sequence of directory names separated by semicolons

3. Finally, AllegroStore looks in each directory mentioned in *as-config-
path*. The initial value of *as-config-path* is a list of one directory: the

current working directory.

4. If AllegroStore cannot locate the file, it will issue an error message:

cannot find configuration database

About moving and copying database files
If you plan to move or copy AllegroStore databases, be aware that the database server pro-

cess may be caching some information that belongs in the file. Simply copying a file with

tar or cp (on UNIX) or copy (on DOS) may result in a corrupted database file.

The ObjectStore bin subdirectory supplied with AllegroStore contains replacement file

management functions that are database-aware. You should use oscp for copying files and

osmv for renaming them.

See the sections on oscp and osmv in Database user utilities chapter.

About deleting database files
If you want to delete a database file, use osrm (rather than the Unix utility rm). See the

osrm documentation in chapter 10 User utilities.

About persistent-standard-class
A Lisp program that uses AllegroStore creates and accesses two kinds of objects: transient
objects and persistent objects.

• A transient object exists entirely in the Lisp heap and ceases to exist when there

are no more pointers to the object (or when the Lisp process quits).

• A persistent object has two parts: a transient part and a persistent part.

The transient part of a persistent object exists in the Lisp heap and ceases to

exist when there are no more pointers to it (or when the Lisp process quits).

The persistent part of a persistent object exists in the database and ceases to

exist when the program explicitly deletes the object or the object's class. (Its

existence does not depend on whether or not the Lisp process is running.)

Both transient and persistent objects are created with make-instance. Whether an

object is transient or persistent is determined by its class definition (done with defclass).

If the metaclass of an object is persistent-standard-class (or a subclass of

that class), the object will be persistent. If the metaclass is standard-class (or a sub-

class of it), the object is transient. The following form defines a persistent class of objects:
AllegroStore 2.1 117

(defclass persistent-foo ()
 ()
 (:metaclass persistent-standard-class))

A persistent class can be a subclass of non-persistent classes, but it rarely makes sense

for a non-persistent class to be a subclass of a persistent class since a non-persistent class

cannot process slots with persistent allocation types.

Although you can define persistent classes at any time, you cannot create instances of

persistent classes unless a database is open.

About persistent slots
Slots in persistent classes can themselves be persistent or transient. (This feature is useful

since you may not want all the slots of a class to be stored in a database, since doing so may

waste space unnecessarily.) Whether a slot is persistent or transient depends on its

:allocation option. :allocation is a standard CLOS option, but AllegroStore per-

mits four rather than two possible values. AllegroStore also adds three new slot options,

appropriate to database management. The following table shows the four options

(:allocation and the three new ones) along with descriptions of their values. Note that

certain options are only legal if other options have specified values.

For information about what types of pointers can exist between persistent objects, tran-

sient objects, and other Lisp objects, see the section 6.11 Pointers.

Slot type Options available

:allocation As well as the standard CLOS options :instance and :class, this

can be :persistent or :persistent-class.

:unique Can be specified only if :allocation is :persistent. Can be t or

nil. If t, then this is a promise that the value of the slot will be unique

among instances of this class and subclasses. The system verifies that

the slot value is unique, so storing values takes longer if t. Retrieving

can be faster, however. :set slots (see below in table) cannot have

:unique t specified. If you declare a slot to be :unique t then

AllegroStore will enforce that declaration and will signal an error if you

attempt to store the same value into different instances.

:inverse Can be specified only if :allocation is :persistent. If specified,

the value names a function that will perform the inverse mapping, i.e.,

given a value it will return all the instances that have the value in this

slot.

:set Can be specified only if :allocation is :persistent or

:persistent-class. If t, then this is a set-valued slot. :unique can-

not be t if :set is t.

:vector Similar to :set t, except you are declaring that the slot, if bound, con-

tains a vector. Furthermore, if there is an inverse defined for the slot,

then the inverse is defined over each element of the vector and not the

vector object itself.
118 AllegroStore 2.1

About persistent-standard-object
persistent-standard-object is the superclass of all persistent classes. If you

define a persistent class and don't specify any superclasses, then persistent-
standard-object will automatically be added to the superclass list. If you do specify

superclasses, then you must be sure that persistent-standard-object is a super-

class.

About read-locks and write-locks
When a persistent data object is read, the page on which it resides (in memory) is read-
locked by the system. When a data object is written, the page is write-locked by the system.

Read-locked pages:

When another process attempts to gain write-access to an item on a read-

locked page, the access is delayed until the page is unlocked (the outermost

transaction of the process which has control is committed or rolled back).

Read-access to a read-locked page is not delayed.

Write-locked pages:

When another process attempts to gain read- or write-access to an item on a

write-locked page, the access is delayed until the page is unlocked (the outer-

most transaction of the process which has control is committed or rolled back).

See section 7.2.12 Lock timeouts for information on how to determine and reset the wait

time for locks.

About schema
An AllegroStore schema is a set of class definitions.

The schema doesn’t include function definitions per se: when a class is defined, you can

name the function that will be used to access the slots of instances of that particular class

(called an accessor function). Reader- and writer-functions are special cases of accessor

functions. (Readers -- the value of the :reader option -- can read but cannot set. Writers

-- the value of the :writer option -- can set but cannot read. A true accessor -- the value

of the :accessor option -- can do both. Usage in the field is somewhat sloppy, with

‘accessor’ being used to refer to readers, writers, and true accessors, thus avoiding having

to say ‘reader, writer, or accessor’ when ‘accessor’ gets the point across, as in the next para-

graph.)

When you exit the current Lisp, start a new one, and open a database, the schema

definition has to be re-read by the system. Class definitions are read from the database and

the accessor functions are defined.

To learn what happens when a schema is changed so class definitions in the current Lisp

don’t match the ones stored in the database, see section 6.4 Schema, particularly the infor-

mation under the heading How schema differences are reconciled.

See the section 7.2.4 Schema manipulation later in this chapter for definitions.
AllegroStore 2.1 119

About transaction
A transaction is a sequence of database operations which form a logical unit of work.

A transaction completes either by being committed (all changes made permanent) or by

being rolled back (all changes undone). Any changes made by one program to the database

will not be visible to other database users unless and until the transaction commits.

Transactions are isolated from one other. Simultaneous transactions cannot make

changes to one set of data. Once a transaction gains control over a page of data, the system

sets up a flag (called a lock) which marks that page as ‘in use.’ Once the transaction has

finished, the page is freed of all locks -- effectively marking it as ‘available.’ Locks preserve

database consistency.

Databases contain interrelated information and can be said to be in a consistent state

when certain relations exist between the data. To change a database from one consistent

state to another usually requires a number of database operations. Placing those operations

inside of a transaction means that the database will always appear to other processes to be

in a consistent state.

In AllegroStore, transactions are started by the with-transaction macro. Transac-

tions are atomic: either all of their database changes are made (the transaction commits) or

none of them are made (the transaction rolls back).

AllegroStore does not support nested transactions. It is possible to dynamically nest

with-transaction forms, but the inner with-transactions are converted to

progns. This means that just because a with-transaction form completes, you can-

not be sure that the changes made within the form have been committed to the database.

See section 6.5 Transactions, particularly the information under the heading Nested trans-
actions for more information. You are told there how to ensure that a transaction is a top
level transaction (where successful completion means the changes have been committed to

the database).

About commit
When does a transaction commit? If the body of the with-transaction macro com-

pletes execution without a transfer of control outside the with-transaction form,

then the transaction commits, and all of the pending changes are made.

About roll back
When does a transaction roll back? If control transfers out of the with-transaction
form, then the transaction rolls back, and all pending changes are undone. For example,

errors cause control to transfer out and thus cause the transaction to roll back.

The system will sometimes select a transaction to roll back during a deadlock. See the

information under the heading The problem of deadlocks in section 6.5 Transactions.

About shell environment variables
There are three shell environment variables that each AllegroStore user must set in their

programming environment:

OS_ROOTDIR [shell environment variable]

■ The value of this variable should be the name of the top directory of the

ObjectStore files (e.g., /usr/objectstore).
120 AllegroStore 2.1

OS_AS_START [shell environment variable]

■ Specifies the starting address for the persistent virtual memory address space.

■ WARNING: Because of an apparent bug in ObjectStore on Solaris 2.x, using

the default value of this variable can result in data corruption resulting in AllegroS-

tore crashing. On Solaris 2.x only the variable must be set to a value at least

0xd0000000.

OS_AS_SIZE [shell environment variable]

■ Specifies the maximum size of the persistent virtual memory address space.

LD_LIBRARY_PATH [shell environment variable]

SHLIB_PATH [shell environment variable]

■ (Unix users only.) LD_LIBRARY_PATH (on Sparcs and some other UNIX

machines) and SHLIB_PATH (on HP workstations) are environment variables that

communicate to running programs information on where to find shared object librar-

ies. There is no standard name for this variable in UNIX and, as indicated,

LD_LIBRARY_PATH is used by the Solaris operating system on Sparcs (and by

some other variants of UNIX) while SHLIB_PATH is used by the HP/UX operating

system on HP machines. If you are not on a Sparc or an HP, please check your oper-

ating system documentation for the equivalent environment variable. Whatever it is,

it should include $OS_ROOTDIR/lib, as well as /usr/local/lib and /usr/lib. The fol-

lowing C shell command shows how to update LD_LIBRARY_PATH so all three

directories are prepended to its current setting. (In fact, /usr/lib and /usr/local/lib will

typically be included if the variable is set at all.) Because space limitations forces us

to use two lines, we have put a backslash at the end of the first line:

setenv LD_LIBRARY_PATH \
 $OS_ROOTDIR/lib:/usr/lib:/usr/local/lib:$LD_LIBRARY_PATH

The same command, with LD_LIBRARY_PATH replaced by SHLIB_PATH updates

SHLIB_PATH.

AS_CONFIG_PATH [shell environment variable]

■ The value of this variable is the pathname of the AllegroStore configuration direc-

tory. This directory contains files needed by AllegroStore when it runs. On the dis-

tribution tape, this directory has the name as-vN where N is the version number. For

example, the release on Sparcs running Solaris 2 when this manual was printed, the

directory was named as-v1.0.54. This directory is copied (usually with the same

name) to some permanent location. Again, on the Sparc release installation guide, we

gave /usr/allegrostore/as-v1.0.54 as the permanent location, so that directory should

be in the list that is the value of the variable.

■ More than one such directory can be specified (and they will be searched in the

order specified) to allow for different machines and configurations, but specifying

one directory only is typical, at least at first. Multiple directories should be separated

by colons, as those in LD_LIBRARY_PATH are.

■ The value in the following example comes from the Sparc/Solaris 2 installation.

Check your installation guide (chapter 1) for appropriate values for your environ-

ment.
AllegroStore 2.1 121

setenv AS_CONFIG_PATH /usr/allegrostore/as-v1.0.54

PATH [shell environment variable]

■ The value of this variable include the location of the AllegroStore image, the

AllegroStore configuration directory, and$OS_ROOTDIR/bin. Users who are also

database administrators should include $OS_ROOTDIR/admin. In the example

showing how to set the variable, we assume the AllegroStore image is in the config-

uration directory /usr/allegrostore/as-v1.0.54. If the image is in another directory,

that should also be in the PATH.

setenv PATH $OS_ROOTDIR/bin:/usr/allegrostore/as-v1.0.54:$PATH

These variables are also listed in chapter 1 Installation guide.

About deadlock resolution
AllegroStore resolves a deadlock by selecting one of the transactions involved and forcing

it to roll back. After the transaction releases its locks on the database, the other transac-

tion(s) can proceed. When this happens, the system automatically retries the transaction

which was selected to roll back.

When a deadlock occurs, the transaction is automatically retried until either it completes

successfully or the maximum number of retries has occurred. The default number of retries

is 10.

How does AllegroStore decide which transaction to select? It uses a Deadlock Victim
algorithm, which can be either Current, Age, Oldest, Work, or Random. The value

is specified in the parameters file for the Database Server,

$(OS_ROOTDIR)/etc/hostname_server_parameters

where hostname is the name of the machine on which the Server is installed. You may

find a line like this one in the parameters file:

Deadlock Victim: age

If there is no such line, then the code default (Work) will be used. You will need to edit

this file, either changing or adding such a line, if you wish to change the default. For infor-

mation on how the other algorithms select a victim, see section 8.6 Server parameters.

About shrinking the transaction log
If you are using normal files for databases then you should also have a file called the

transaction log. The location of the transaction log is specified when AllegroStore is

installed. You can find out where it is by looking in the file named by the following:

$OS_ROOTDIR/etc/hostname_server_parameters

The transaction log holds temporary information during a transaction. It can grow large

if many changes are made during a single transaction. ObjectStore will never shrink the file

automatically, even if there are no active client processes. In rare cases where the file grows

large and you want to recover disk space, you can shrink the transaction log. (Note that the

file only grows if you do transactions which access a lot of data. If you never do such trans-

actions, the file will never grow large.)

To shrink the transaction log, you have to shut down the ObjectStore server and tell the

server to reallocate the log file. These are the steps:
122 AllegroStore 2.1

% su - this must be done as root

$OS_ROOTDIR/bin/ossvrshtd hostname

- shut down the hostname server

cd $OS_ROOTDIR/lib - change directories

./osserver -ReallocateLog - performs the shrinking process

cd ../etc - change directories

./osserver - restart the server

exit - stop being root

You’re done.

New arguments to open-database and with-database
allowing instance/pointer/segment allocation
The AllegroStore 2.0 release contains some experimental open-database and with-
database arguments that allow the Astore developer more control over

instance/pointer/segment allocation. The arguments will be useful in situations where large

database size and/or large blob data size lead to ObjectStore address full errors.

Before using these arguments, make sure you are doing the following:

1. Set the OS_AS_SIZE environmental variable in your client process as large as

possible.

2. Set the OS_RELOPT_THRESH environmental variable to 0.

3. Set the OS_INBOUND_RELOPT_THRESH environmental variable to 0.

4. Set the OS_FORCE_DEFERRED_ASSIGNMENT environmental variable to 1.

Note that steps 2, 3, and 4 are recommended only when you are experiencing ObjectStore

address full errors.

Here is an example that uses the n experimental arguments:

(defun add-some (instances blob-size max-per-segment max-blob-bytes)
 (with-database (db "foo.db" :if-exists :supersede
 :instances-per-segment max-per-segment
 :blob-bytes-per-segment max-blob-bytes)
 (let ((tick (floor (/ instances 10))))
 (dotimes (i instances)
 (when (= (mod i tick) 0)
 (format t "~%~s~%" i))
 (with-transaction ()
 (make-instance 'foo :id i
 :foo (make-instance 'blob :size blob-size)))
))))

The two arguments are the keyword arguments :instances-per-segment and :blobs-per-seg-

ment.

The :instances-per-segment argument specifies the maximum number of in-

stances and/or lists per ObjectStore database segment. When the value is ex-

ceeded during object creation, AllegroStore automatically adds a new seg-

ment. The default value is 50,000.

The :blob-bytes-per-segment argument specifies how the maximum number of

blob bytes per blob data segment. The default value, 0, directs AllegroStore to
AllegroStore 2.1 123

place blob data areas in instance and list segments. For positive values, blob

data areas are placed in separate segments. This argument is particularly im-

portant when large blobs are responsible for address full errors.

Note the following important matters:

1. These values are set once, and only once, for each database, at database creation

time. Specifying (or not specifying) these arguments during subsequent database

operations will not change the original values.

2. The asdump and asrestore utilities currently are unaware of this feature; if you

dump and then restore a database, the database will have default segment count

and blob data segment attributes.

Here is some general advice about using this functionality:

• When you are creating huge blobs, use the :blob-bytes-per-segment argument.

• If possible, limit the size to less than 10% of your OS_AS_SIZE value.

• Try to choose an :instances-per-segment argument value that keeps the total size

of the blob data pointed to by instances in that segment below 10% of your

OS_AS_SIZE value.

• If your blobs are of varying sizes, either try to divide them into separate databases

or use arguments appropriate for your largest blob. If this results in too many

segments (you may see performance problems when there are more than 5000

segments), use smaller values and include a dummy slot where you can place a

list of lists to pad instances with larger blobs.
124 AllegroStore 2.1

7.2 Definitions

In this section we describe the functions, macros and variables that make up the program-

mer's interface to AllegroStore. Unless otherwise indicated, symbols used to name the var-

ious objects are in the allegrostore package (nickname astore).

7.2.1 Variables

These variables hold information about the current AllegroStore image.

allegrostore-version [Variable]

■ The value of this variable is a string holding the current AllegroStore version

number.

as-config-path [Variable]

■ A list of directories to search for the location of the AllegroStore configuration

database. Allegrostore must locate this file before opening its first database. See the

information under the heading About the configuration database in section 7.1 for

details.

db [Variable]

■ The value of *db* is the implied argument to functions such as make-
instancewhen they are creating an object in a database. The with-database
macro binds the symbol *db* to the database which it opens.

■ If you open a database using open-database, then you must arrange that

db is set to the value returned by open-database. This is typically done with

the function set-current-database as in the following:

(set-current-database (open-database "file.db")

where file.db names the database file.

astore::*channel* [Variable]

■ This variable is no longer supported. In earlier releases, it was used in connection

with the channels facility. On platforms that do not include :os-threads in

features, in earlier releases, AllegroStore supported channels as a method of

multiprocessing, but channels are not supported in release 2.0. The same functional-

ity, with better overall performance, should be possible by running separate Alle-

groStore sessions that communicate via the AllegroStore notification facility. See

section 6.24 for information on notifications.

astore:*allegrostore-release-heap* [Variable]

■ On platforms with :os-threads on *features*, this variable controls

whether the Lisp heap is released when making an ObjectStore call. When nil, the

Lisp heap is not released; when non-nil, the Lisp heap is released. See section 6-16
Multiprocessing for more information. On platforms without :os-threads on

features, this variable is ignored.
AllegroStore 2.1 125

7.2.2 Databases: saving and restoring

The following two shell commands (not Lisp functions) can be used convert an existing

database (version 1.1 or version 1.2) into a platform independent ASCII file and to convert

such a file to a version 1.2 database.

asdump [Program]

Arguments: [-v] [-o dump-file] database-file

■ Reads the allegrostore database-file and generates a platform independent ASCII

text dump of the database contents. The companion program asrestore can read

the dump file and rebuild the allegrostore database-file.

■ Note: for asdump to work, the entire database must be small enough to fit into

the available persistent virtual memory address space. See the documentation for the

ObjectStore environment variables OS_AS_START and OS_AS_SIZE on how to

control the address space. (They are documented under the heading About shell
environment variables in section 7.1 above.)

■ The optional -v argument specifies verbose operation. Comments about the

progress of the dump will be sent to standard error (stderr). If a dump-file is not

specified as the value of the -o option or is specified as just a hyphen (-), then the

dump output is sent to standard output (stdio).

■ asrestore in version 1.3 can read files dumped by asdump in version 1.2.

asrestore [Program]

Arguments: [-v] -o database-file [dump-file]

■ Reads an ASCII dump-filed created by asdump and regenerates an AllegroStore

database. If no dump-file is specified, standard-input is used (thus allowing asdump
and asrestore to be piped together).

■ The optional -v argument specifies verbose operation. Comments about the

progress of asrestore will be sent to standard error (stderr).

■ The -o argument specifies the database-file to create. A value must be supplied.

7.2.3 Database manipulation

with-database [Macro]

Arguments: (db-var filename &key :if-does-not-exist
:if-exists :mode :use :warn
:read-only :mvcc) :instances-per-segment
:blob-bytes-per-segment
&rest body

■ Opens (or creates) a database named filename and makes it the current data-

base for the duration of the body. It creates an object that represents a connection to

the database and binds the variable db-var (which should be a symbol) to that

object. When control leaves the dynamic extent of the with-databasemacro the

database is closed.
126 AllegroStore 2.1

Keyword Possible
values

Effect

:if-does-not-exist :create

:error

Specifies what action to take if a database with

the given filename does not exist.

:create (the default) makes a filename
database file on the disk.

:error signals an error.

:if-exists :open

:error

:supersede

Specifies what action to take if a database with

the given filename already exists.

:open (the default) will open the filename
database.

:error will signal an error when the database

exists.

:supersede will delete the existing database

and create a new one.

:mode #o666

(which is an

octal num-

ber)

This is the (default value) file mode used for

creating the file in Unix. On Unix systems, the

file mode is combined with the user’sumask to

determine the default value for creating the file.

(see not at bottom of table for further informa-

tion).

#o666 allows everyone to read and write the

database.

MS-DOS filesystems don’t implement group and

other permission, so this argument is ignored.

:use :ask

:db

:memory

When opening an existing database, the schema

in the database and the schema in Lisp's memory

are compared. If there are any differences, then

this variable will determine how the differences

are resolved.

If :ask (the default) is specified, then a

continuable error will be signaled to permit the

user to select the correct definition.

If :db is specified, then the version in the

database will be used. See the notes on :warn
below.

If :memory is specified, then the version in

memory will be used and the database will be

modified to reflect the new class definition. See

the notes on :warn below.
AllegroStore 2.1 127

with-current-database [Macro]

Arguments: db &rest body

■ While more than one database can be open at the same time, there is a notion of

a current database. All object creation is done in the current database. The current

database is typically bound by using the with-databasemacro. You can change

the current database with the with-current-database macro.

■ The value of db is the database to become current. The only valid values for db
are those values bound to the db-var argument to with-database and those

returned by open-database.

:warn t

nil

When :use keyword is given the :db or

:memory option and, upon opening a database,

a conflict is found and resolved, then this

argument determines whether a warning mes-

sage is printed.

When :warn is t (the default), the warning

message is printed.

When :warn is nil, no warning message is

printed.

:read-only t
nil

When t, an attempt to write to the database will

result in an AllegroStore error.

The default value is nil.

:mvcc t
nil

When t, the database is opened in MVCC mode.

:instances-per-
segment

non-negative-

integer

This argument specifies the maximum number of

instances and/or lists per ObjectStore database

segment. When the value is exceeded during

object creation, AllegroStore automatically adds

a new segment. The default value is 50,000. See

the information under the heading New argu-
ments to open-database and with-database
allowing instance/pointer/segment allocation in

section 7.1.

:blob-bytes-per-
segment

non-negative-

integer

The argument specifies how the maximum num-

ber of blob bytes per blob data segment. The

default value, 0, directs AllegroStore to place

blob data areas in instance and list segments. For

positive values, blob data areas are placed in sep-

arate segments. This argument is particularly

important when large blobs are responsible for

address full errors. See the information under the

heading New arguments to open-database and
with-database allowing instance/pointer/seg-
ment allocation in section 7.1.

Keyword Possible
values

Effect
128 AllegroStore 2.1

open-database [Function]

Arguments: filename &key :if-does-not-exist :if-exists
:mode :use :warn :read-only :mvcc
:instances-per-segment :blob-bytes-per-segment

■ Opens or creates a database and returns an object that references the database.

■ The keyword arguments to open-database are the same as with-
database (defined above). There are two major differences. First, open-
database opens a database and keeps it open. Your program must close it (with

close-database). Second, open-database does not make the newly-

opened database the current database. You should use set-current-database
or with-current-database for that.

Note that:

(with-database (var file)
. body)

is equivalent to:

(let ((var (open-database file)))
 (unwind-protect
 (with-current-database var

. body)
 (close-database var)))

close-database [Function]

Arguments: db

■ Close the connection to the database. This function only needs to be called when

the database was opened with open-database. If the database was opened with

with-database, then it will be closed automatically as soon as the with-
database form completes.

set-current-database [Function]

Arguments: db

■ Make db be the current database. db should be a value returned by open-
database or bound by with-database.

Program to verify database consistency

asverify [Program]

Arguments: [db1]+

■ asverify will check the given databases for consistency. If it prints any diag-

nostics then there may be a problem in the database. asverify may also describe

situations that are unusual but not necessarily incorrect. If you see any diagnostics

printed please send mail to allegrostore-bugs@franz.com.

■ The following transcript shows asverify in action. User input is in bold.

Databases t2.spl and v1.spl had no problems while database spj2.spl is inconsistent.

% asverify *.spl

verifying t2.spl
AllegroStore 2.1 129

verifying v1.spl

verifying spj2.spl
 Illegal typecode 3801856 (0x3a0300) found in object
object at 302090ac </crow/c:/dbs/spj2.spl | 14 | a90ac>
 backpointer item 3

In instance object at 301b98d4 </crow/c:/dbs/spj2.spl | 14 |
698d4>
 in instance number 41 of type DB-COMMON::CHANGE-OBJECT
 Illegal typecode 3801856 (0x3a0300) found in object
object at 302090ac </crow/c:/dbs/spj
2.spl | 14 | a90ac>
 backpointer item 1

In instance object at 30208adc </crow/c:/dbs/spj2.spl | 14 |
a8adc>
 in instance number 76 of type DB-COMMON::CHANGE-OBJECT
In database SPJ2.SPL

7.2.4 Schema manipulation

defclass [Macro]

Arguments: class-name superclasses slots &rest options

Package: common-lisp

■ The defclass macro defines CLOS classes. It is fully described in the ANSI

Common Lisp spec. Only the new slot keywords added by AllegroStore for persis-

tent classes will be described here.

A persistent class is defined by specifying the following as one of the defclass
options

(:metaclass persistent-standard-class)

■ When a class with metaclass persistent-standard-class (or a subclass

of same) is defined, the following standard slot options either have additional possi-

ble values or are restricted in some fashion:

Keyword
argument

Possible values and effect

:allocation In addition to standard possible values, :instance
and :class, can be :persistent or

:persistent-class to specify that this slot's

value should be stored in the database. The default is

:instance. See section 6.6 Slots for more detailed

information.

:initform If the :allocation type is :persistent or

:persistent-class, then this argument cannot

be an expression containing a persistent object as a literal.

It can be an expression that computes or locates and

then returns a persistent object.
130 AllegroStore 2.1

The following new options are also available:

For examples of defclass usage, see chapter 5 Tutorial and chapter 6 Programmer’s
guide.

Executable subforms of the defclass macro and lexical
environments

There are two places where arbitrary executable subforms can appear in a defclass
form. One is the :initform slot option, and the other is as a value in the :default-initargs

class option. When these forms are executed (typically inside a call to make-instance)

Common Lisp specifies that they are executed in the lexical environment of the defclass
form in which they appear. The MetaObject Protocol details how the defclass macro

accomplishes this; each such form is wrapped in a zero-argument lambda function that is

funcalled when the value is needed.

:type If the type is specified as (set-of X) then this is

the same as :type X :set t.

AllegroStore doesn't currently signal an error if you

attempt to store a value of incorrect type in a slot.

Keyword Function

:set If true, then the value of this slot is considered to be an

unordered collection of objects. The value of the slot will

be returned as a list. Cannot be true when :unique is

true.

The main benefit to specifying a set slot is that when an

inverse function is specified, it acts on each value in the

set, rather than on the set as a whole (so the whole set does

not have to be read into Lisp from the database).

:unique If true, then this is a declaration that the value of this slot

is different for each object. (A slot storing a serial number

is an example, since serial numbers are typically unique).

Set slots cannot be unique.

AllegroStore verifies that declaration is valid.

If an inverse function is specified for a slot declared as

:unique, then the inverse function will return a single

value (rather than a list of values).

:inverse This keyword names a function which, given a value X,

will return a list of objects from the class being defined

which have X stored in this slot. (A list will be returned

even if there is only one such object, unless :unique is

specified -- see below).

If :unique is also specified as true, then the return

value from the inverse function will be a single object, not

a list of objects.

Keyword
argument

Possible values and effect
AllegroStore 2.1 131

In normal Common Lisp these functions can modify the lexical environment automati-

cally because when a class metaobject is created it and its associated initialization functions

exist in the Lisp heap along with any objects referenced by the lexical environment. But a

class metaobject that is part of a persistent database schema must also be stored in the data-

base and later retrieved, possibly into a different executing Lisp image. This presents a

problem, because Lisp functions are not externalizable objects that can be stored in a data-

base. There are two reasons: Firstly, a function captures the surrounding lexical environ-

ment, and this environment would also have to be stored in the database. Secondly, a

function (especially if compiled) is not portable between different hardware platforms or

different Lisp releases, thwarting the goal of heterogeneous operation.

AllegroStore works around this in a way that covers most typical usage. The schema (i.e.

the class metaobject) captures both the form and the function created from it. When the

class metaobject is stored in the database schema, the function is not stored, and when a

class metaobject is reconstructed from the database copy, the function is reconstituted by

freshly wrapping that initform or default-initarg in a new function. What is lost in this pro-

cess, of course, is the lexical environment in which the original defclass form appeared.

Therefore, slot initforms and class default-initarg forms in persistent class definitions may

not refer to their surrounding lexical environment. This is not usually a problem, since it is

normal coding practice for defclass forms to appear at top level anyway, i.e., in a null lexical

environment.

set-schema [Function]

Arguments: &key :auto-class-addition :classes
:delete-function :exact :from-db

■ set-schema sets the schema for the current database or it sets the auto-class-

addition flag for the database (see next bullet down), or both. This function may be

run only while a database is open and current. This function can radically modify a

database, particular when :exact is true, since that may result in classes and all

instances of those classes being deleted from the database. You may wish to back up

a database (with, e.g., oscp) before applying set-schema to ease recovery in

case you do not get what you wanted.

This function does permit you to customize a database, and to prune the class def-

initions in it. But note that it is not necessary to call this function. AllegroStore will

manage the schema perfectly well without this function ever being called (except

unnecessary class definitions may be stored, thus wasting some space).

■ When a new database is opened by AllegroStore (with with-database or

open-database), it has the property that definitions of new classes are automat-

ically stored in the database when an object of the new class is stored in the database.

The examples in chapter 5 Tutorial make use of this property.

The :auto-class-addition argument controls this property in the current

database. If set-schema is called with :auto-class-addition true, new

definitions will be stored automatically. If the value is nil, then an error will be sig-

naled if an attempt is made to store an instance of a new class in the database.

The default of :auto-class-addition depends on the value of :exact. If

:exact is specified, :auto-class-addition defaults to the logical opposite

of :exact. If :exact is also not specified, :auto-class-addition defaults

to t.
132 AllegroStore 2.1

■ The :classes argument should be a list of classes or class names to store in the

database. Additional classes can easily be added with this argument. But note that if

:exact is true, the classes in the list that is the value of :classeswill be the only

classes defined in the database after set-schema completes, with all other classes

and all instances of those classes deleted. :classes can not be specified when

:from-db is specified.

■ One use of set-schema is to customize the database to contain a specific set

of class definitions and no more. That customization is performed with the :exact
argument. :exact defaults to nil, but if specified true, set-schema will prune

the database as necessary to remove all classes not specified in the :classes list

(or present in the :from-db database, if that argument is used) and to further delete

all objects that are instances of the deleted classes. (This means that the database may

be radically changed by set-schema called with :exact true.)

Note that AllegroStore will not check whether the set of classes is consistent (that

is, all necessary classes are defined, including classes of the values of slots of other

classes). It is the programmers responsibility to ensure that the class list is consistent.

Note too that set-schema can be used to delete specific classes from a database

and that there is no other way to delete classes from a database. If you want to remove

class foo from the database (and you know that doing so will not lead to any incon-

sistency), you can do the following (we set :auto-class-addition to t to

preserve the default behavior, but that is not necessary for the deletion to work):

(with-database (db "myfile.db")
 (let ((class-list (schema db)))
 (set-schema :auto-class-addition t :exact t
 :classes (delete (find-class ’foo) class-list)))))

■ :delete-function only has effect if :exact is true. In that case, as we said

above, all instances of classes which are deleted from the database are also deleted

from the database. They are deleted with delete-instance, but if this argument

is specified, it should name a function that accepts one argument. That function will

be called on each instance slated for deletion before delete-instance is called.

■ The :from-db argument allows you to copy a schema from another database.

The value should be a string naming a database. You cannot specify both:classes
and :from-db.

dump-schema [Function]

Arguments: database &key :file

■ Write the schema for the given database to the named file if :file is given, else

to *standard-output*. The schema is a sequence of defclass forms that

describe the classes in the database, followed by a set-schema expression that

lists all of the classes just dumped.

■ The database argument can be:

• nil, in which case the current database is described

• a filename, in which case the database with that name is opened and

described

• a database object (such as is returned by open-database), in which case

that database is used
AllegroStore 2.1 133

schema [Function]

Arguments: database

■ Returns the list of class objects which make up this database's schema. The pos-

sible values for the database argument are the same as those for dump-schema
defined just above.

describe-db [Function]

Arguments: dbname

■ Prints out information on the database named dbname. The format is designed

to be more human readable than dump-schema but the information is much the

same.

7.2.5 Transactions

with-transaction [Macro]

Arguments: (&key :top-level :read-only) &rest body

■ Start a transaction, evaluate the body, and then commit the transaction. If control

leaves the transaction other than by the completion of the body forms, then the

transaction will be rolled back and all changes made during the transaction will be

undone.

■ Changes to persistent data may take place within a with-transaction form.

■ If the :top-level keyword argument has the value t, then AllegroStore will

signal an error if the with-transaction form is within the dynamic scope of

another transaction. When a top-level with-transaction completes, the data-

base transactions are guaranteed to have committed.

■ AllegroStore supports nested with-transaction forms but does not support

nested transactions. If a with-transaction is encountered while within the

dynamic scope of another with-transaction, then the inner with-
transaction is converted into a progn.

■ If the value of the :read-only keyword argument is true, AllegroStore will

signal an error when an attempt is made to write to any database during the transac-

tion.

■ In release prior to 2.0, this macro took a :channel keyword argument. The chan-

nels facility is no longer supported. See section 6.24 for information on notifications,

which are in part an improved replacement for channels.

transaction-active-p [Function]

Arguments:

■ returns true if there is a transaction in progress.

begin-transaction [Function]

Arguments: (&key :top-level :read-only)

■ Starts a transaction.
134 AllegroStore 2.1

■ Changes to persistent data may take place after a successful call. A subsequent

commit-transaction call commits changes to the database; a subsequent abort-trans-

action call rolls back any changes.

■ The :top-level keyword and :read-only keyword behave as they do in the with-

transaction macro.

■ A successful begin-transaction call will return a non-nil result when a transaction

is not currently active. If there is a transaction currently open, and :top-level is nil,

then begin-transaction will return nil. Note that, as with with-transaction,

nested transactions are not supported.

commit-transaction [Function]

Arguments:

■ Commits the current transaction. this function signals an error if there is no cur-

rent transaction or if the current transaction was initiated in a with-transaction form.

abort-transaction [Function]

Arguments:

■ Rolls back the current transaction. This function signals an error if there is no cur-

rent transaction or if the current transaction was initiated in a with-transaction form.

7.2.6 Object manipulation

make-instance [Generic function]

Arguments: class &key [...]

Package: common-lisp

■ Persistent objects are created with make-instance, just like other CLOS

objects. All objects of metaclasspersistent-standard-class are persistent

even if they don't have any persistent slots. Persistent objects can only be created

within a transaction (i.e. in the body of a with-transaction form).

The class argument can be either a symbol naming the class or a class object.

See a standard reference for a full description of make-instance.

slot-value [Function]

Arguments: object slot-name

Package: common-lisp

■ slot-value returns the value of a slot of a persistent object, just as it does for

normal CLOS objects.

■ (setf slot-value) stores a value in a persistent object’s slot.
AllegroStore 2.1 135

slot-svref [Method]

Arguments: (instance persistent-standard-class) slot-name
index

■ Returns the index’th value from the vector stored in the slot slot-name of

instance. Using slot-svref is more efficient than svref and slot-
value, since the entire vector doesn’t have to be read into Lisp memory to access a

single value from it. (setf slot-svref) will set a slot in the vector.

database-of [Generic function]

Arguments: obj

database-of [Method]

Arguments: (obj persistent-standard-object)

■ Returns an object corresponding to the database in which the object resides.

delete-instance [Generic function]

Arguments: obj

delete-instance [Method]

Arguments: (obj persistent-standard-class)

■ Removes obj from the database and removes all pointers to it from other data-

base objects.

If scalar slot S of persistent object X points to obj, then after obj is deleted, slot

Swill be unbound unless the :initform for slot S is the expression nil, in which

case slot S's value will be set to nil.

If a set-slot named T of persistent object X includes a pointer to obj, then that

reference to obj in the set will be removed.

■ Automatic removal of references to the deleted object from other objects is nec-

essary to preserve the referential integrity of the database. If a program wants to

determine which objects will be affected when an object is deleted, it can add a

:before method to delete-instance, and in that :before method it can

call map-references or collect-references, which operate on or list

(respectively) every reference to obj in the database (see section 7.2.8 below).

■ See the section 6.14 Referential integrity.

preserve-pointer [Function]

Arguments: obj

■ Objects in a database may be moved about by the database manager. (Objects are

moved for a variety of reasons which we will not go into here.) During a transaction

while an object is referenced, it will not (of course) be moved. Thus during a trans-

action, when a persistent object is read from the database, a transient object is created

that references the persistent object and that reference is valid for the duration of the

transaction. However, when the transaction completes, the reference to the persistent

object may soon become invalid.

The preserve-pointer function makes an object accessible during a subse-

quent transaction. It does this not by preventing the object from being moved but by

storing the object location is a table that is kept current.
136 AllegroStore 2.1

slot-valid-p [Generic function]

Arguments: obj slot-name

■ Returns t if it is permitted to try to access the value of slot-name from obj.

The only time that this function will return nil is if slot-name is the name of a

persistent slot and the persistent pointer can't be referenced. This occurs when:

• the database it points to is closed

• there is no active transaction

• the transaction in which the persistent pointer was created is no longer

current and preserve-pointer wasn’t called on this object.

■ Note that the function cannot be used to check whether a slot identified by

slot-name exists. If slot-name doesn't exist in obj, slot-valid-p will

return t. If you want to know whether a slot exists at all, use the standard CLOS

function slot-exists-p.

slot-cons [Method]

Arguments: (instance persistent-standard-object) slot-name
new-value

■ cons's the given value onto the current value in the given slot of the given object.

If the slot is a set slot then the new-value is added to the set. This function returns

nil.

slot-delete [Method]

Arguments: (instance persistent-standard-object) slot-name
value-to-delete

■ Deletes value-to-delete from the value in the slot slot-name of

instance. If slot-name is a set slot then the value is removed from the set.

7.2.7 Query language

for-each [Macro]

Arguments: (&rest clauses) &rest body

■ Where clauses is a list of one or more var-bind clauses, zero or one filter
clause and zero or one subclasses clause.

A var-bind clause has one of the forms:

(var class-name)
(var (accessor var2))
(var (slot-value var2 'symbol))

Where:

var-bind
clause

element

Contents

var is a symbol.
AllegroStore 2.1 137

A filter clause has the form:

(:where expr)

where expr is any Lisp expression.

A subclasses clause has the form:

(:subclasses t-or-nil)

■ for-each acts like let* in Lisp (in that the bindings are sequential), but dif-

fers from let* in that instead of binding each variable to the value of an expression,

each variable is bound to a sequence of objects of a given class (or subclass) or of a

given set. Specifying nil in the subclasses clause directs for-each to only look

for objects of the specified class, not its subclasses.

■ For example

(for-each ((x foo)) (print x))

binds x to each object in the current database whose class is foo or a subclass of

foo and then evaluates the body, which in this case just prints the value of x.

Given the definitions:

(defclass wheel ()
 ((brand :allocation :persistent))
 (:metaclass persistent-standard-class))
(defclass car ()
 ((wheels :type (set-of wheel)
 :allocation :persistent :accessor wheels))
 (:metaclass persistent-standard-class))

we can execute a query to print all wheels currently on all the cars:

(let ((wheel-list nil))
 (with-transaction ()

(for-each ((c car) (w (wheels c))) (push w wheel-list))
)
 (print wheel-list))

(Notice that we collected all wheels into a list and then printed the list outside the

transaction. We did so to avoid multiple printings of wheel objects caused by trans-

action rollbacks. See section 6.5 Transactions for details on rollbacks and forms

with side effects.)

■ Despite the fact they are called the same thing, the for-each :where clause

is very different from the for-each* :where clause. Again, the value of

:where in for-each can be any Lisp expression. See below under the discussion

of for-each*.

var2 is a symbol which appears as the first object in a (var
class-name) expression in a preceding clause. -- thus

((a auto) (b (auto-wheels a))

class-name is the name of a persistent standard class.

accessor is the name of an accessor for a persistent slot.
138 AllegroStore 2.1

for-each* [Function]

Arguments: function class-name &key :where :subclasses
:start-block :block-count

■ The following table describes the arguments. More detail is given below.

Note that for-each* is a function, not a macro, so the arguments are evaluated.

for-each* calls function on each instance of the class specified by class-
name and all its subclasses (unless :subclasses is nil) in the current database.

■ The :where clause has a different form than in the for-eachmacro described

above. The form of the :where clause is a list of selector clauses. Each selector

clause is a list of three elements:

(accessor-name binary-function other-argument)

A selector clause is considered true if the given binary-function returns true

when called on these two values:

1. the value taken by applying the function named by accessor-name
to one of the objects that for-each* is iterating over (i.e. instances of

class-name and, if :subclasses is true, its subclasses)

2. the other-argument value.

The :where clause is considered true if all the selector clauses are true. For

example:

Argument Value

function specifies a function of that accepts one argument

class-name specifies the name of a persistent standard class.

:where Filters the objects examined. Its value must evaluate to a

list that is an expression used to select the objects of inter-

est. The format of the list is described below.

:subclasses Controls whether subclasses of class-name are exam-

ined. Its value is a boolean. If true (the default), for-
each* will iterate over the class specified by class-

name and over all its subclasses. If nil, for-each* iter-

ates over the class specified by class-name only.

:start-
block

specifies the instance block where processing begins. The

default value is 0, which specifies the current instance

block. Instance processing begins with the most current

instance block and works backwards. There are at most 30

instances per block. This keyword may be useful when

working with very large databases. See instance-
count documented immediately below.

:block-
count

specifies the number of instance blocks to process when the

value is a positive integer. The default value, :all, speci-

fies that all instance blocks starting with and including the

:start-block instance block be processed. See

instance-count documented immediately below.
AllegroStore 2.1 139

(for-each* #'dowhatever 'foo
 :where ’((foo-a < 3)
 (foo-b eq zip)))

takes each foo object obj and tests:

(and (< (foo-a obj) 3) (eq (foo-b obj) 'zip))

Look closely at the example. The elements of the selector clauses are typically con-

stants. You can arrange to have them evaluated (using backquotes and commas in the

standard Lisp way) but that makes for-each* less efficient and is usually not nec-

essary. Note too that the format of selector clauses is un-Lisp-like, since it puts the

predicate between rather than before the arguments.

instance-count [Function]

Arguments: persistent-standard-class database

■ This function returns the non-negative integer count of instances of the class

specified by the persistent-standard-class argument (the argument’s

value may be a class object or a symbol naming a class) in the database specified by

the database argument. This function may be useful when debugging and when

deciding on values for the block arguments to for-each*.

for-each-class [Macro]

Arguments: (var &optional db) &rest body

■ Evaluate the body repeatedly with var bound to each class stored in the schema

for the current database (or the database specified by db, which must be a database

object).

eqo [Function]

Arguments: obj1 obj2

■ In earlier versions, where the same persistent object might not be eq to itself. this

function determined whether two objects were or were not the same. In version 1.2

and later, the same persistent objects are always eq. This function still works but

using eq instead is preferred.

equalo [Function]

Arguments: obj1 obj2

■ Returns t if the two objects are equal. In version before 1.2, the test for eq'ness

is done with the eqo function but in version 1.2 and later, the test is done with eq
because the same persistent object is always eq to itself. (Recall that equal is

defined recursively: two objects are equal if either they are eq or they are both lists

with equal contents.) Still supported to maintain existing code but using equal is

preferred.
140 AllegroStore 2.1

retrieve [Function]

Arguments: class &key :where :subclasses

■ Returns a list of all objects of a given class (and its subclasses or not as the

:subclasses argument is t -- the default -- or nil) that satisfy the :where
clauses. This function is similar to for-each* except rather than applying an argu-

ment function to each item as for-each* does, it bundles all items into a list.

The class, :where, and :subclasses arguments are all as for for-each*.

retrieve could be implemented in terms of for-each* as follows:

(defun retrieve (class &key where subclasses)
 (let ((items nil))
 (for-each* #’(lambda (x) (push x items))

class :where where :subclasses subclasses))))

■ for-each* should generally be used if possible in preference to retrieve
since retrieve must copy all items that it collects into Lisp at one time while for-each*

only brings them in one at a time, potentially saving space.

7.2.8 References

AllegroStore keeps track of all the objects in the database that point to a given persistent

object. We call a pointer from one persistent object to another persistent object a reference
to that object.

collect-references [Function]

Arguments: obj

■ obj must be a persistent object. This function returns a list of all references to

obj. Each reference descriptor is a list, such as (X a b c d) where X is a persis-

tent object and a, b, c, and d are the names of slots in the X object whose values con-

tain references to obj.

The slot may not point to obj directly, it may hold a Lisp object (such as a list,

vector, or hash table) that points to obj.

See also the function map-references.

map-references [Function]

Arguments: function obj

■ obj must be a persistent object. function must be a function that accepts two

arguments. It will be passed a persistent object and a slot name.

map-references finds all of the persistent instance slots of all of the persistent

objects in the database that point at obj and calls function on each of them.

7.2.9 Object identifiers

An object identifier is a number that denotes a particular persistent object during a certain

transaction. The number is useful for denoting a persistent object in a transient hash table.
AllegroStore 2.1 141

object-id [Function]

Arguments: obj

■ Returns the object identifier.

object-from-object-id [Function]

Arguments: object-id

■ Returns the persistent object associated with the object identifier.

7.2.10 Persistent hash tables

Hash tables can be quite large, so it can take a fair amount of time to copy them from a data-

base into a Lisp image (converting the database object into a lisp object) and then copying

the modified hash table back. Therefore, AllegroStore defines a persistent-stan-
dard-class called persistent-hash-table. This hash table is stored entirely in

the persistent store. and functions are provided that operate in the database without having

to create a Lisp hash table at all.

Persistent hash tables are created with make-instance:

make-instance [Function]

Arguments: ’persistent-hash-table &key :size

Package: common-lisp

■ Returns a persistent hash table object. Because make-instance creates a per-

sistent object, it can only be called when a database is open and a transaction has

been started.

generic-gethash [Generic function]

Arguments: key obj

generic-gethash [Method]

Arguments: key (obj persistent-hash-table)

■ Returns two values. The first is the value associated with the key in the given per-

sistent hash table or nil if there is no value associated with key. The second value

is t if a value was found with the given key, otherwise the second value is nil.

(Thus you can distinguish between the value nil associated with key and no value

associated with key.)

■ In order to store in the persistent hash table, use:

(setf (generic-gethash key obj) value)

generic-remhash [Generic function]

Arguments: key obj

generic-remhash [Method]

Arguments: key (obj persistent-hash-table)

■ Removes the given key and its associated value from the persistent hash table.

Returns t if a value was found with the given key in the table
142 AllegroStore 2.1

generic-maphash [Generic function]

Arguments: function obj

generic-maphash [Method]

Arguments: function (obj persistent-hash-table)

■ Calls the given function on each key and value pair in the persistent hash table

obj.

generic-puthash-push [Generic function]

Arguments: key ht value

generic-puthash-push [Method]

Arguments: key (ht persistent-hash-table) value

■ Pushes value onto the value already stored in the table ht and returns value.

Persistent hash tables as slot values
You can store a persistent hash table in a slot of any persistent object. These hash table are

different than the ones created by (make-instance ’persistent-hash-table
...) in that these tables can't exist on their own, they only exist as the value of a certain

slot of an object. You cannot use slot-value to extract one of these tables and then use

(setf slot-value) to store the value into another object.

make-slot-hash-table [Method]

Arguments: (instance persistent-standard-object) slot-name
&key size

■ Creates the hash table in the specified slot.

slot-gethash [Method]

Arguments: (instance persistent-standard-object) slot-name
key

■ Returns the value from the hash table (and a second value of t if the value was

found). This function can be setf'ed.

slot-puthash-push [Method]

Arguments: (instance persistent-standard-object) slot-name
key value

■ Pushes the given value onto the current value in the hash table for the given key.

This function is more efficient than

(setf (slot-gethash inst 'foo key)

 (cons (slot-gethash inst 'foo key) val))

since the value from the slot isn't copied into Lisp's memory before being updated.

This function returns value.
AllegroStore 2.1 143

slot-maphash [Method]

Arguments: (instance persistent-standard-object) slot-name
function

slot-remhash [Method]

Arguments: (instance persistent-standard-object) slot-name
key

■ These functions are the analogs of maphash and remhash for slot-valued per-

sistent hash tables.

7.2.11 Blobs

Blobs are a persistent-standard-class you can use to allocate raw persistent storage blocks

without creating a parallel Lisp object. Blobs are appropriate when you require large

amounts of persistent storage that you can treat as foreign C memory.

Like persistent hash tables, blobs allow you to operate on portions of the allocated per-

sistent memory without doing conversions back and forth between database format and

Lisp object format.

Blobs are created with cl:make-instance. The form

(make-instance ’blob :size SIZE :name NAME)

Returns a persistent blob object. This operation can only be done when a database is open

and a transaction is active. The :size argument specifies the number of bytes to allocate,

and the :name argument specifies an optional name.

blob-data [Generic function]

Arguments: obj

blob-data [Method]

Arguments: (obj blob)

■ Returns a foreign address suitable as an argument to ff:fslot-value-typed func-

tion, using the :c allocation type.

blob-size [Generic function]

Arguments: obj

blob-size [Method]

Arguments: (obj blob)

■ Returns the number of raw persistent bytes allocated when the blob instance was

created.
144 AllegroStore 2.1

blob-name [Generic function]

Arguments: obj

blob-name [Method]

Arguments: (obj blob)

■ Returns the name specified when the blob instance was created.

blob-read [Function]

Arguments: blob-instance filename

■ This function reads the data about a blob stored in filename (which should

have been created with blob-write) and stores it in blob-instance.

blob-write [Function]

Arguments: blob-instance filename

■ This function writes a database blob-instance to filename so that file-
name is suitable for reading with blob-read. If filename exists when this

function is called, it is overwritten.

7.2.12 Persistent ftypes

The persistent-ftype-array class is a persistent-standard-class you

can use to allocate raw persistent storage blocks without creating a parallel Lisp objects.

They are more powerful than blobs because the persistent storage area may contain

addresses pointing to other persistent memory addresses.

persistent-ftype-array instances are created with make-instance after

first storing the desired foreign type in the database with the add-persistent-ftype
method:

add-persistent-ftype [Generic function]

Arguments: ftype-symbol-or-symbol-list

add-persistent-ftype [Method]

Arguments: (ftype symbol)

■ Adds the specified foreign type to the current database. This method must be

called within a transaction. The symbol's package is not stored in the database; thus

there can be only one foreign type definition stored in the database for any given

name.

■ See the ACLdef-foreign-type documentation (start with doc/cl/ftype.htm)

for more information about defining a foreign type. The following additional restric-

tions apply to types used as add-persistent-ftype arguments:

■ The outer definition must be a :struct composite type. Note that:

• Anonymous :struct definitions may not be used.

• :struct fields must be named.

• Structure names and field names must be legal C names (for example,

they cannot contain hyphens, i.e. "-").
AllegroStore 2.1 145

• :union composite types may not be used.

• :array composite types must be specified with exactly one

dimension.

• :struct bit-fields are not supported.

add-persistent-ftype [Method]

Arguments: (ftypes list)

■ The list contains symbols identifying foreign types to be added to the database.

make-instance [Function]

Arguments: 'persistent-ftype-array &key :type :n :name

■ Returns a persistent foreign type array object. This operation can only be done

when a database is open and a transaction is active. The :type argument specifies the

foreign type used to allocate persistent memory (the foreign type must have been

previously stored in the database using add-persistent-ftype), the :n argument speci-

fies the number of array elements of the specified foreign type to be allocated, and

the optional :name argument specifies a string to be associated with the object.

persistent-ftype-array-data [Method]

Arguments: (obj persistent-ftype-array)

■ Returns a foreign address suitable as an argument to foreign type manipulation

facilities, such as ff:fslot-value-typed.

persistent-ftype-array-type [Method]

Arguments: (obj persistent-ftype-array)

■ Returns the foreign type associated with the instance's persistent data. A Lisp

symbol will be returned; note, however, that the type is stored in the database without

a package designation.

persistent-ftype-array-n [Method]

Arguments: (obj persistent-ftype-array)

■ Returns the number of foreign type array elements in the instance's associated

persistent memory.

persistent-ftype-array-name [Method]

Arguments: (obj persistent-ftype-array)

■ Returns the name string specified when the instance was created.

describe-ftype [Function]

Arguments: database-name foreign-type

■ Returns a string containing the foreign type definition stored in the named data-

base. This function may be called outside of a transaction and with no databases

open. The foreign-type argument is a symbol - it does not have to be in the same

package as the package containing the symbol when the foreign type was saved,

since package information associated with a foreign type is not saved in the database.
146 AllegroStore 2.1

allegrostore::lisp-value-to-pptr [Function]

Arguments: object

■ Returns a persistent address suitable for storing the address of a persistent Lisp

object in a persistent foreign type array data element's :void * pointer structure mem-

ber. It is recommended that you use this function only on persistent CLOS instances.

allegrostore::pptr-to-lisp-value [Function]

Arguments: address db-object

■ Returns a Lisp object that represents the persistent object stored in ObjectStore.

If the ObjectStore object represents a persistent CLOS instance, the returned object

will be eq to any existing Lisp variable or instance slot that refers to the same persis-

tent object. The db-object must be the database object associated with the database

containing the persistent address. A database object is returned from open-database,

is available in with-database, and the *db* variable contains the current database's

database object.

set-dbtag [Function]

Arguments: tagname address

■ Creates a database tag that enables address retrieval without using CLOS instance

navigation. The tagname argument is a string and the address argument is a persistent

address. If a tag with the specified name already exists, then the previous associated

address is overwritten. A well-behaved database should contain no more than a few

dozen tags.

■ For accessing a tag value from an ObjectStore C++ or Java program, see the

os_database_root::find() and os_database_root::get-value() methods.

get-dbtag [Function]

Arguments: tagname

■ Returns the address associated with the tagname string argument. If the specified

tag does not exist, 0 is returned.

7.2.13 Lock timeouts

read-lock-timeout [Function]

■ Returns the number of milliseconds that AllegroStore will wait to obtain a read-

lock on a page before it gives up and signals an exception. A value of -1 (which is

the default) means that AllegroStore will wait forever, unless it encounters a dead-

lock. This value can be changed as follows:

(setf (read-lock-timeout) newvalue)

write-lock-timeout [Function]

■ Returns the number of milliseconds that AllegroStore will wait to obtain a write-

lock on a page before it gives up and signals an exception. A value of -1 (which is

the default) means that AllegroStore will wait forever, unless it encounters a dead-

lock. This value can be changed as follows:
AllegroStore 2.1 147

(setf (write-lock-timeout) newvalue)

7.2.14 Notifications

Notifications are an easy and effective way for multiple AllegroStore clients to communi-

cate about persistent instances of interest. The notification facility may also be used as a

general client-to-client messaging facility.

Notification class instances are returned by the notification-receive function.

There are a number of methods for examining notification instance data.

astore::os_notification_get_fd [Function]

Arguments:

■ Returns the Unix file descriptor used by notification-receive for receiv-

ing notification objects. An Allegro CL multiple lightweight process application

may use this file descriptor to wait for pending notifications. For architectures with-

out :os-threads on the feature list, callingnotification-receivewill lock out

all other lightweight processes until a notification is received. An Allegro CL multi-

ple lightweight process may use mp:wait-for-input-available to wait for

a notification to arrive without locking out other lightweight processes. When input

arrives, use notification-receive to receive the notification object.

database-of [Method]

Arguments: (object notification)

■ Returns the database object associated with the notification object. Notifica-

tion objects are returned from notification-receive. This function may be

called outside of an AllegroStore transaction and in any ACL lightweight process.

notification-kind [Method]

Arguments: (object notification)

■ Returns the integer kind value associated with the notification object. Notifi-

cation objects are returned from notification-receive. This function may

be called outside of an AllegroStore transaction and in any ACL lightweight process.

The kind value is specified by the notifying client as a notify argument.

notification-object [Method]

Arguments: (object notification)

■ Returns the persistent instance associated with the notification object. Notifi-

cation objects are returned from notification-receive. This function must

be called inside an AllegroStore transaction.

notification-queue-status [Function]

Arguments:

■ Returns three integers - the first value is the number of pending notifications, the

second value is the number of dropped notifications resulting from queue overflow,

and the third value is the queue size. The default queue size is 50; you can change

the default by setting the OS_NOTIFICATION_QUEUE_SIZE environmental vari-
148 AllegroStore 2.1

able before starting your application. This function may be called outside an Alle-

groStore transaction and may be called in any Allegro CL lightweight process.

Calling this function before opening a database will result in an incorrect queue size

return value.

notification-receive [Function]

Arguments: timeout

■ Waits to receive a notification object. This function may be called outside of an

AllegroStore transaction and in any Allegro CL lightweight process. A positive

timeout value specifies the number of milliseconds to wait for a notification object

to arrive. A -1 timeout value specifies an infinite timeout - the function will not

return until a notification object is received. The function returns the notification

object when a notification object is received, or nil when a timeout occurs before an

object is received.

notification-string [Method]

Arguments: (object notification)

■ Returns the string value associated with the notification object. Notification

objects are returned from notification-receive. This function may be

called outside of an AllegroStore transaction and in any ACL lightweight process.

The string value is specified by the notifying client as a notify argument.

notification-subscribe [Method]

Arguments: (obj persistent-standard-object)

■ Informs the AllegroStore server that notifications concerning the specified

instance should be sent to the subscribing client. Since this method calls preserve-

pointer on the instance argument, the instance's database must be opened for

read/write activities and the subscription must occur during a read/write transaction.

You should not call unpreserve-pointer on the instance while the subscrip-

tion is effect on any client. Note also that closing the relevant database on any client

will result in an unpreserve-pointer call on the instance in question.

notification-unsubscribe [Method]

Arguments: (obj persistent-standard-object)

■ Informs the AllegroStore server that notifications concerning the specified

instance should no longer be sent to the subscribing client.

notify [Method]

Arguments: (obj persistent-standard-object) kind string
&key :on-commit

■ Directs the AllegroStore server to send notifications to all clients that have sub-

scribed for notifications regarding the specified instance. The kind argument speci-

fies an integer value that can be used for a custom client-to-client protocol. The string

argument specifies a string value that can be used for a client-to-client protocol. If

:on-commit is not nil, the notification will be queued for sending until the current

transaction successfully commits; otherwise the notification is sent immediately. The

default :on-commit value is nil.
AllegroStore 2.1 149

7.2.15 Conditions

A condition is an object that holds the description of a situation that the program wishes to

express. The situation can be a warning (e.g., disk space is running low) or an error (e.g.,

too few arguments supplied to a function).

The condition hierarchy
Each condition is a CLOS object and thus has a class. The classes are arranged in a hierar-

chy. AllegroStore extends the built-in condition hierarchy in the following way: (The dotted

line indicates that error is a subclass of condition but that is not important for this

discussion.)

allegrostore [Condition]

■ The allegrostore condition is never signaled in the current version, but will

be used in the future to express AllegroStore non-error situations.

allegrostore-error [Condition]

■ The allegrostore-error condition is signaled to express a situation that

must be resolved before execution can continue. If the situation isn't resolved

programmatically (via handler-bind or a related function) then Lisp will enter

the interactive debugger.

allegrostore-exception-mis-
match-in-config-file

allegrostore-specific-error

allegrostore-error

allegrostore-class-mismatch allegrostore-exception

allegrostore-exception-deadlock

allegrostore

condition error

allegrostore-package-missing
150 AllegroStore 2.1

The allegrostore-error condition (and any condition which is a subclass

of it) contains these slots:

allegrostore-class-mismatch [Condition]

■ The allegrostore-class-mismatch condition is signaled when:

• A database was opened with the :use keyword unspecified or specified as

:ask (which is the default); and

• the definition of a class in the database differs from the definition currently

in Lisp's memory.

If there is no handler for this condition, then the process will enter Lisp's interactive

debugger. Four additional restarts may be invoked whenever this condition is sig-

naled:

allegrostore::use-db [Restart]

Use the definition of the class in the database.

allegrostore::use-db-all [Restart]

Use the definition of the class in the database for this class and all subsequent

class mismatches found in the opening of this database.

allegrostore::use-memory [Restart]

Use the definition of the class in memory.

allegrostore::use-memory-all [Restart]

Use the definition of the class in memory for this class and all subsequent class

mismatches found in the opening of this database.

The allegrostore-class-mismatch condition has three additional slots:

Slot Contents

astore::format-control A format string used to describe the error

situation.

astore::format-arguments A list of the arguments for the format-
control string.

Slot Contents

allegrostore::database The database being opened.

allegrostore::disk-dbclass A dbclass object (see below) describing

the definition of the class on the disk.

allegrostore::memory-dbclass A dbclass object describing the

definition of the class in memory.
AllegroStore 2.1 151

A dbclass object is a defstruct structure with the following fields (plus others

for internal use only).

The slots in the defclass objects can be accessed with functions named in the

normal defstruct manner, e.g., allegrostore::dbclass-name.

A handler for the allegrostore-class-mismatch can analyze the differ-

ences between the two class definitions and uses invoke-restart to choose one

of the two definitions but it should not modify whichever definition it chooses in any

way.

allegrostore-specific-error [Condition]

■ This condition is signaled when AllegroStore has trouble starting up. It has one

additional slot that identifies the specific error:

The following table shows the possible keywords at the time this manual was printed.

The table also shows the correct interpretation and the additional information (if any)

available in the astore::format-args slot (inherited from allegrostore-
error).

Field Contents

name A symbol naming the class.

class A class object in memory.

direct-superclasses A list of direct superclass names.

direct-slots A list of simple slot descriptions.

Each simple slot description is a list of keyword val-

ues pairs where the keywords are those used to define

a class in a defclass form.

The order of the keywords and values is always the

same, so two simple slot descriptions can be tested

for equality with equal.

metaclass The name of the metaclass.

finalized True if the class has been finalized (i.e., the class pre-

cedence list and the list of slots have been computed).

Slot Contents

astore::code A keyword denoting the specific problem (see below).

Keyword Meaning Info in astore::format-args
slot

:alloc-no-db An attempt was made to

create a persistent

instance when there is

no active database.

[none]
152 AllegroStore 2.1

:alloc-no-trans An attempt was made to

create a persistent

instance when there is

no active transaction.

[none]

:class-no-db An attempt was made to

set a class slot in a per-

sistent class when there

is no active open data-

base.

[none]

:class-no-trans An attempt was made to

set a class slot in a per-

sistent class when there

is no active transaction.

[none]

:db-already-
exists

The open-database :if-

does-not-exist :create

keywords were used

(meaning create a new

database), and the data-

base already exists.

The astore::format-args contains

the database name.

:db-cannot-
supersede

The open-database :if-

exists :supersede key-

words were used, and

the specified database is

currently already open.

An additional restart

named astore::close-

existing-db is available

that will close the exist-

ing database object and

then continue with the

open-database creation

overwrite.

The astore::format-args contains

the database filename and the cur-

rently open database object.

:db-does-not-
exist

The open-database :if-

does-not-exist :error

keywords were used,

and the database does

not exist.

The astore::format-args contains

the database name.

:missing-config The AllegroStore con-

figuration file cannot be

found. To fix this, set

theAS_CONFIG_PATH

environmental variable

to the Allegro Common

Lisp installation direc-

tory.

The astore::format-args contains

the configuration file name and the

directories that have been searched

Keyword Meaning Info in astore::format-args
slot
AllegroStore 2.1 153

allegrostore-exception [Condition]

■ This condition is signaled whenever ObjectStore signals an exception. It has three

additional slots:

allegrostore-exception-deadlock [Condition]

■ This condition is signaled when ObjectStore recognizes that a deadlock has

occurred between two or more processes accessing a single database. A deadlock is

a situation where no individual process can proceed because each process needs a

database lock that another one currently holds. To make any progress, one of the pro-

cesses must free its locks by rolling back its transaction.

ObjectStore selects one of the deadlocked processes to receive the

allegrostore-exception-deadlock condition. The selected process

:missing-rootdir OS_ROOTDIR environ-

ment variable is not set.

This variable must be set

to the ObjectStore instal-

lation directory.

[none]

:no-transaction A preserved pointer is

referenced when there is

no active transaction.

The astore::format-args contains

the referenced object.

:non-unique-
value

The attempted database

insertion would violate

the persistent slot's

:unique :t attribute.

The astore::format-args contains

the slot name, the instance, and the

data value.

:object-deleted A preserved pointer was

referenced that points to

an object that is now

deleted.

The astore::format-args contains

the stale object.

:old-object A preserved pointer was

referenced after the data-

base in which it resides

has been closed, thereby

making the reference

stale.

The astore::format-args contains

the stale object.

Slot Contents

astore::message A string describing the exception.

astore::value A value passed along with the string describing the

exception.

astore::id A symbol naming the ObjectStore class of the exception.

Keyword Meaning Info in astore::format-args
slot
154 AllegroStore 2.1

should immediately end the current transaction by performing a roll back. After the

selected process does the roll back, it can restart the transaction.

AllegroStore's with-transaction macro automatically handles this condi-

tion in the correct manner. It sets up a condition handler so that the transaction is

rolled back and restarted when allegrostore-exception-deadlock is sig-

naled.

Users may wish to add their own handlers for allegrostore-exception-
deadlock when there are situations where the body of a transaction should not be

executed more than once.

See the section 6.5 Transactions for more on deadlocks.

allegrostore-exception-mismatch-in-config-
file [Condition]

■ This condition is signaled when you attempt to open a database that has a differ-

ent AllegroStore configuration than the current AllegroStore configuration

allegrostore-package-missing [Condition]

■ This condition is signaled when AllegroStore can't read a symbol from the data-

base because the package doesn't exist in Lisp. Its superclass is allegrostore-
error and its slots are database, package-name, and symbol-name.

allegrostore-specific-error-code [Generic function]

Arguments: allegrostore-specific-error-condition

■ accesses the code slot from an allegrostore-specific-error condi-

tion.

allegrostore-exception-id [Generic function]

Arguments: allegrostore-exception-condition

■ accesses the id slot from an allegrostore-exception condition.
AllegroStore 2.1 155

[This page intentionally left blank.]
156 AllegroStore 2.1

ObjectStore source
Chapter 8 Database
maintenance &
administration

8.1 Using the ObjectStore documentation

This chapter and chapters 9 and 10 are reproduced from the ObjectStore manuals with

minor modifications: Database maintenance & administration, Administration utili-
ties, and User utilities.

This section of the manual is included as an extended reference. Not all of the existing

ObjectStore documentation is provided. Ignore spurious references to other ObjectStore

documents.

ObjectStore manuals are written for C++ users; the C++ notation you see here does not

apply to AllegroStore. If a Lisp equivalent exists, we have already introduced it in the

AllegroStore manual; these chapters are provided so that you may read the relevant source

documentation.
AllegroStore 2.1 8-157

ObjectStore source
8.2 In this chapter

This chapter describes the creation and maintenance of ObjectStore databases, and the

ObjectStore daemon processes that must be running before any ObjectStore application

(such as AllegroStore) can run: the ObjectStore Server and the ObjectStore Cache Man-
ager. In addition, this chapter describes the ObjectStore Directory Manager, a daemon pro-

cess that can be used to manage a hierarchy of Directory Manager (rawfs) databases.

The main topics are:

1. File databases, the default storage mechanism for ObjectStore. Creating and

naming them.

2. The Server, which manages storage for ObjectStore databases. Server

parameters are described in detail. Password and license management is also

described, since it is controlled by the Server.

3. The Cache Manager, which handles the caching of data objects for ObjectStore

clients. Cache manager parameters are described in detail.

4. The Client Environment. How to use environment variables to modify the

characteristics of the Client.

5. Directory Manager databases. The storage model, Directory Manager

parameters, and how to start the Directory Manager.

6. The Ports file, and how to change the port settings for network services.

7. Error reporting by ObjectStore daemons, and how it works.

8. On-line backup and restore of ObjectStore databases. A general description

of their features. More information on these can be found in chapter 9

Administration utilities.
AllegroStore 2.1 8-158

ObjectStore source

Creating
databases
8.3 File databases

When an application allocates an object in persistent storage, it specifies the database to

contain that storage. Databases are created by applications, with a call to one of the member

functions with-database, open-database. The database is named by a pathname

argument to the function that creates the database.

By default, ObjectStore databases are stored as file databases—that is, operating system

files that contain databases. In most cases, you can manipulate these databases with stan-

dard operating systems commands as well as the ObjectStore commands listed in the fol-

lowing chapters: Database maintenance and administration, Administration utilities,

and User utilities.

You specify a file database with an operating system pathname. For example:

with-database(db “/usr3/fauntleroy/my_file_db”)

You can also specify a relative pathname.

Links are treated normally, and automounter pathnames are acceptable. If you are using

automount, note that the pathname you specify should not include the automounter pre-

fix -- usually /tmp_mnt. Referring to the file with this prefix does not cause the auto-

mounter to keep it mounted and could cause the file to appear deleted.

File databases must be stored on a host that is running a Server (see The server).

ObjectStore determines which Server to use based on the NFS mountings of the client that

creates the database.

Colons in file pathnames are interpreted as alphabetic characters if a slash character pre-

cedes the colon in the pathname. For example:

/usr1/moe/a:b A file named a:b in the /usr1/moe directory, in

the local host’s namespace.

bill:/usr2/dbs:abc A file named dbs:abc in the /usr2 directory, on

Server bill, in the Server’s namespace.

fifi/mimi:lulu A file named mimi:lulu in the fifi directory,

relative to the working directory, in the local host’s

namespace.
AllegroStore 2.1 8-159

ObjectStore source

Starting the
server
8.4 The server

The Server is a daemon process that mediates all access to ObjectStore databases, including

the storage and retrieval of persistent data, and controls ObjectStore license management.

A Server must be running before any AllegroStore application can access the data on the

host. The ObjectStore Server and Cache Manager (see The cache manager) manage

ObjectStore databases, as shown in the following diagram.

If you are using Directory Manager databases, the Directory Manager participates in this

process. See Directory manager databases.

The Server is usually started at system boot; regardless of when it is started, you can con-

figure it with various command line options and parameter file options that are read at start-

up. The pathname of the Server executable is $OS_ROOTDIR/lib/osserver. (See

the installation instructions for information on setting OS_ROOTDIR.)

The command line to start a Server on a particular host is:

$OS_ROOTDIR/lib/osserver options

The Server is normally started by the script in

$OS_ROOTDIR/etc/start_servers.

Server

Application

disk

disk

host

host

hosthost

hosthost

host

network

Server

Cache ManagerCache ManagerCache Manager

Cache Manager

Application Application

Application

Application

ObjectStore Processes
AllegroStore 2.1 8-160

ObjectStore source
8.4.1 Server command line options

Ordinarily, you use Server parameters (see below) to control the Server’s behavior. How-

ever, you can also give command line options to osserver.

The following command line options are recognized by the Server:

After starting up, the Server displays the message: Server started on the system

(host) console to let you know that it is ready to accept requests from clients on the net-

work.

When run without -F, osserver returns 0 from a successful start-up of the back-

ground daemon, otherwise it returns 1.

8.4.2 Server access control

ObjectStore has a client/server architecture. When an application reads or writes a database,

it sends messages to an ObjectStore Server, which in turn reads and writes the data in the

file that contains the database.

Because each ObjectStore Server handles requests from many different users, it is

responsible for enforcing access control to files containing databases. It must use privileged

access to read or write any user’s database, and it must ensure that only users entitled by the

host system’s rules for access control are allowed access to the databases. To implement

access control, the Server must know the access identity (on Unix, the user names and

groups) of the client process that is requesting that it operate on a database.

Server access control is configured via the Authentication Required parameter.

The mechanism associated with each of the parameter’s values is described in Server
parameters.

Server
command line

option

Function

-c Forces all data to be propagated from the log to the database. The

Server is not started up following the checkpoint.

-F Foreground. This reverses the normal behavior, where the Server

is forked off as a background process.

-p pathname Specifies a parameter file. pathname names a parameter file to

use during the start-up process. This option is generally not

required.

-v Shows Server parameter values at start-up.
AllegroStore 2.1 8-161

ObjectStore source
8.5 Authentication

If you start an application that asks the Server to read or write a protected file, the Server

determines whether you have proper read/write permission for the file. This access check-

ing has two parts. The first part is authentication, the operation in which the Server learns

who the client is, and on behalf of which user it is performing operations. The second part

is checking whether that user has permission to perform the requested operation.

The type of authentication ObjectStore uses is determined by the value of the Server

parameter Authentication Required. (See Server parameters.) Its possible val-

ues are NONE, SYS, DES (Sun only), and Unix Login.

Note that certain Server operations that deal with file databases require authentication.

If the client does not provide authentication, the Server will refuse to perform the operation.

These include looking up, creating, and deleting file databases, or asking their size or access

modes.

Administrative commands for which authorization is required send authentication to the

Server first. ObjectStore applications send authentication to the Server the first time the

application does an operation on that Server for which authentication is required. (That is,

once an application has sent authentication information to a Server, it need not do it again,

for the lifetime of the process.)

err_authentication_failure is signaled when authentication is done on a

Server requiring Unix Login and the Server detects something wrong, generally that

there is no user by the specified name, or the password is incorrect.

If the Server gets a command that needs authentication, but the connection has not been

authenticated, and Authentication Required is not None, the Server rejects the

command, and ObjectStore signals a condition (“Client credential too weak”). In practice,

this should never happen, because ObjectStore always sends authentication before sending

any such command, when authentication is required by the Server.

The Server performs several administrative operations only on behalf of an “authorized”

client. These are the Server operations invoked by ossvrshtd and ossvrclntkill,

with these exceptions:

• ossvrshtd is also allowed by the user who owns the Server process; with file

databases, this is the root, so the exception doesn’t matter.

• ossvrclntkill is allowed if the client thread to be killed is owned by the user

issuing the command.

8.5.1 User interface to authentication

By default, the interface to Unix Login authentication communicates with the user inter-

actively using the Unix /dev/tty device and the stdin and stdout streams,

prompting for a user name and a password.

Your application can control this interface with the functions

objectstore::set_simple_auth_ui() and get_simple_auth_ui(),

which are described in the ObjectStore Reference Manual. This can be useful for applica-

tions that incorporate a graphical interface.
AllegroStore 2.1 8-162

ObjectStore source

Search order

Log
8.6 Server parameters file

All Server parameters have default values. We recommend that you use the default value

for each parameter, which requires no action on your part. You also have the option of

resetting these values, as described below.

Parameter files consist of a set of lines, each containing a parameter and a value. Param-

eters have textual names (such as Host Access List), and are followed by a colon,

some whitespace (tabs or spaces), and a value (either numeric or text, depending on the

parameter). Comment lines must contain a “#” as the first non-whitespace character. Case

is insignificant for parameter names. Embedded spaces, however, are significant. If the

same parameter name appears twice in the parameters file, only the first occurrence is read.

A simple parameters file might contain the following line:

Log File:/elvis1/elvis_server_logfile

You can specify the Server parameters file with the -p option to osserver or with one

of the default locations. ObjectStore uses the following search order to find information on

parameter settings:

1. The file specified by the -p command line option to osserver.

2. $OS_ROOTDIR/etc/host_server_parameters where host is the name

of the current host as returned by the hostname program. OS_ROOTDIR is an

environment variable.

3. $OS_ROOTDIR/etc/server_parameters.

OS_ROOTDIR is an environment variable set to the top-level directory in the part of the

source hierarchy containing ObjectStore files.

If no parameters file is found, a message is displayed.

8.6.1 Parameter terms

Many of the Server parameters use the following terms:

Log. ObjectStore implements a transaction model. This means that your transactions

are treated atomically—if a transaction modifies databases, either all or none of the modi-

fications are made, but never some of them, even if the Server machine crashes during the

transaction.

To accomplish this, modifications sent to the database server are stored in a log database

maintained by the Server. If your transaction aborts, the log entries are discarded. When

your transaction commits, your program waits until the log information is safely on disk.

The log database consists of two log segments and a data segment. Both log and data

segments are used to store data.

Log segment. Log records, such as commit records, are written to a log segment. When

a log segment fills up, logging switches to the other log segment.

Log buffer. The log buffer is used to form log records across sectors. Its size defines the

maximum size that you can write to a log record segment in one write operation.
AllegroStore 2.1 8-163

ObjectStore source

Data segment

Data
propagation

Sector
When choosing the log record buffer size, you should consider balancing the cost of for-

matting data into a log record versus the cost of a separate write operation.

Data segment. Data returned as part of a commit can be written as part of the commit

record, but this occurs only if the total data being committed is small enough to fit in the

log record buffer. If it is not, the data is written to the log data segment.

Propagation. The Server moves committed data from the log to databases through prop-
agation. The information accumulated in the log is propagated from the log to the “mate-

rial” (that is, real) database transparently in a way that does not interfere with client

performance.

Sector. A sector is a 512-byte disk block.

8.6.2 Server parameters

This section describes each Server parameter. Parameters are presented in alphabetical

order.

Allow shared communications

Controls whether the Server allows shared memory communications between it-

self and the client when they are on the same host, to improve performance. It is

a Boolean that defaults to yes (meaning shared memory communications are en-

abled). If these communications are enabled, the Server and client exchange data

via shared memory.

Authentication required

Specifies how the Server controls database access. The default is SYS. There are

four modes:

1. NONE—No authentication is required. The Server will refuse access to file

databases in this mode. That is, if no partition is supplied, the Server will not

start.

2. SYS—ObjectStore uses the Sun ONC RPC AUTH_SYS authentication method,

previously called AUTH_Unix. The client sends the Server a Unix user ID and a

set of group IDs, which the Server trusts. The ObjectStore client library will

always send the current effective user id and group set. This is the same

mechanism used by the NFS protocol.

Warning: If you use this method, be aware of the following two points:

• If nontrustworthy users have access to the root password, they can assume

the identity of any user.

• A malicious user might contrive to patch the ObjectStore client so that it

sends some access identity information other than the current effective user

ID and group set.

Note that not all systems can generate this information in a client. If you run an

ObjectStore Server on such a system, this method is not available.
AllegroStore 2.1 8-164

ObjectStore source
3. DES—Sun, AIX, and System V.4.0 only. ObjectStore uses the Sun ONC RPC

AUTH_DES authentication, also known as “secure RPC”. To enable this

mechanism, you must first set up the Network Information System, run the

keyserv daemon on all client and Server hosts, and register public keys in the

publickey NIS map. (See the newkey, chkey, keyserv, and keylogin
manual pages.)

For a full explanation of the secure RPC mechanism, see the documentation sup-

plied with your system.

DES authentication protects against abuse of the root password and against

straightforward attempts to patch an ObjectStore client to send a fraudulent access

id. However, it is not secure against a determined intruder, due to bugs in both its

design and in the reference implementation.

4. Unix Login—ObjectStore requires each client application to send a user name

and password to the Server, which validates them. The advantage of this method

is that there is no way to fool the Server—it grants exactly the access available to

the user it authenticates. The disadvantage is that ObjectStore cannot arrange a

“trusted path.” That is, there is no way that a user, prompted for a password, can

be sure that the password will be sent to the ObjectStore Server and only to the

ObjectStore Server. A malicious program author could solicit and then retain

passwords.

DB expiration time

The number of seconds, expressed as an integer, to wait before garbage collecting

the virtual memory structures maintained for each database that is opened.

A value of 0 means that the structures should be garbage collected as soon as all

clients have closed that database.

The default is 300 seconds.

This parameter is used only for Directory Manager (rawfs) databases.

Deadlock victim

Selects one of five algorithms—Current, Age, Oldest, Work, or Ran-
dom—used for victim selection in the event of a deadlock.

• Current (the default) specifies that the client that completes the “waits

for” graph deadlock cycle is selected as the victim.

• Age specifies that the youngest client is selected as the victim.

• Oldest selects the oldest client as the victim.

• Work specifies that the client who has done the least amount of work (as

measured by RPC calls to the server during the current transaction) is

selected.

• Random specifies that a random client is selected as the victim.

Direct to segment threshold

Sets, in sectors, the threshold value that determines whether segments are first

written to the log and then to the database, or directly to the database.

If less than this threshold is written past the current end of segment during a trans-

action, the data is written to the log before being written to the database. If the
AllegroStore 2.1 8-165

ObjectStore source
number of segments written is greater than this threshold, the data is written di-

rectly to the database.

The default is 128 sectors.

Choosing a value depends on how big you want the log to be versus the cost of

writing and flushing the data separate from the write and flush of the log record.

The following tests are applied in order; the first one that matches determines how

the data is stored:

1.If the data is being written to a newly created segment, data are always written

directly to the database segment.

2.If the following conditions are met, the data goes directly to the database (this

formula means the decision to write data directly to a database is not

changed by the size of individual write operations):

• Data are being written past the current end of the database segment,

and

• The last sector number being written minus the current committed size

of the segment is greater than the new Direct to Segment
Threshold.

3.If neither of the previous conditions apply, data is put in the log until the commit

is done.

Host access list

Specifies a pathname of a file. This file must contain a set of primary names of

hosts, one per line. (If DNS is in use, they must be fully qualified domain names).

The Server refuses connections from any host not on the list, or whose name can-

not be determined.

This mechanism is only as secure as the available means for translating hosts ad-

dresses to host names. On some networks, such as NETBIOS, there may be no se-

cure means.

This parameter is intended for use in environments where a machine is on a net-

work with untrustworthy hosts, and DES authentication is unavailable or unwork-

able.

Log data segment growth increment

Specifies how many sectors to grow the log data segment when more room is

needed.

The default is 2048 sectors.

Log data segment initial size

Sets the initial size of the log data segment in sectors.

The default is 2048 sectors.

Log file

The pathname of the log file. Note that this cannot be a raw partition. If no path-

name is given, this information will go in the rawfs. If you don’t have a rawfs, you

must specify a pathname for this parameter.
AllegroStore 2.1 8-166

ObjectStore source
Log record segment buffer size

Defines how much buffer space is reserved for log records.

The default is 1024 sectors.

Log record segment growth increment

Specifies how many sectors to grow the log record segment when more room is

needed.

The default is 512 sectors.

Log record segment initial size

Sets the initial combined size of the two log record segments in sectors.

The default is 1024 sectors.

Max data propagation per propagate

This is the maximum number of sectors propagated in one propagate operation.

This limits the impact of propagation on the handling of client requests.

The default is 512 sectors.

When counting the amount of data being propagated, the effect of noncontiguous

data is weighted by 64 sectors. This means that withMax Data Propagation
Size set to its default of 512 sectors, at most eight noncontiguous writes can

occur in a single propagation.

Max data propagation threshold

If more than this number of sectors is waiting to be propagated, the Server forces

propagation to run faster.

The default is 8192 sectors.

Message buffer size

Sets the size of the buffer used for reads and writes.

The default is 512 sectors (256KB), with the value being rounded to a multiple of

64KB.

Message buffers

Sets the number of Message Buffer Size buffers. The number defines the

maximum number of clients that can simultaneously do get_blocks,

return_blocks, and commits.

The default is 4.

Notification retry time

The time between retries for Server-to-Server communication; used during two-

phase commit recovery.

The default is 60 seconds.

PartitionN

This parameter controls Directory Manager database storage only.

A filename of a partition or file to be used in the ObjectStore file system.

PartitionN is specified in the Server parameters file as follows:

PartitionN TYPE pathname {expandable | nonexpandable}
AllegroStore 2.1 8-167

ObjectStore source
TYPE is mandatory, and can be either PARTITION or Unix. In general, unless

you find administration of ObjectStore databases simpler, or are storing more data

than can fit in one file (that is, one disk), you should use Unix file databases, which

provide greater flexibility.

pathname must begin with a slash. If you have specified type PARTITION, it

is the “raw” device name (for example, /dev/rsd0d) of a Unix disk partition to

be used as the nth partition in the ObjectStore raw file system. If you have speci-

fied Unix, it is the absolute pathname of a Unix file that is to be used for the

ObjectStore raw file system.

The keyword expandable, if present, indicates an expandable partition and

nonexpandable indicates the partition cannot be expanded. By default, regular file

partitions are expandable, and raw device partitions are not.

The raw device is also known as a “character special” file in Unix. Typically, each

partition is accessible both by a raw device and by a “block special” device. The

Server requires the use of the raw device.

The partitions

Partition0

Partition1

...

PartitionN

may appear in any order in the Server parameters file. However, no empty slots

are allowed: all partitions 0,1,...N must appear.

Both Unix files and raw partitions may be used in the raw file system.

You add a partition by creating a new entry for it. For example:

Partition0: PARTITION /dev/rsd4x expandable

Partition1: PARTITION /dev/rsd4y

To increase the size of one or more existing partitions, you first use dd(1) to copy

the data from an existing small partition to a new larger one (any of the existing

partition(s) may be expanded) or use database backup/restore. Check the sizes of

the partitions with the Unix command dkinfo(8); the new partition must be no

smaller than the partition it is replacing. Then substitute each new name for the

corresponding old one in the Server parameters file.

When you use multiple Unix files in an ObjectStore raw file system, you control

expansion as follows:

If exactly one Unix file is used, it will expand dynamically as needed, as long as

there is room in the Unix partition containing the file. If multiple Unix files, or a

mixture of files and partitions, are used for the raw file system, they are treated

differently with regard to expansion. Raw partitions may be expanded only at

Server start-up. Unix files are expanded dynamically, if allowed. You may allow

a Unix file in the raw file system to expand by specifying it as expandable.

For example, suppose the raw file system contains one raw partition

/dev/rsd4x, and three Unix files (/usr1/one, /usr2/two, and

/usr3/three). If you want to permit only two of the Unix files to expand, your

Server parameters file might read:
AllegroStore 2.1 8-168

ObjectStore source

Client cache

Search order
Partition0: Unix /usr1/one expandable

Partition1: Unix /usr2/two expandable

Partition2: Unix /usr3/three nonexpandable

Partition3: PARTITION /dev/rsd4x

Currently, there is no way to shrink the size of a raw file system by removing one

of its partitions or Unix files.

Note: It is unnecessary to use more than one Unix file in the same Unix partition

for your raw file system.

Propagation buffer size

Selects the amount of buffer space reserved for propagation. This space is used for

reading data from the log for writing to target databases. If the buffer size is large

enough, data written to the log can be kept in memory until propagation occurs,

thus avoiding the need to read the log. The default is 8192 sectors.

 Propagation sleep time

When there is data to be propagated, determines the number of seconds between

propagates. The default is 60 seconds.

8.7 Password and license management

Earlier versions of ObjectStore supported password protection but ObjectStore 5.0 does

not.

8.8 Cache manager

A Cache Manager is an auxiliary process that runs on each machine that runs ObjectStore

clients. It participates in the management of an application’s client cache, a local holding

area for data mapped or waiting to be mapped into virtual memory.

If additional ObjectStore applications are started on the same machine, the same Cache

Manager handles the caches of these applications as well. Although the same machine can

run several ObjectStore applications at once, only a single Cache Manager is ever running

on a given machine.

The Cache Manager runs automatically when it is needed; no command to start it is nec-

essary. It runs as root to enforce the security of caches.

8.8.1 Cache manager parameters

The Cache Manager parameters file is similar to the Server parameters file in terms of loca-

tion and internal format. The following search order is used:

1. $OS_ROOTDIR/etc/host_cache_manager_parameters, where

host is the name of the current host as returned by the hostname program.

OS_ROOTDIR is an environment variable.

2. $OS_ROOTDIR/etc/cache_manager_parameters.
AllegroStore 2.1 8-169

ObjectStore source
Parameters files consist of a set of lines, each containing a parameter and a value.

Parameters have textual names (such as Cache Directory), and are followed by a

colon, some whitespace (tabs or spaces), and a value (either numeric or text, depending on

the parameter). Comment lines must contain a “#” as the first non-whitespace character.

Case is insignificant for parameter names. Embedded spaces, however, are significant. If

the same parameter name appears twice in the parameters file, only the first occurrence is

read.

The following options are recognized in the Cache Manager parameters file.

Cache Manager
parameters option

Function

cache directory The directory in which ObjectStore places the cache file.

The default is /tmp/ostore.

commseg directory The directory in which ObjectStore places the

communications segment.

The default is /tmp/ostore.

hard allocation
limit

The upper bound, in bytes, on the amount of disk space that

the Cache Manager will allocate for its cache files and

commseg files.

If you try to exceed this limit, you receive an error message

similar to the following at ObjectStore initialization time (for

example, when you call with-database, with-
current-database, or open-database):

Cache Manager hard limit (NNNNN) exceeded by request

for MMMMM bytes of cache and/or commseg

This parameter is provided to allow the site administrator to

prevent ObjectStore files from using too much disk space.

soft allocation
limit

The suggested upper bound, in bytes, on the amount of disk

space that the Cache Manager will allocate for its cache files

and commseg files.

An application is allowed to exceed this limit in order to run

to completion; when it finishes, the Cache Manager automat-

ically deletes the cache and commseg files if the soft limit has

been exceeded. Doing so frees disk space, but can make

application start-up slower by forcing ObjectStore to create

new cache and commseg files.

This parameter is provided to allow the site administrator to

prevent ObjectStore cache files from using too much disk

space.
AllegroStore 2.1 8-170

ObjectStore source

Unhandled
exceptions
8.9 The client environment

You can use environment variables to modify the characteristics of the client environment.

8.9.1 Client environment variables

The following environment variables can be set for any ObjectStore client application. For

information on settings for ports for network services, see the Ports file section.

OS_CACHE_DIR

Pathname of the directory used for the cache. By default, ObjectStore automati-

cally places cache and commseg files in the/tmp/ostore directory. Specifying

an alternate pathname can be useful if your /tmp/ostore directory is small.

ObjectStore places the cache file into the specified directory, and assigns a filena-

me to avoid conflicts between multiple processes that are all running ObjectStore

and using the same directories.

If OS_CACHE_DIR is not set, ObjectStore places the cache file in the directory

given as the value of the Cache Directory parameter in the Cache Manager

parameters file, if one exists. For more information on using parameters files, see

Cache manager parameters.

OS_CACHE_SIZE

Size of client cache in bytes. The cache size defaults to 8 Mb.

OS_COMMSEG_DIR

Pathname of the directory used for the communication segment. By default,

ObjectStore automatically places cache and commseg files in the /tmp/ostore
directory. If the Unix file system containing /tmp/ostore is very small, it

might be desirable to locate the communication segment elsewhere.

ObjectStore places the commseg file into the specified directory, and assigns a

filename to avoid conflicts between multiple processes that are all running

ObjectStore and using the same directories.

You can also assign the directory pathname by setting the value of the Commseg
Directory parameter in the Cache Manager parameters file. For more

information, see Cache manager parameters.

OS_DEF_EXCEPT_ACTION

Controls what happens if an unhandled exception is signaled. If set to “abort”,

ObjectStore calls abort(3) (this generally results in creation of a core file—see

the man page for abort).

If set to an integer greater than or equal to 1, ObjectStore calls exit(3) with the

specified integer as argument (see the man page). If set to anything else, or if not

set, ObjectStore calls exit(3) with an argument of 1.

OS_DIRMAN_HOST

Used by applications to specify a Directory Manager host to contact. Pathname

parsing changes when this variable is set.
AllegroStore 2.1 8-171

ObjectStore source
OS_DISABLE_PRE2_QUERY_SYNTAX_SUPPORT

For use with the C++ Library Interface. When set to yes, causes the query

translator to treat all uses of “[” and “]” found in query expression strings as array

subscripting operations. Any setting of the environment variable is ignored if the

application calls

os_coll_query::set_disable_pre2_query_syntax_support()
.

OS_ENABLE_PRE2_QUERY_SYNTAX_WARNINGS

For use with the C++ Library Interface. When set to a non-null string, enables

warnings from the C++ Library Interface query translator about the use of the ob-

solete nested element selection query syntax (“[“and “]”).

The string should name the file to which the warnings should be written. Any set-

ting of the environment variable is ignored if the application calls

os_coll_query::set_enable_pre2_query_syntax_warnings()
.

OS_HANDLE_TRANS

If your program references an illegal address that was not an ObjectStore persis-

tent address (for example, if you happen to dereference a null pointer),

ObjectStore simply returns the signal to the operating system to handle. If you

don’t set up your own SIGSEGV handler before ObjectStore is initialized, the er-

ror message is Segmentation violation: core dumped.

When you set OS_HANDLE_TRANS to any value, ObjectStore signals a TIX ex-

ception (err_null_pointer or err_deref_transient_pointer).

This causes dereferences to illegal non-ObjectStore addresses to signal a TIX ex-

ception and print out a message, and lets you get a stack trace.

OS_INC_SCHEMA_INSTALLATION

If set, new databases are created in incremental schema installation mode; if not

set, new databases are created in batch schema installation mode. The effect of this

environment variable can be overridden for a particular process by using

objectstore::set_incremental_schema_installation().

OS_INHIBIT_TIX_HANDLE

Specifies an error message substring for which exception handling is to be dis-

abled.

Many end-user applications have omnibus error handlers to catch all errors being

signaled, and present them in an easily readable format to the user. This some-

times makes debugging difficult, because the backtrace information has disap-

peared.

When you specify a substring to OS_INHIBIT_TIX_HANDLE, if the substring

appears in the formatted error message, exception handling is disabled for the spe-

cific error. You can then generate an unhandled exception dump for analysis, or

view the backtrace in a debugger.

OS_LOG_TIX_FORMAT

The name of a log file to record all exceptions signaled. This file logs all of the

printf control strings signaled, regardless of whether the exception is handled.
AllegroStore 2.1 8-172

ObjectStore source

mmap system
call
This facility is especially useful for debugging two situations: recursive excep-

tions (common if you get exceptions during message processing), and bad

printf strings.

OS_PORT_FILE

The name of a ports file for network services.

OS_RESERVE_AS

An optimization to ObjectStore on the Sun architecture increases performance,

sometimes by a very significant factor. However, this optimization can cause trou-

ble if your own program calls the mmap system call with zero as the first

argument, or if your program calls some subroutine library that does so.

If your program does one of these things, you should disable the optimization,

either by calling the entry point

objectstore::set_reserve_as_mode(os_boolean new_mode),

or by setting the environment variable OS_RESERVE_AS to any value. (If you

both call the entry point and set OS_RESERVE_AS, the entry point takes

precedence.)

OS_ROOTDIR

The top-level directory in the part of the file system hierarchy containing Object-

Store files. Serves as the prefix of various directory names used in search paths.
AllegroStore 2.1 8-173

ObjectStore source
8.10 Directory manager databases

ObjectStore 5.0 does not support this facility (supported in earlier versions).
AllegroStore 2.1 8-174

ObjectStore source
8.11 Ports file

Normally, the default settings for ports for network services are sufficient. To modify the

settings, you change entries in the file $OS_ROOTDIR/etc/ports. You can also set the

variable OS_PORT_FILE to the name of a file you create.

Each line in the file changes the port for some service over some network. The syntax of

a line is:

NET:SERVICE:VERSION:PORT

NET is one of the following network types:

Unix Local connections via Unix domain sockets

TCP/IP TCP/IP connections. TCP/IP has a nickname of IP.

SERVICE specifies one of the following network services:

• cache manager client

How a client finds the Cache Manager. Only meaningful on Unix.

• cache manager server

 How a Server finds a Cache Manager. Only valid on TCP/IP.

• server client

How a client finds the Server.

VERSION is 4 for all services.

PORT is a pathname of a socket file for Unix, and a TCP/IP port number for TCP/IP.

Example:

TCP/IP:server client:4:54432

If the file $OS_ROOTDIR/etc/ports is not present, the default settings are used.
AllegroStore 2.1 8-175

ObjectStore source
8.12 Error reporting by ObjectStore daemons

When one of the ObjectStore daemon processes does output on stdout or stderr,

ObjectStore routes the output to a corresponding file, as follows:

/tmp/ostore/osc4_out Cache Manager

/tmp/ostore/oss_out Server

If the file does not already exist, ObjectStore creates it; if the file already exists, it

appends to the file.

Normally, the daemons do not do such output. However, under certain unusual error con-

ditions, they might print an error message in this way. This information might be helpful

in understanding and resolving any malfunction. When you report a problem to Franz that

might involve one of these daemons, please see if such a file exists, and let us know the con-

tents.

When the daemon process is not running, you can safely delete the corresponding file.

Usually very little is ever printed to these files, so they are not likely to occupy much disk

space.
AllegroStore 2.1 8-176

ObjectStore source
8.13 On-line backup and restore of ObjectStore databases

The ObjectStore backup and restore facility transparently backs up running applications

without affecting concurrency, and restores databases into a directory. This facility works

with either Directory Manager or file databases, as long as the backup consists entirely of

one type.

On-line backup provides efficient, transparent backup without affecting the concurrency

of running applications. It achieves this by taking advantage of any operations already

being performed by the Server on behalf of various client applications, thereby amortizing

the cost of performing these operations on their own. It gives priority to databases that are

already open at the time the backup starts, and within a database, to those sectors that are

being actively used.

You cannot restore databases whose pathnames contain an embedded directory separator

in them. This can occur only when moving databases across architectures. For instance, if

you back up database c:\OS/2.odb on an OS/2 system, you cannot restore it on a Unix

system, because the “/” in the database name is interpreted as a directory separator, causing

database creation to fail.

ObjectStore provides facilities for archiving databases to secondary storage with the

osbackup command, and for restoring databases from an archive with the osrestore
command. These utilities provide protection from catastrophic data loss due to hardware

failure, and can also be used to transport databases from one location to another.

8.13.1 On-line backup

On-line backup includes this set of features:

• Inter-database transaction consistency.

Databases are consistent both internally and across the entire set of databases

being backed up.

• Concurrent read- and write-access by ObjectStore applications to
databases in the backup set.

That is, on-line backup never obtains locks on data in the backup set, so

standard ObjectStore transactions can proceed normally. This capability

prevents lock conflicts between the backup process and ObjectStore applica-

tion programs, providing faster access to data, and eliminating the possibility

of deadlocks being caused by the backup process.

• Support for full and incremental backup.

Backup levels 0-9 are supported, where level 0 produces a full backup of all

databases in the backup set, and levels 1-9 produce incremental backups that

save only those ObjectStore segments that have changed since the most recent

backup at a lower level.

• Support for incremental backup of file databases requires a
non–backward-compatible change in database format, and therefore is not
supported.
AllegroStore 2.1 8-177

ObjectStore source
That is, file database backup always produces a full backup, regardless of the

incremental level requested.

• Optimizations that take advantage of disk reads generated by concurrent
access by ObjectStore applications to databases in the backup set.

The backup process normally operates as a background thread, reading contig-

uous regions of data from disk and writing them out to secondary storage.

However, it also intercepts read requests from other threads for data which

have not yet been backed up, and copies the data at this time. This reduces the

cost of backing up this data from a disk seek and disk read to the cost of an in-

memory copy operation.

Since data must generally be read in order to be modified, data modified by

ObjectStore applications will generally be backed up before the modifications

occur.

• Architecture-independent format of backup archives, allowing databases
to be moved across architectures.

All databases in the backup set must reside on the same Server host.

8.13.2 On-line restore

The osrestore command restores databases from a backup archive file, either the entire

backup set or selected databases within the set. While osrestore runs with the

ObjectStore Server on-line, ObjectStore applications cannot access databases that are being

restored until the entire restore process has completed. Restore has the side effect of

defragmenting database storage within the filesystem.

See the osbackup and osrestore command descriptions in Administration
utilities, for more information on using this facility.
AllegroStore 2.1 8-178

ObjectStore source
Chapter 9 Administration
utilities

9.1 Using the ObjectStore documentation

This is the second of three chapters reproduced from the ObjectStore manuals with minor

modifications: The others are chapter 8 Database maintenance & administration, and

chapter 10 User utilities.

This section of the manual is included as an extended reference. Not all of the existing

ObjectStore documentation is provided. Ignore spurious references to other ObjectStore

documents.

ObjectStore manuals are written for C++ users; the C++ notation you see here does not

apply to AllegroStore. If a Lisp equivalent exists, we have already introduced it in the

AllegroStore manual; these chapters are provided so that you may read the relevant source

documentation.
AllegroStore 2.1 9-179

ObjectStore source

File
databases
9.2 In this chapter

This chapter describes ObjectStore utilities used for administering, monitoring, and tuning

the performance of ObjectStore directories and databases. These commands are prefixed

with os.

The following table summarizes these utilities. Each utility is discussed in greater detail

later in this chapter.

Many user-level utilities for manipulating databases are also available. See the chapter

on Database User Utilities.

9.3 Specifying pathnames

You specify the pathname argument to the utilities in this chapter according to the follow-

ing rules:

You can specify an operating system pathname in this way:

/usr1/julie/my_file_db

You prefix the pathname with the host machine of the desired rawfs, in the form:

wally::/design/parts/my_dirman_db

Utility Description

osbackup Provides on-line backup of ObjectStore databases

oschhost Changes the host of a rawfs link.

oscmrf Deletes cache files and commseg files that are not in

use

oscmstat Provides status information on the Cache Manager

process

osrestore Restores databases backed up with osbackup

ossvrchkpt Forces all data to be propagated from the log to the

database

ossvrclntkill Kills a client thread on a Server

ossvrmtr Reports information about resource utilization for a

Server process

ossvrping Reports whether a Server is running on a specified host

ossvrshtd Shuts down a Server immediately

ossvrstat Displays statistics on all clients currently connected to

a Server, as well as information about the Server not

specific to a particular client
AllegroStore 2.1 9-180

ObjectStore source

OS_DIRMAN
_HOST

Filename
restrictions
Note: ObjectStore rawfs pathnames are always shown in lowercase form, although

uppercase or lowercase can be used.

Here, the rawfs host prefix has the form:

hostname::

where hostname names the machine running the rawfs that manages the ObjectStore

directory hierarchy containing the database.

9.4 Rawfs pathname wildcard processing

ObjectStore utilities that deal with rawfs directories and files, except oscp, can perform

wildcard processing similar to shell wildcards (*, ?, {}, and []). For example, to list all

the databases starting with charlie in directory sax, you type:

osls oscar::/sax/charlie*

You must quote the wildcard with quotation marks (“”) or a backslash (\) to keep the

shell from misinterpreting the asterisk as a shell wildcard.

9.5 Using the OS_DIRMAN_HOST variable

The recommended ways of specifying file and rawfs database pathnames are described in

the previous section. You can also set the value of the variable OS_DIRMAN_HOST, which

is provided in this release for compatibility with earlier releases. If you set this variable,

pathname parsing is changed, so that pathnames lacking a rawfs host prefix are interpreted

as naming rawfs databases managed by the specified host.

For example, if you have set OS_DIRMAN_HOST to wally, the pathname

/usr1/julie/my_db is interpreted as a rawfs database on host wally.

::/usr1/julie/my_db

Note that if OS_DIRMAN_HOST were not set, the above pathname would be interpreted

as a file database.
AllegroStore 2.1 9-181

ObjectStore source
9.6 osbackup

osbackup [options] -f backup-image-file pathname ...

Generates a transaction-consistent image of the specified set of databases. This utility

works with rawfs and file databases.

The -f backup-file argument specifies the output file for the backup image. The

pathname argument can be a directory or database name. One or more pathnames may

be specified, but all databases must reside on the same server. For rawfs databases, if a path-

name is a directory, all databases in that directory are backed up, and, if the -r option is

given, the backup descends recursively to include all subdirectories. For file databases,

names must be specified with the pathname argument or in an import file, specified with

the -I option.

On-line backup does not affect the concurrency of running applications. It does this by

taking advantage of any operations already being performed by the server on behalf of var-

ious client applications, thereby limiting the cost of performing these operations on their

own. On-line backup gives priority to databases that are already open at the time the backup

starts, and within a database, to those sectors that are being actively used.

When backup starts up, it arranges to have all committed data for these databases prop-

agated to the material database. It then determines which segments require backup and

builds a map that describes this data and sets itself up to intercept read and write requests

to and from these sectors. Anytime the server reads a sector of interest to the backup process

which hasn’t already been backed up, it allows the read to proceed and makes a copy of the

data at that time. Similarly, write requests are intercepted and delayed long enough to

retrieve the transaction consistent data first. Otherwise, the backup process operates in the

background, retrieving data as efficiently as possible.

Supported tape drives include quarter inch cartridge and 8mm cartridge drives. Standard

formats and sizes are:

Options to osbackup are:

-h server-host

Only useful with rawfs databases, where a single directory can contain databases

that reside on different servers. Databases that do not reside on the specified

server-host are not be backed up.

-i incremental-record-file

Specifies the incremental-record-file, a file that contains information about which

databases have been backed up, and when they were backed up. This information

is used to determine which segments within a database have been modified since

the last backup at a lower level, and backs up only modified segments.

Format Capacity

QIC-11 60 Mb

QIC-24 60 Mb

QIC-150 150 Mb

EXB-8200 2200 Mb

EXB-8500 5000 Mb
AllegroStore 2.1 9-182

ObjectStore source
Performing a backup at any level for which no previous information exists is

equivalent to doing a level 0 backup for that database.

This option can be used to override the default name for the file used to record this

information. On UNIX systems the default name is

$OS_ROOTDIR/etc/backup_record.UID, where UID is the effective user

id of the user performing the backup.

-I import-file

Reads a list of databases to backup from import-file, where import-
file contains a list of either file database or rawfs database pathnames, one per

line. Leading and trailing white space is ignored. If the import file name is speci-

fied as “-,” osbackup reads from standard input. If the -I option is used, ad-

ditional pathnames can still be given on the command line.

-l level

Specifies the level of the backup. Backup is incremental at the segment level,

meaning that a segment is only backed up if it has been modified since the last

backup at a lower level. A level 0 backup (the default) backs up all of the segments

in all of the specified databases. Backup levels of 0 through 9 are supported.

-r

Recursively descends into any directories specified on the command line, adding

all databases found to the list of databases to be backed up. By default, only data-

bases in the specified directory are backed up.

-s size

Sets the size in megabytes of the volume being dumped to. This option is mainly

for use when backing up to a tape device, since end of media cannot be reliably

detected on some systems. The user will be prompted to insert a new tape after ev-

ery “size” megabytes of data are written.

On SunOS, use of the -s option is not required since the end of tape is reliably

signaled to the application without any loss of data.

The pathname of the executable is $OS_ROOTDIR/admin/osbackup.
AllegroStore 2.1 9-183

ObjectStore source
9.7 oschhost

oschhost [-fR] newhost pathname ...

oschhost [-fR] oldhost newhost

This utility operates on rawfs databases only.

Changes the host of an entry in the rawfs database, either by pathname (recursive, spec-

ified by the -R option, and wildcard allowed), or globally in a rawfs database. On UNIX,

you must be the super-user to use this command.

The -f (force) argument makes the command proceed despite errors.

You can use oschhost to update the rawfs database after you restore an entire file sys-

tem from one Server to another.

The pathname of the executable is $OS_ROOTDIR/bin/oschhost.
AllegroStore 2.1 9-184

ObjectStore source
9.8 oscmrf

oscmrf hostname

Tells the Cache Manager process running on hostname to delete all the cache files and

commseg files in its free pool. The value of hostname defaults to the local host. The

Cache Manager deletes only files that are not in use by any client, so it is always safe to run

this command.

After oscmrf runs, if an additional client appears, the Cache Manager must create new

cache and commseg files, which is somewhat slower.

The pathname of the executable is $OS_ROOTDIR/bin/oscmrf.
AllegroStore 2.1 9-185

ObjectStore source
9.9 oscmshtd

oscmshtd hostname

Shuts down the Cache Manager process running on hostname. hostname defaults to

the local host.

The pathname of the executable is $OS_ROOTDIR/bin/oscmshtd.
AllegroStore 2.1 9-186

ObjectStore source
9.10 oscmstat

oscmstat hostname

Prints out status information about hostname’s Cache Manager process for debugging the

storage system. (hostname defaults to the local host.) It prints out one line for every

Server to which the Cache Manager is connected. For each Server, it prints a line giving the

name of the Server host, the client process ID of the client being processed, or 0 if none is

being processed, and a string saying what the thread is doing or what it most recently did.

It also prints out the names of all files known to the Cache Manager.

This is useful if you are trying to determine if files are in active use by ObjectStore, or

are ObjectStore files no longer in use that can be deleted (with oscmrf). The second word

of an ObjectStore file name is always the name of the host that created and owns or owned

the file, so, for files named ObjectStore_doolittle_commseg_8 and

ObjectStore_doolittle_cache_3, the host name is doolittle. The command

oscmstat doolittle prints out a list of all the files that the Cache Manager daemon

on host doolittle currently knows about. If your file is not on the list, it is no longer in

use, and can be removed with oscmrf.

Note that if oscmstat reports there is no Cache Manager running, it is also safe to

delete the file, as long as you are certain that oscmstat did not fail due to temporary net-

work failure or something similar.

Output typically looks like the following:

 AllegroStore 3.0 Cache Manager, Version 4.0.
 Process ID 22758, started Wed Nov 3 11:28:47 1993
 Soft Allocation Limit 0, Hard Allocation Limit 120000000.
 Allocated: free 32907264, used 8536064.
 Server host: Client process Status for this host:

ID:
doolittle 0 Initializing: constructor finished
higgins 0 Initializing: constructor finished
pickering 0 Initializing: constructor finished
pickering 0 Initializing: constructor finished

There is 1 client currently running on this host:
1637 101 (null) v3.0 0xf7660000

Free cache files:
/tmp/AllegroStore_doolittle_cache_3 (8388608)
/tmp/AllegroStore_doolittle_cache_5 (23994368)

In-use cache files:
/tmp/AllegroStore_doolittle_cache_1 (8388608)

Free commseg files:
/tmp/AllegroStore_doolittle_commseg_4 (147456)
/tmp/AllegroStore_doolittle_commseg_6 (376832)

In-use commseg files:
/tmp/AllegroStore_doolittle_commseg_2 (147456)

Version in the top line is an internal version number that has nothing to do with

ObjectStore release numbers.
AllegroStore 2.1 9-187

ObjectStore source
Process ID is the operating system process ID of the Cache Manager process. The

allocation limit parameters are as described in the parameter file. The Allocated line

gives the total sizes of the used pool and the free pool.

A list of lines follows, one for each Server connection to the Cache Manager. This infor-

mation can be useful in debugging.

The last section consists of a list of lines, one for each client (ObjectStore application

process) currently running on this host. For each client it gives the operating system process

ID and user ID, the “name” of the client (assuming the client has called object-
Store::set_client_name()), an internal version number that also has nothing to

do with ObjectStore release numbers, and a virtual address within the Cache Manager that

is useful in debugging the Cache Manager.

The pathname of the executable is $OS_ROOTDIR/bin/oscmstat.
AllegroStore 2.1 9-188

ObjectStore source
9.11 osrestore

osrestore [options] -f backup-file [pathname ...]

Restores databases to disk that have been backed up with osbackup. The file or database

specified by pathname is restored into the directory specified using the -d option, or

the current working directory if -d is not provided. You can restore individual databases

or directories by specifying them on the command line with the appropriate list of options.

The required -f backup-file argument specifies a file or tape device that contains a

backup image from which to restore databases.

By default all databases in the backup image will be restored into the current working

directory. The -d option can be used to change the directory in which to restore. If one or

more pathnames are given on the command line, only the named databases or directories

will be restored. Unless the -n option is in effect, a directory name refers to the databases

it contains and recursively to its subdirectories and the databases they contain.

See the examples later in this discussion for details on how database pathnames are

reconstructed.

To restore databases, you always begin with a full level 0 backup image; osrestore
prompts for any additional incremental backup images you may want to apply after this.

Not all of the incremental backups necessarily need to be applied. To determine which

incremental backups to apply, list the backup levels in chronological order, starting with the

level 0 backup. For instance, if you made a level 0 backup on Monday, a level 5 on Tuesday

and Wednesday, a level 3 on Thursday, and level 4 on Friday, the list would look like this:

0, 5, 5, 3, 4.

Now, scanning the list from right to left, find the lowest incremental backup level greater

than 0, in this case the level 3 backup made on Thursday. All incrementally made between

the level 0 backup and this level 3 backup need not be applied. In order to restore databases

to their current state as of the backup on Friday you must apply the level 0 backup and the

incremental backups made at level 3 and 4, in that order.

Options to osrestore are:

-d restore-directory

The directory in which to restore the databases. If not specified, the current work-

ing directory is used.

-n

Normally, if a directory is specified for restoring, all databases in the directory and

its subdirectories are restored. Using the -n option limits the restore operation to

databases contained in the named directory.

-t

Prints a list of databases contained in this backup image.

The following examples illustrate some uses of osrestore:

1. List the table of contents of the backup image in the file /test/backup-
image

example> osrestore -t -f /test/backup-image
AllegroStore 2.1 9-189

ObjectStore source
::example:/: test/
::example:/test: db1 db2 db3

This indicates that the backup image contains three file databases in the directory

/test that were backed up on the host example.

2. Restore the entire backup image back into its original location

example> osrestore -d / -f /test/backup-image
restoring "::example:/test/db1" to "::example:/test/db1"
restoring "::example:/test/db2" to "::example:/test/db2"
restoring "::example:/test/db3" to "::example:/test/db3"

Do you wish to restore from any additional incremental
backups?
 Answer yes or no: no

restore completed for database "::example:/test/db1"
restore completed for database "::example:/test/db2"
restore completed for database "::example:/test/db3"

3. Restore the entire backup image into the directory /examples

example> osrestore -d /examples -f /test/backup-image
restoring "::example:/test/db1" to
"::example:/examples/test/db1"
restoring "::example:/test/db2" to
"::example:/examples/test/db2"
restoring "::example:/test/db3" to
"::example:/examples/test/db3"

Do you wish to restore from any additional incremental
backups?
Answer yes or no: no

restore completed for database
"::example:/examples/test/db1"
restore completed for database
"::example:/examples/test/db2"
restore completed for database
"::example:/examples/test/db3"

4. Restore the entire contents of the directory /test into the directory

/examples

example> osrestore -d /examples -f /test/backup-image
/test
restoring "::example:/test/db1" to
"::example:/examples/db1"
restoring "::example:/test/db2" to
"::example:/examples/db2"
restoring "::example:/test/db3" to
"::example:/examples/db3"
AllegroStore 2.1 9-190

ObjectStore source
Do you wish to restore from any additional incremental
backups?
 Answer yes or no: no

restore completed for database "::example:/examples/db1"
restore completed for database "::example:/examples/db2"
restore completed for database "::example:/examples/db3"

5. Restore only the database /test/db1 into the current directory (/examples)

example> osrestore -f /test/backup-image /test/db1
restoring "::example:/test/db1" to
"::example:/examples/db1"

Do you wish to restore from any additional incremental
backups?
Answer yes or no: no

restore completed for database "::example:/examples/db1"

The pathname of the executable is $OS_ROOTDIR/bin/osrestore.
AllegroStore 2.1 9-191

ObjectStore source
9.12 ossvrchkpt

ossvrchkpt hostname

Forces all data to be propagated from the log to the database.

The pathname of the executable is $OS_ROOTDIR/bin/ossvrchkpt.
AllegroStore 2.1 9-192

ObjectStore source
9.13 ossvrclntkill

ossvrclntkill hostname client-hostname client-pid

ossvrclntkill hostname [-p client-pid] [-n name]

[-h host] [-a]

The first form kills a client thread on the Server running on hostname. You use oss-
vrstat to determine the client-hostname and client-pid.

In the second form, -p client-pid specifies the process id of the client process as

an unsigned number.

Options are:

-p client-pid

In the second form, specifies the process id of the client process as an unsigned

number.

-n name

Specifies the name (as set by objectstore::set_client_name()) of

the client process to kill.

-h host

Specifies the client host name of the client process to kill.

-a

Specifies that all clients matching the specified criteria should be killed.

If you specify -a, you must specify one of -p, -n, or -h. To achieve the effect of -a
by itself, use ossvrshtd.

If you do not specify -a, one of -p, -n, or -h must uniquely identify a client process

on the Server running on hostname.

If the Server is run as root with authentication set to something other than NONE
(authentication is SYS by default), the following rules apply.

1. Any user can kill clients they own. If the -a option is used (kill all clients match-

ing the given search pattern), the user must own all matching processes, otherwise

authentication fails and no clients are killed.

2. Any Release 1 client can be killed by ossvrclntkill, again with the excep-

tion of the rawfs.

Otherwise, no authentication is required.

The pathname of the executable is $OS_ROOTDIR/bin/ossvrclntkill.
AllegroStore 2.1 9-193

ObjectStore source
9.19 ossvrmtr

ossvrmtr hostname

Provides information about resource utilization for the Server process running on the spec-

ified host, including system resource usage and internal metering. Metering information is

summarized for total clients and for logs for these intervals: the last minute, the last 10 min-

utes, the last hour, and since startup.

You can use the ossvrstat command to see the Server parameters and per-client

information.

For example, where elvis is a UNIX ObjectStore server:

paul@elvis% bin/ossvrmtr elvis

AllegroStore 3.0 Database Server
Client/Server protocol version 1.5
Compiled by paul at 93-11-05 18:53:58 in /elvis1/foo/bar/nserver
User time: 1176.6 secs
System time: 454.7 secs
Max. Res. Set Size: 1874
Page Reclaims: 127988
Page Faults: 91648
Swaps: 0
Block Input Operations: 46753
Block Output Operations: 7336
Signals Received: 0
Voluntary Context Switches: 97645
Involuntary Context Switches: 222551

Log Sectors: 36512

Server Meters:
Total since server start up:

Client Meters:
82591 messages received 13646 callback messages sent
109104 callback sectors 103360 succeeded sectors
260938 KB read 33972 KB written
167 commits 9 readonly commits
347 aborts 0 two phase transactions
346 deadlocks 0 message buffer waits
Log Meters:
169 log records 6 record segment switches
0 flush data 179 flush records
0 KB data 38602 KB records
22985 KB propagated 31 KB direct
1479 propagations

Total over past 60 minute(s):
Client Meters:
51486 messages received 8547 callback messages sent
68328 callback sectors 64768 succeeded sectors
161156 KB read 21496 KB written
105 commits 6 readonly commits
206 aborts 0 two phase transactions
AllegroStore 2.1 9-194

ObjectStore source
206 deadlocks 0 message buffer waits
Log Meters:
105 log records 3 record segment switches
0 flush data 113 flush records
0 KB data 21953 KB records
16840 KB propagated 0 KB direct
1082 propagations

Total over past 10 minute(s):
Client Meters:
8482 messages received 1409 callback messages sent
11264 callback sectors 10672 succeeded sectors
26544 KB read 3916 KB written
20 commits 2 readonly commits
33 aborts 0 two phase transactions
33 deadlocks 0 message buffer waits
Log Meters:
20 log records 0 record segment switches
0 flush data 20 flush records
0 KB data 3995 KB records
2044 KB propagated 0 KB direct
132 propagations

Total over past 1 minute(s):
Client Meters:
742 messages received 145 callback messages sent
1160 callback sectors 1088 succeeded sectors
2248 KB read 216 KB written
1 commits 0 readonly commits
3 aborts 0 two phase transactions
3 deadlocks 0 message buffer waits
Log Meters:
1 log records 0 record segment switches
0 flush data 1 flush records
 0 KB data 220 KB records
192 KB propagated 0 KB direct
 11 propagations

The pathname of the executable is $OS_ROOTDIR/bin/ossvrmtr.
AllegroStore 2.1 9-195

ObjectStore source
9.20 ossvrshtd

ossvrshtd [-f] hostname

Immediately shuts down the Server running on the specified host.

You must either be the super-user or be logged in as the uid of the owner of the

osserver process to shut down the Server.

Without the -f (force) argument, it asks you to confirm that you want to shut down the

Server.

On UNIX, if the Server is run as root with authentication set to something other than

NONE (authorization is SYS by default), ossvrshtd must be run as root. Otherwise,

ossvrshtd will succeed if it is run by the same user who started the Server, or by the

root user.

The pathname of the executable is $OS_ROOTDIR/bin/ossvrshtd.
AllegroStore 2.1 9-196

ObjectStore source
9.21 ossvrstat

ossvrstat hostname

Displays the settings of Server parameters, Server usage meters, and information for each

client currently connected to the ObjectStore Server running on the specified host. For each

client, Server resource information is given, followed by each client’s state, grouped by

state.

Each client is identified by hostname, and the program name is listed (if known)

together with the process id on that host. (If the program name is not known,

default_client_name is listed instead; the program name can be set with object-
Store::set_client_name().)

Sample output is shown in the following example:

elvis% ossvrstat elvis

AllegroStore 3.0 Database Server
Client/Server protocol version 1.5
Compiled by paul at 93-11-05 18:53:58 in /elvis/foo/bar/nserver

Parameter file:
Allow Shared Communications: Yes
Authentication Required: SYS
RAWFS DB Expiration Time: 300 seconds
Deadlock Strategy: Work
Direct To Segment Threshold: 128 sectors (64KB)
Log Path: /elvis/elvis_server_log
Log Data Segment Initial Size: 2048 sectors (1MB)
Log Data Segment Growth Increment: 2048 sectors (1MB)
Log Record Segment Buffer Size: 1024sectors (512KB)
Log Record Segment Initial Size: 1024 sectors (512KB)
Log Record Segment Growth Increment: 512 sectors (256KB)
Max Data Propagation Threshold: 8192 sectors (4MB)
Max Data Propagation Per Propagate: 512 sectors (256KB)
N Message Buffers: 4
Notification Retry Time: 60 seconds
Propagation Sleep Time: 60 seconds
Propagation Buffer Size: 8192 sectors (4MB)
TCP Receive Buffer Size: 16384 bytes
TCP Send Buffer Size: 16384 bytes
Log Sectors: 36512

Server Meters:
Total since server start up:

Client Meters:
AllegroStore 2.1 9-197

ObjectStore source
87747 messages received 14450 callback messages sent
115528 callback sectors 109480 succeeded sectors
277146 KB read 35908 KB written
177 commits 9 readonly commits
371 aborts 0 two phase transactions
370 deadlocks 0 message buffer waits
Log Meters:
179 log records 7 record segment switches
1 flush data 189 flush records
264 KB data 40310 KB records
24521 KB propagated 31 KB direct
1576 propagations

Total over past 60 minute(s):
Client Meters:
51145 messages received 8150 callback messages sent
65152 callback sectors 61624 succeeded sectors
160088 KB read 20836 KB written
104 commits 5 readonly commits
206 aborts 0 two phase transactions
 206 deadlocks 0 message buffer waits
Log Meters:
104 log records 3 record segment switches
1 flush data 112 flush records
264 KB data 21223 KB records
15924 KB propagated 0 KB direct
1024 propagations

Total over past 10 minute(s):
Client Meters:
8282 messages received 1382 callback messages sent
11056 callback sectors 10504 succeeded sectors
26012 KB read 3476 KB written
18 commits 1 readonly commits
33 aborts 0 two phase transactions
33 deadlocks 0 message buffer waits
Log Meters:
18 log records 1 record segment switches
1 flush data 18 flush records
264 KB data 3279 KB records
1792 KB propagated 0 KB direct
115 propagations

Total over past 1 minute(s):
Client Meters:
923 messages received 57 callback messages sent
456 callback sectors 416 succeeded sectors
2888 KB read 352 KB written
 2 commits 0 readonly commits
4 aborts 0 two phase transactions
 4 deadlocks 0 message buffer waits
Log Meters:
2 log records 1 record segment switches
 0 flush data 2 flush records
 0 KB data 360 KB records
 356 KB propagated 0 KB direct
AllegroStore 2.1 9-198

ObjectStore source
 22 propagations

Client Meters: (9 active client(s))
client #159 (elvis/8462//ostore/sym/lib/osdir)

9 messages received 9 callback messages sent
0 callback sectors 0 succeeded sectors
37 KB read 12 KB written
2 commits 0 readonly commits
0 aborts 0 two phase transactions
0 deadlocks 0 lock timeouts

client #163 (elvis/8470/swift $Revision: 1.1.1.2.1.1 $)
12021 messages received 2588 callback messages sent
20704 callback sectors 19704 succeeded sectors
37717 KB read 5573 KB written
27 commits 5 readonly commits
42 aborts 0 two phase transactions
42 deadlocks 0 lock timeouts

client #164 (elvis/8472/swift $Revision: 1.1.1.2.1.1 $)
10461 messages received 859 callback messages sent
 6872 callback sectors 6528 succeeded sectors
33088 KB read 4464 KB written
22 commits 0 readonly commits
47 aborts 0 two phase transactions
47 deadlocks 0 lock timeouts

client #165 (elvis/8474/swift $Revision: 1.1.1.2.1.1 $)
10968 messages received 2469 callback messages sent
19752 callback sectors 18776 succeeded sectors
34716 KB read 4184 KB written
 20 commits 0 readonly commits
47 aborts 0 two phase transactions
47 deadlocks 0 lock timeouts

client #166 (elvis/8484/swift $Revision: 1.1.1.2.1.1 $)
10184 messages received 711 callback messages sent
5688 callback sectors 5400 succeeded sectors
32192 KB read 4268 KB written
21 commits 0 readonly commits
48 aborts 0 two phase transactions
48 deadlocks 0 lock timeouts

client #167 (elvis/8482/swift $Revision: 1.1.1.2.1.1 $)
10929 messages received 2583 callback messages sent
20664 callback sectors 19344 succeeded sectors
34568 KB read 4144 KB written
20 commits 2 readonly commits
49 aborts 0 two phase transactions
49 deadlocks 0 lock timeouts

client #168 (elvis/8478/swift $Revision: 1.1.1.2.1.1 $)
11366 messages received 2262 callback messages sent
18096 callback sectors 17328 succeeded sectors
35936 KB read 4584 KB written
22 commits 1 readonly commits
48 aborts 0 two phase transactions
48 deadlocks 0 lock timeouts

client #169 (elvis/8480/swift $Revision: 1.1.1.2.1.1 $)
11607 messages received 2662 callback messages sent
21296 callback sectors 20096 succeeded sectors
36672 KB read 4684 KB written
AllegroStore 2.1 9-199

ObjectStore source
23 commits 1 readonly commits
45 aborts 0 two phase transactions
45 deadlocks 0 lock timeouts

client #170 (elvis/8476/swift $Revision: 1.1.1.2.1.1 $)
10012 messages received 307 callback messages sent
2456 callback sectors 2304 succeeded sectors
31676 KB read 3964 KB written
19 commits 0 readonly commits
44 aborts 0 two phase transactions
44 deadlocks 0 lock timeouts

Client connections processing a client message:
client #166 (elvis/8484/swift $Revision: 1.1.1.2.1.1. $) ->

get_blocks2 mapped

Client connections waiting for a lock:
client #165 (elvis/8474/swift $Revision: 1.1.1.2.1.1 $) ->
upgrade_locks2
write locking database #16, segment #2, starting at sector
16432 for 8 sectors
client #167 (elvis/8482/swift $Revision: 1.1.1.2.1.1 $) ->
upgrade_locks2
write locking database #16, segment #2, starting at sector
53184 for 8 sectors
client #168 (elvis/8478/swift $Revision: 1.1.1.2.1.1 $) ->
get_blocks2 mapped
read locking database #16, segment #2, starting at sector
36408 for 8 maximum sectors

Client connections awaiting a client message:
 client #159 (elvis/8462//odi/r3/ostore/sym/lib/osdir)
 client #163 (elvis/8470/swift $Revision: 1.1.1.2.1.1 $)
 client #164 (elvis/8472/swift $Revision: 1.1.1.2.1.1 $)
 client #169 (elvis/8480/swift $Revision: 1.1.1.2.1.1 $)
 client #170 (elvis/8476/swift $Revision: 1.1.1.2.1.1 $)

The pathname of the executable is $OS_ROOTDIR/bin/ossvrstat.
AllegroStore 2.1 9-200

ObjectStore source
AllegroStore 2.1 9-201

ObjectStore source
[This page intentionally left blank.]
AllegroStore 2.1 9-202

ObjectStore source
Chapter 10 User utilities

10.1 Using the ObjectStore documentation

This is the last of three chapters reproduced from the ObjectStore manuals with minor

modifications. The other two are chapter 8 Database maintenance & administration and

chapter 9 Administration utilities.

This section of the manual is included as an extended reference. Not all of the existing

ObjectStore documentation is provided. Ignore spurious references to other ObjectStore

documents.

ObjectStore manuals are written for C++ users; the C++ notation you see here does not

apply to AllegroStore. If a Lisp equivalent exists, we have already introduced it in the

AllegroStore manual; these chapters are provided so that you may read the relevant source

documentation.
AllegroStore 2.1 10 - 203

ObjectStore source
10.2 In this chapter

This chapter describes user-level ObjectStore utilities used for creating and manipulating

ObjectStore databases and the directories that contain them. (Utilities for administering

databases are described in Administration utilities.)

The following table summarizes these utilities. Each utility is discussed in greater detail

later in the chapter.

Utility Description

oschangedbref Changes database references

oschgrp Changes the GID of directories or databases

oschmod Changes permission modes of directories or data-

bases

oschown Changes the ownership of directories or databases

oscompact Consolidates ObjectStore databases

oscp Creates a copy of an ObjectStore database

osdf Displays information on disk utilization for an

ObjectStore file system

osglob For ObjectStore files, performs filename expansion

on the specified wordlist

oshostof Tells you what host a database is on

osls Lists the contents of an ObjectStore directory

osmkdir Creates an ObjectStore directory

osmv Renames an ObjectStore database or directory

osrm Removes a database from its host Server and direc-

tory database

osrmdir Removes an ObjectStore directory from the direc-

tory database

ossetasp Finds or sets the application schema database for an

executable

ossevol Performs simple schema evolution

ossize Reports the size of an ObjectStore database and its

segments

ossvrping Reports whether a Server is running on a specified

host

ostest Returns a value of true or false for a conditional test
10 - 204 AllegroStore 2.1

ObjectStore source

Symbolic links
to

commands in
/bin
By default, there are symbolic links to all commands located in $OS_ROOTDIR/bin
through /usr/bin, and to commands located in $OS_ROOTDIR/admin through /etc,

so that you need not add OS_ROOTDIR to your search path.

The user-level commands are prefixed with os, and most are analogous to shell com-

mands; they include oschgrp, oschmod, oschown, osls, osmkdir, osmv, osrm,

and osrmdir. In most cases, you can use ObjectStore utilities and their corresponding

shell commands interchangeably on operating system files and directories containing

ObjectStore file databases; any differences are noted in the documentation for a particular

utility.

Where the input name is a file database name, the commands simply pass the name on to

the corresponding system command (except oscp). Those commands that modify an indi-

vidual database file in any way (oschgrp, oschmod, oschown, osmv, and osrm)

attempt to verify that the file being operated on is in fact a database, by calling

os_database::lookup() on the path before operating on it. This verification is only

done, however, if neither -f (force) nor -R (recursive) is specified. If force or recursive

flags are specified, the paths are simply passed on to the shell without further checking.

This means, for example, that

osrm /foo/bar

removes /foo/bar only if it is a database, while

osrm -f /foo/bar

removes /foo/bar regardless of what type of file it is.

osverifydb Verifies that pointers within a database are valid

osversion Prints the version of ObjectStore you are using

Utility Description
AllegroStore 2.1 10 - 205

ObjectStore source

Changing
database

references
10.3 oschangedbref

oschangedbref db from to

Changes the database references from a database. Both from and to are one of:

The pathname of the executable is $OS_ROOTDIR/bin/oschangedbref.

from or to argument option Function

name For the from argument, an absolute path-

name that includes a server host prefix.

For the to argument, a relative name.

-n name For the to argument only, a relative

name. This option must be used for names

beginning with a hyphen.

-i db The ID of the existing database db

-I id1 id2 id3 A specified ID (three unsigned decimal

numbers)
10 - 206 AllegroStore 2.1

ObjectStore source

Changing
GID
10.4 oschgrp

oschgrp [-R][-f] group pathname...

Changes the group ID (GID) of the directories or databases given in pathname... to

group. The group is a group name or number found in the GID file, /etc/group. You

must belong to the specified group and be the owner of the database, or be the super-user.

-f and -R are identical to the shell chgrp command’s force and recursive options,

respectively.

oschgrp can perform wildcard processing similar to Unix shell wildcards (*, ?, {},

and []). You must quote the wildcard with quotation marks (“”) or a backslash (\) to keep

the shell from misinterpreting the asterisk as a shell wildcard.

oschgrp supports all the arguments of the shell command chgrp, and it accepts a

combination of rawfs pathnames and file pathnames.

The pathname of the executable is $OS_ROOTDIR/bin/oschgrp.
AllegroStore 2.1 10 - 207

ObjectStore source

Changing
permissions
10.5 oschmod

oschmod [-R][-f] new-mode pathname...

Changes the permissions mode of the directories and databases given in pathname as

arguments to new-mode. You must be the owner of the database or the super-user in order

to change its mode. Execute permissions are relevant only to directories. The mode of each

named file is changed according to new-mode, which may be absolute or symbolic, as fol-

lows.

Absolute Modes. An absolute mode is an octal number constructed from the OR of the

following modes (note that execute is meaningful only for directories):

Symbolic Modes. A symbolic mode has the form:

[who] op permission [op permission] ...

who is a combination of:

If who is omitted, the default is a, but the setting of the file creation mask (see umask
in sh(1) or csh(1) for more information) is taken into account. When who is omitted,

oschmod does not override the restrictions of your user mask.

op is one of:

Octal
number

Function

400 Read by owner.

200 Write by owner.

100 Execute (search in directory) by owner.

040 Read by group.

020 Write by group.

010 Execute (search) by group.

004 Read by others.

002 Write by others.

001 Execute (search) by others.

who option Type of permission it grants

u User permissions

g Group permissions

o Others

a All, or ugo

op option Function

+ To add the permission

- To remove the permission
10 - 208 AllegroStore 2.1

ObjectStore source
= To assign the permission explicitly (all other bits for

that category, owner, group, or others, are reset).
AllegroStore 2.1 10 - 209

ObjectStore source
permission is any combination of:

The letters u, g, or o indicate that permission is to be taken from the current mode

for the user-class.

Omitting permission is useful only with =, to take away all permissions.

oschmod can perform wildcard processing similar to Unix shell wildcards (*, ?, {},

and []). You must quote the wildcard with quotation marks (“”) or a backslash (\) to keep

the shell from misinterpreting the asterisk as a shell wildcard.

oschmod supports all the arguments of the shell command chmod. -f and -R are

identical to the shell chmod command’s force and recursive options, respectively. Note

that wildcards must be quoted with the backslash (\) character to get them past the shell,

for example, sax::/charlie*.

The pathname of the executable is $OS_ROOTDIR/bin/oschmod.

permission option Function

r Read

w Write

x Execute
10 - 210 AllegroStore 2.1

ObjectStore source

Changing
owner
10.6 oschown

oschown [-R][-f] owner[.group] pathname...

Changes the ownership of the directories or databases given in pathname as arguments to

owner. The owner is a user name found in the password file, /etc/passwd. Only the

super-user may change the owner of a directory or database.

oschown can perform wildcard processing similar to Unix shell wildcards (*, ?, {},

and []). You must quote the wildcard with quotation marks (“”) or a backslash (\) to keep

the shell from misinterpreting the asterisk as a shell wildcard.

oschown supports all the arguments of the shell command chown. -f and -R are

identical to the shell chown command’s force and recursive options, respectively. It

accepts a combination of rawfs pathnames and file pathnames.

oschown supports the arguments -f and -R,the force and recursive options, respec-

tively.

The pathname of the executable is $OS_ROOTDIR/bin/oschown.
AllegroStore 2.1 10 - 211

ObjectStore source

File
systems
10.7 oscompact

oscompact [-dbs_to_compact pathname+]

[-segments_to_compact [pathname segment_number]+]

[-db_references pathname+]

[-segment_references [pathname segment_number]+]

[-compaction_threshold percent_of_deleted_space]

The oscompact utility, running as an ObjectStore client process, compacts the databases

whose pathnames are given after the -dbs_to_compact option flag, as well as those

segments whose database pathname and segment number are given in the -
segments_to_compact option. One of the -dbs_to_compact or -
segments_to_compact arguments must be supplied; all other arguments are optional.

If supplied, the pathnames after the -db_references option name databases that are

considered to contain pointers or ObjectStore references to the databases and/or segments

to be compacted, as are the segments whose database pathname and segment number are

given after the -segment_references option. The segment number used to identify

the s eg men t i s t he number ob t a ined b y a ca l l t o the API func t i on

os_segment::get_number().

Finally, the -compaction_threshold option allows the caller to avoid the compac-

tion of segments that have less than the compaction_threshold percentage of

deleted space. If this option is not supplied, any segment that has internal deleted space

will be compacted. The application programmer’s interface for compaction is

objectstore::compact(). See the ObjectStore Reference Manual for more infor-

mation.

ObjectStoreupports two “file systems” for storing databases, and the compactor can run

against segments in databases in either file system. In the first, and most common case, a

single database is stored in a single host system file. The segments in such a database are

made up of extents, all of which are allocated in the space provided by the host operating

system for the single host file. When there are no free extents left in the host file, and

growth of an ObjectStore segment is required, the ObjectStore Server extends the host file

to provide the additional space. The compactor permits holes contained in segments to be

compacted for return to the allocation pool for the host file, freeing that space for use by

other segments in the same database. However, since operating systems provide no mech-

anism to free disk space allocated to regions internal to the host file, any such free space

will remain inaccessible to other databases stored in other host files.

The ObjectStore raw file system, on the other hand, stores all databases in a single region,

on either one or more host files or a “raw partition”. When using the raw file system, any

space freed by the compaction operation can be reused by any segment in any database

stored in the raw file system.

The compactor compacts all C and C++ persistent data, including ObjectStore

collections, indexes, and bound queries, and correctly relocates pointers and all forms of

ObjectStore references to compacted data. ObjectStore os_reference_local
references are relocated assuming they are relative to the database containing them. The

compactor respects ObjectStore clusters, in that compaction ensures that objects allocated
10 - 212 AllegroStore 2.1

ObjectStore source

Limitations
in a particular cluster remain in the cluster, although the cluster itself may move as a result

of compaction.

The following data restrictions must be observed in using the compactor:

• Unions requiring user discriminant functions: Union discriminant functions re-

quire access to the representation to be compacted in order to run and therefore

cannot be compacted.

• Data types that cannot be compacted: Some data structures become invalid as

a result of compaction. A classic example is a hash table that hashes on the

offset of an object within a segment. Because compaction modifies these off-

sets, there is no way such an implicit dependence on the segment offset can be

accounted for by compaction. Therefore, the compacted hash table becomes

invalid. Of course, ObjectStore collections and indexes are valid after compac-

tion.

• ObjectStore versioned data cannot be compacted.

• Since the ObjectStore retain_persistent_addresses facility requires that persis-

tent object locations within a segment remain invariant, no client application us-

ing this facility and referencing segments to be compacted can run concurrently

with the ObjectStore compactor.

• Transient ObjectStore references into a compacted segment become invalid af-

ter compaction completes.

The pathname of the executable is $OS_ROOTDIR/bin/oscompact.
AllegroStore 2.1 10 - 213

ObjectStore source

Copying
databases
10.8 oscp

oscp source-pathname destination-pathname

Copies the ObjectStore database source-pathname to destination-pathname.
If the destination database exists, it is deleted before the copy is performed.

Note: oscp takes only non-wildcard pathnames, neither of which may be a directory.

oscp contacts the Server to ensure that the database being copied is transaction-consis-

tent and fully up to date, but cp does not. Therefore, you should use cp on a file database

only if the Server handling access to the database has been shut down with ossvrshtd.

Otherwise, use oscp.

Using cp can sometimes produce a database in an inconsistent state (if the database was

copied during propagation of data from the log), or in a consistent but out-of-date state (if

the effects of some transactions have not yet been propagated from the log to the database).

A t t emp t ing to ope ra t e o n a n incons i s t en t c opy wi l l fa i l , s i gna l i ng

err_inconsistent_db.

Using cp also results in a copy with same database ID as the original, while oscp gives

a new, unique ID to the copy. This is important only if you have applications that rely on

the uniqueness of these IDs. If you use cp, you can give the copy a new, unique ID with

os_database::set_new_id().

oscp accepts a combination of rawfs pathnames and file pathnames. To move a data-

base from a file to a rawfs or vice versa, you must use oscp; cp will not work correctly.

The pathname of the executable is $OS_ROOTDIR/bin/oscp.
10 - 214 AllegroStore 2.1

ObjectStore source

Showing
disk space
and usage
10.9 osdf

osdf hostname

Shows disk space and utilization for the ObjectStore file system on the specified host. For

example:

% osdf elvis
Filesystemkbytesusedavail capacity

elvis9574953395215 0%

The pathname of the executable is $OS_ROOTDIR/bin/osdf.
AllegroStore 2.1 10 - 215

ObjectStore source

Performing
filename

expansion
10.10 osglob

osglob wordlist

Performs ObjectStore filename expansion on wordlist.

osglob can perform wildcard processing similar to Unix shell wildcards (*, ?, {}, and

[]). You must quote the wildcard with quotation marks ("") or a backslash (\) to keep the

shell from misinterpreting the asterisk as a shell wildcard.

The pathname of the executable is $OS_ROOTDIR/bin/osglob.
10 - 216 AllegroStore 2.1

ObjectStore source
10.11 oshostof

oshostof pathname

Takes one argument, a database pathname, determines what host the database is on, and

prints the name of the host to standard output.

oshostof works for both file and rawfs databases. The normal pathname syntax is

supported, including the OS_DIRMAN_HOST compatibility feature.

A typical use is as follows:

ossvrchkpt ‘oshostof a/b/c‘

The pathname of the executable is $OS_ROOTDIR/bin/oshostof.
AllegroStore 2.1 10 - 217

ObjectStore source

Listing
directory
contents
10.12 osls

osls [-dRlsu] [-Rlu] pathname ...

If pathname is a directory, osls lists the contents of the directory.

The host on which each database resides is identified with its canonical name, even if an

alternative name was specified to create it.

osls can perform wildcard processing similar to Unix shell wildcards (*, ?, {}, and

[]). You must quote the wildcard with quotation marks ("") or a backslash (\) to keep the

shell from misinterpreting the asterisk as a shell wildcard.

osls ignores trailing and multiple slashes in pathnames. It accepts a combination of

rawfs pathnames and file pathnames.

Options for osls are:

The pathname of the executable is $OS_ROOTDIR/bin/osls.

Option Function

-d Lists the information about the directory itself, rather than the

contents.

-R Corresponds to the shell ls command’s recursive option.

-u Lists the uids of the contained databases.

-l Displays information about directory contents in long format,

including the size in bytes.

-s Causes the size to be displayed in 1 KByte blocks.
10 - 218 AllegroStore 2.1

ObjectStore source

Creating a
directory
10.13 osmkdir

osmkdir [-p] directory

Creates an ObjectStore directory. The -p option recursively creates missing directories to

make the supplied directory path exist. osmkdir supports all the arguments of the shell

command mkdir. It accepts a combination of rawfs pathnames and file pathnames.

The pathname of the executable is $OS_ROOTDIR/bin/osmkdir.
AllegroStore 2.1 10 - 219

ObjectStore source

Renaming
directories

and
databases
10.14 osmv

osmv [-fi] directory1 directory2

osmv [-fi] database1 database2

osmv [-fi] database directory

Renames directories or databases in a file system. The first and second forms rename a

directory and a database, respectively. The third form moves the named database to the

named directory, retaining the same name in the new directory.

osmv can perform wildcard processing similar to Unix shell wildcards (*, ?, {}, and

[]). You must quote the wildcard with quotation marks ("") or a backslash (\) to keep the

shell from misinterpreting the asterisk as a shell wildcard.

osmv supports all the arguments of the shell command mv. It does not accept a combi-

nation of rawfs pathnames and file pathnames; pathnames must represent either all rawfs

databases and directories or all file databases and operating system directories.

The -f option overrides the -i option as well as mode restrictions.

The -i option enables interactive mode, as for the mv command.

Note: using either mv or osmv can result in an inconsistent database, if the Server

crashes immediately following invocation of the command. When the Sever is restarted, it

might not be able to locate the database to perform the recovery operations necessary to

restore the database to a consistent state. In such a case, attempting to operate on an incon-

sistent copy will fail, signaling err_inconsistent_db.

The pathname of the executable is $OS_ROOTDIR/bin/osmv.
10 - 220 AllegroStore 2.1

ObjectStore source
10.15 osrm

osrm [-firR][-iR] database...

osrm -u [-f] Server-host uid0 uid1 uid2

Removes ObjectStore databases from the database’s host Server, as well as from the direc-

tory database. To remove a database, you must have write permission in its directory, but

you don’t need write access to the database itself.

The first form is used for removing databases from the rawfs and the Server. This is the

form normally used by users.

The second form is used for removing databases from the ObjectStore Server only and

is normally used only by the system administrator for cleaning up “dangling references” in

the Server directory of uids which were located by osrverf. To use this form, you must

have the same uid as the user who started the Server on host Server-host. uid0,

uid1, and uid2 are the three parts of the database uid, as obtained by osls -u (see

osls).

osrm accepts these options as command arguments:

osrm can perform wildcard processing similar to Unix shell wildcards (*, ?, {}, and

[]). You must quote the wildcard with quotation marks ("") or a backslash (\) to keep the

shell from misinterpreting the asterisk as a shell wildcard.

osrm supports all the arguments of the shell command rm. It accepts a combination of

rawfs pathnames and file pathnames.

The pathname of the executable is $OS_ROOTDIR/bin/osrm.

Option Function

-f Suppresses an error message if the specified database is not

found.

-i Asks whether you want to delete each specified database.

-r Recursively deletes all databases in the directory database,

starting from the selected pathname.

-R Removes an entry from the rawfs only, without actually

deleting the database from the Server.

This can be useful if you have dangling references (that is, an

entry is in the rawfs, but there is no database on the Server),

or if you have moved the entry from one rawfs to another.
AllegroStore 2.1 10 - 221

ObjectStore source

Removing
directories
10.16 osrmdir

osrmdir directory...

Removes ObjectStore directories from the directory database. To remove a directory, the

directory must be empty, and you must have write permission in its parent (but you don’t

need write access to the directory itself).

osrmdir can perform wildcard processing similar to Unix shell wildcards (*, ?, {},

and []). You must quote the wildcard with quotation marks ("") or a backslash (\) to keep

the shell from misinterpreting the asterisk as a shell wildcard.

osrmdir supports all the arguments of the shell command rmdir. It accepts a combi-

nation of rawfs pathnames and file pathnames.

The pathname of the executable is $OS_ROOTDIR/bin/osrmdir.
10 - 222 AllegroStore 2.1

ObjectStore source

Application
schema
10.17 ossetasp

ossetasp executable-pathname database-pathname

ossetasp -p executable-pathname

The first form patches the specified executable to look for its application schema in the

specified database. The second form (using -p) shows the pathname of the specified exe-

cutable’s application schema database.

The pathname of the executable is $OS_ROOTDIR/bin/ossetasp.
AllegroStore 2.1 10 - 223

ObjectStore source
10.18 ossevol

ossevol workdb schemadb evolvedb+ [keyword-options]

Used instead of a call to os_schema_evolution::evolve() for evolutions with no

user-defined transformer functions, reclassifiers, or illegal pointer handlers.

The arguments are:

The keyword-options are:

Argument Function

workdb the work database used during schema evolution

schemadb the database containing the schema to which to

evolve

evolvedb+ the database(s) to be evolved as a unit

Keyword option Function

-task_list filename Specifies the name of the file

to which the task list will be

written. Use “-” for

stdout.

-classes_to_be_removed class-name(s) Specifies the names of the

classes to be removed.

-classes_to_be_recycled class-name(s) Specifies the names of the

classes to be recycled; by

default, the storage associated

with all classes is recycled.

-local_references_are_db_relative yes
| no

Assumes that all local

references are relative to the

database, as specified by one

of the arguments yes or no
(the default).

-resolve_ambiguous_void_pointers yes
| no

Resolves an ambiguous void

pointer to the outermost

enclosing colocated object as

specified by one of the

arguments yes or no.

No is the default.

-workspace workspace-name(s) Identifies the workspace for

versioned databases to be

evolved.
10 - 224 AllegroStore 2.1

ObjectStore source
The pathname of the executable is $OS_ROOTDIR/bin/ossevol.

-explanation_level n A number from 1 to 3;
primarily an internal

debugging aid.

Keyword option Function
AllegroStore 2.1 10 - 225

ObjectStore source

Reporting
database and
segment sizes
10.19 ossize

ossize [options] pathname

Reports the size of the specified database and the size of its segments. Can also list the

types used by the database and the number of stored instances of each type.

Persistently allocated pointers (that is, pointer to pointers, such as new(db) thing*
or new(db) thing*[100]) are not distinguished as separate types, but are displayed

together.

Options are:

Option Function

-a Prints out the total length of the info segment imme-

diately after the length of the data segment.

-c Prints the type contents for each segment.

-C Prints the type contents for the entire database.

-D pathname Prints information about a directory database

instead of an individual database.

pathname is interpreted as the name of a Server

host on which to look for the directory database.

-f Prints information about the location of all free

blocks of storage in a segment.

-n segment-number Prints information only about the segment specified

as segment-number, rather than information

about every segment in the database. segment-
number is a “data segment” number, such as those

printed by the -a option.

-n is particularly useful in conjunction with -o and

-c, since it reduces the amount of output.

-o Prints a complete table of every object in the seg-

ment, showing its offset and size. This table con-

tains an enormous amount of data, which can be

useful in debugging.

Do not confuse this with the -0 option, described

below.

-ss Prints the type summaries by the space used by the

instances of each type (this is the default).

-sn Prints the type summaries by the number of

instances of each type.

-st Prints the type summaries alphabetically by type-
name.
10 - 226 AllegroStore 2.1

ObjectStore source
ossize prints out the comment for each segment that has a (non–zero-length) com-

ment.

The pathname of the executable is $OS_ROOTDIR/bin/ossize.

-w workspace-name Runs ossize with the current workspace set to

workspace-name, which must be the name of a

workspace stored in this database. This allows you

to examine the size (and contents, with -c and f) of

a particular version of the database.

If you don’t provide a -w argument, the “transient

workspace” is used as the current workspace (that

is, the usual default).

If there is a segment that isn’t known by the current

workspace, ossize prints Error: there is
no version of this segment in this
workspace.

-W Prints a list of all the named workspaces that are

stored in the specified database.

When specified without other arguments, -W prints

only workspace names, with no information about

database size.

-0 Causes ossize to include the internal segment 0 in

type summaries.

This implies -c if neither -c nor -C is set.

Option Function
AllegroStore 2.1 10 - 227

ObjectStore source
10.20 ossvrping

ossvrping [-v] [hostname]

Reports whether the Server running on the specified host is responding to ping-messages.

For example:

% ossvrping elvis
elvis is alive

ossvrping defaults first to OS_SERVER_HOST, then to the local host. The -v argu-

ment provides more information when it fails to contact the Server.

The pathname of the executable is $OS_ROOTDIR/bin/ossvrping.
10 - 228 AllegroStore 2.1

ObjectStore source
10.21 ostest

ostest -dfprsw pathname

This command works only on rawfs databases.

Takes one of the following options and an ObjectStore pathname, and returns with an exit

code of zero (true) or non-zero (false).

The option is one of:

The pathname of the executable is $OS_ROOTDIR/bin/ostest.

Option Function

-d pathname is a directory

-f pathname is a database

-r requestor has read access to pathname

-s pathname is not a directory and has a non-zero size

-w requestor has write access to pathname

-p pathname is a file pathname
AllegroStore 2.1 10 - 229

ObjectStore source

Verifying
pointers
10.22 osverifydb

osverifydb [-o] [-v] [-m][-w workspace-name][-limit number]
pathname

Verifies all pointers contained within a database identified by pathname. Verification in

this case implies:

• there are no transient pointers, and

• persistent pointers point to valid (not deleted) storage, and the declared type for

a pointer as determined from the schema matches the actual type of the pointed-

to object.

Options are:

When osverifydb detects an invalid pointer, it indicates the location and the value of

the pointer. Whenever possible, it prints out a symbolic path to the bad pointer, starting

with the outermost enclosing object. For example, the following output is the result of run-

ning osverifydb on a database that contains an object of type c1, with the bad pointers

identified by the error messages.

beethoven% osverifydb /camper/van
Verifying database beethoven::/camper/van
Verifying segment 2 Size: 8192 bytes

Pointer to non-persistent storage.
 Pointer Location: 0x6010000. Contents: 0x1.
 Lvalue expression for pointer: c1::m1

Pointer type mismatch; the declared type is incompatible with the

Option Function

-o Prints out every object in the database using the

metaobject value protocol.

-v Tells osverifydb to print every pointer value.

-m Verifies metaobjects. With this option, any

metaobjects encountered when using the -o
option are printed.

-w workspace-name Verifies pointers for versioned databases in the

specified workspace.

-limit number Limits to number the error messages reported for

any segment in the database.
10 - 230 AllegroStore 2.1

ObjectStore source
actual type of the object
 Pointer Location: 0x6010004. Contents: 0x601003c.
 Declared type c2*. Actual type: c3*.
 Lvalue expression for pointer: c1::m2

Pointer to deleted storage
 Pointer Location: 0x6010008. Contents: 0x6010040.
 Declared type c2*.
 Lvalue expression for pointer: c1::m3

Pointer type mismatch; the declared type is incompatible with the
actual type of the object
 Pointer Location: 0x601000c. Contents: 0x6010028.
 Declared type c2*. Actual type: c1*.
 Lvalue expression for pointer: c1::m4
 Lvalue expression for pointed to object: c1::ma[5]

Pointer type mismatch; the declared type is incompatible with the
actual type of the object
 Pointer Location: 0x6010010. Contents: 0x6010044.
 Declared type c2*. Actual type: char*.
 Lvalue expression for pointer: c1::m5
 Lvalue expression for pointed to object: char[0]

Pointer to non-persistent storage.
 Pointer Location: 0x6010014. Contents: 0x1.
 Lvalue expression for pointer: c1::ma[0]

Pointer type mismatch; the declared type is incompatible with the
actual type of the object
 Pointer Location: 0x6010028. Contents: 0x601003c.
 Declared type c2*. Actual type: c3*.
 Lvalue expression for pointer: c1::ma[5]

Pointer to non-persistent storage.
 Pointer Location: 0x6010068. Contents: 0x1.
 Lvalue expression for pointer: void*[5]
 Verified 5 objects in segment

Verified 5 objects in database
beethoven%

The pathname of the executable is $OS_ROOTDIR/bin/osverifydb.
AllegroStore 2.1 10 - 231

ObjectStore source
10.23 osversion

osversion

Prints the version of ObjectStore being used on your machine’s architecture. Here is the

output on a SPARCstation:

immerglück% osversion
ObjectStore Release 5.0 Service Pack 3 for Solaris
2.x (SunOS 5.0) SPARC/SunPro

The pathname of the executable is $OS_ROOTDIR/bin/osversion.
10 - 232 AllegroStore 2.1

ObjectStore source
AllegroStore 2.1 10 - 233

ObjectStore source
[This page intentionally left blank.]
10 - 234 AllegroStore 2.1

Index

A
abort-transaction (function, allegrostore package) 135
About commit 120
About copying database files 117
About multitasking 116
About persistent-standard-object 119
About read-locks and write-locks 119
About removing database files 117
About roll back 120
About schema 119
About shell environment variables 120
About the configuration database 116
About transaction 120
absolute (local database filename type) 59
access control 36

ObjectStore Server 161
accessor function 57
accessor function (defined) 119
add-persistent-ftype (generic function, allegrostore package) 145
AllegroStore

access control 36
client/server architecture 30
client/server locking model 32
concurrency control 32
connection to ObjectStore 23
continuous operation 37
data caching 24
deadlock detection 33
disk access overhead 25
file system choices 35
garbage collection 29
granularity when locking objects 24
heterogeneity 34
locking objects 24
performance monitoring 35
per-object network overhead 25
referential integrity 28, 49
relationships 26
restart and recovery 30
server 30
what does it do? 23
what is it? 23

allegrostore (condition, allegrostore package) 150
AllegroStore 2.1 235

allegrostore package 39
allegrostore 150
allegrostore-class-mismatch 151
allegrostore-error 150
allegrostore-exception 154
allegrostore-exception-deadlock 154
allegrostore-exception-id 155
allegrostore-exception-mismatch-in-config-file 155
allegrostore-package-missing 155
allegrostore-release-heap 125
allegrostore-specific-error 152
allegrostore-specific-error-code 155
allegrostore-version 125
as-config-path 125
channel 125
close-database 129
collect-references 141
db 125
delete-instance 136
describe-db 134
dump-schema 133
eqo 140
equalo 140
for-each 137
for-each* 91, 139
for-each-class 92, 140
generic-gethash 142
generic-maphash 143
generic-puthash-push 143
generic-remhash 142
instance-count 140
make-slot-hash-table 143
map-references 141
object-from-object-id 142
object-id 142
open-database 129
owner 211
permission 208
persistent-standard-class 58, 117
preserve-pointer 136
read-lock-timeout 147
retrieve 141
schema 134
set-current-database 129
set-schema 132
slot-cons 137
slot-delete 137
slot-gethash 143
slot-maphash 144
slot-puthash-push 143
slot-remhash 144
slot-svref 136
slot-valid-p 137
transaction-active-p 134
236 AllegroStore 2.1

with-current-database 128
with-database 126
with-transaction 134
write-lock-timeout 147

AllegroStore version number 125
allegrostore-class-mismatch (condition, allegrostore package) 63, 151
allegrostore-error (condition, allegrostore package) 150
allegrostore-exception (condition, allegrostore package) 154
allegrostore-exception-deadlock (conditon, allegrostore package) 154
allegrostore-exception-id (generic function, allegrostore package) 155
allegrostore-exception-mismatch-in-config-file (condition, allegrostore package) 155
allegrostore-package-missing (condition, allegrostore package) 155
allegrostore-release-heap (variable, allegrostore package) 125
allegrostore-specific-error (condition, allegrostore package) 152
allegrostore-specific-error-code (generic function, allegrostore package) 155
allegrostore-version (variable, allegrostore package) 125
:allocation (slot option) 118
allocation type (defined) 57
Application schema 223
application schema

locating 223
arguments to open-database and with-database allowing instance/pointer/segment alloca-

tion 123
AS_CONFIG_PATH (shell environment variable) 40, 121
as-config-path (variable, allegrostore package) 125
asdump (program to save database to ASCII file) 126
asrestore (program to convert asdump ASCII file to database) 126
asverify (program to verify database consistency) 129
atomic (defined) 65
atomic (transactions) 120
authentication 162

user interface to 162
automounter pathnames 159

B
backup and restore

of ObjectStore databases 177
begin-transaction (function, allegrostore package) 134
blob-data (generic function, allegrostroe package) 144
blob-name (generic function, allegrostore package) 145
blob-read (function, allegrostore package) 145
blobs 144

creating with make-instance 144
blob-size (generic function, allegrostore package) 144
blob-write (function, allegrostore package) 145
bug correction 20
bug fixes (see patches) 20
bug reporting 19
bugs 19

C
Cache directory 170
Cache Manager
AllegroStore 2.1 237

see ObjectStore Cache Manager
Cache manager 169
Cache manager parameters 169
cache, client 169
changing

database or directory GID 207
database references 206
directory or database owner 211

Changing database references 206
Changing GID 207
Changing one of the attributes of an existing instance 46
Changing owner 211
Changing permissions 208
Changing the schema 43
channel (variable, allegrostore package) 125
check in or persisten objects 100
check out of persistent objects 100
cl: prompt 18
class (defined) 56
class (the shared slot) 71
client 31
Client cache 169
client cache 169
Client environment variables 171
client environment variables 171
client/server architecture 30
CLOS

the Common Lisp Object System (defined) 39
close-database (function, allegrostore package) 129
code sample 39
code samples in the tutorial 39
collect-references 95
collect-references (function, allegrostore package) 141
commit 67
commits (what a transaction can do, defined) 42
committed (as applied to transactions) 42
committed (transactions) 120
committed (vs. rolled back) 65
commit-transaction (function, allegrostore package) 135
Common Lisp: the Language (2nd edition) 19
compaction

of ObjectStore databases 212
condition hierarchy 150
conditions 150
configuration database (defined) 116
configuration directory

the directory containing files needed at runtime 121
copying

database 214
Copying databases 214
Creating a database 40
creating a database, how to 40
Creating a directory 219
creating a directory 219
238 AllegroStore 2.1

Creating databases 159
current database (defined) 62

D
data caching in AllegroStore 24
Data propagation 164

defined 164
Data segment 164
data segment

defined 164
database

how to create 40
what is it? 35
what types of Lisp objects can be stroed 73

database (what it contains) 43
Database manipulation 126
database operations (when they can be done) 42
database, ObjectStore

see ObjectStore database
database-of (generic function, allegrostore package) 136
database-of (method, allegrostore package) 148
databases

multiple 51
db (variable, allegrostore package) 62, 125
dbclass object (defined) 152
deadlock 33, 154

example 67
deadlock (defined) 70
deadlock resolution 122
deadlock victim algorithm (defined) 122
dead-pointer (description) 93
decode-from-database (generic function, name by UNEXPORTED symbol in allegrostore

package) 74
defclass (macro, common-lisp package) 130

AllegroStore modified slot options 130
new slot keywords used by AllegroStore 131
pecularities in defclass forms 41
used to redefine a class and a schema 43

delete-instance (generic function, allegrostore package) 136
delete-instance (method, allegrostore package) 136
Deleting instances 48
describe-db (function, allegrostore package) 134
describe-ftype (function, allegrostore package) 146
Directory Manager

see ObjectStore Directory Manager 174
Directory Manager database (where stored) 59
Directory Manager databases 59
Directory manager databases 174
Displaying the contents of the database 42
dribble (function) 20
dribble-bug (function, excl package) 20

how it works 20
dump-schema (function, allegrostore package) 133
AllegroStore 2.1 239

dynamic updating (explained) 62

E
eager (updating protocol) 97
encode-in-database (generic function, named by UNEXPORTED symbol in allegrostore

package) 74
environment variable

OS_CACHE_DIR 171
OS_CACHE_SIZE 171
OS_COMMSEG_DIR 171
OS_DEF_EXCEPT_ACTION 171
OS_DIRMAN_HOST 171
OS_DISABLE_PRE2_QUERY_SYNTAX_SUPPORT 172
OS_ENABLE_PRE2_QUERY_SYNTAX_WARNINGS 172
OS_HANDLE_TRANS 172
OS_INC_SCHEMA_INSTALLATION 172
OS_INHIBIT_TIX_HANDLE 172
OS_LOG_TIX_FORMAT 172
OS_PORTS_FILE 173
OS_RESERVE_AS 173
OS_ROOTDIR 163, 169, 173

environment variables
AS_CONFIG_PATH 40
OS_ROOTDIR 39

eqo (function, allegrostore package) 140
equal hash table 79
equalo (function, allegrostore package) 140
err_deref_transient_pointer 172
err_null_pointer 172
error reporting 176
Error reporting by ObjectStore daemons 176
evolve()

os_schema_evolution, defined by 224
exact mode (defined) 62
exact mode (errors in) 62
examples

a with-transaction form can be executed more than once 70
locking objects 32
relationships 26

F
file database 59
file database (where stored) 59
File Databases 159
File databases 180
file databases 59, 159
File systems 212
file systems

choices 35
Filename restrictions 181
fixing bugs 20
fonts used in text 17
for-each (macro, allegrostore package) 137
240 AllegroStore 2.1

for-each* (function, allegrostore package) 91, 139
for-each-class (macro, allegrostore package) 92, 140
Functions, macros, and methods 125

G
garbage collection 29
generic-gethash (generic function, allegrostore package) 142
generic-gethash (method, allegrostore package) 142
generic-maphash (function, allegrostore package) 143
generic-maphash function (method, allegrostore package) 143
generic-puthash-push (generic function, allegrostore package) 143
generic-puthash-push (method, allegrostore package) 143
generic-remhash (generic function, allegrostore package) 142
generic-remhash (method, allegrostore package) 142
get-dbtag (function, allegrostore package) 147
getting help 19

H
handler-bind (and allegrostore-error) 150
hash table

equal 79
persistent 79

Hash tables (defined) 79
heterogeneity 34
how to report bugs 19

I
in the database (verify that something is stored) 42
inconsistent state (when the database is left in an) 65
Installation 13
instance (the default slot) 71
instance-count (function, allegrostore package) 140
interactive transactions 99
:inverse (slot option) 118
:inverse (slot) 47
:inverse (slot option)

only :persistent slots can have :inverse specified 88
Inverse functions 47
inverse functions 87
inverse functions (as methods specialized on the declared type of the slot) 89
:inverse slot option 88
invoke-restart 152
isolated (transactions) 120
iterator

a function that iterates over a databse (e.g. for-each) 90

L
lazy (updating algorithm) 97
lazy (updating protocol) 97
lazy updating (defined) 97
LD_LIBRARY_PATH (shell environment variable) 121
let* (compared to for-each) 138
AllegroStore 2.1 241

Limitations 213
allegrostore

lisp-value-to-pptr (function, name unexported from allegrostore package) 147
Listing directory contents 218
listing directory contents 218
lock (defined) 70, 120
locking objects in AllegroStore 24
Log 163
log 163
log buffer

defined 163
log database

defined 163
log segment

defined 163
long Transactions 109

M
make-instance (generic function, common-lisp package) 42, 58, 117, 135
make-slot-hash-table (method, allegrostore package) 143
manual outline 18
map-references 95
map-references (function, allegrostore package) 141
:metaclass (defclass argument to defclass) 41
metaclass (class’s class) 58
metaclass (in determining persistent objects) 117
methods (inverse functions are really) 88
mmap system call 173
Moving an object from one database to another 51
multiple databases 51
multiprocessing in AllegroStore 98
multiversion concurrency control 108
MVCC (multi-version concurrency control) 108

N
nested transaction (defined) 68
Nested transactions 68
nested transactions 120
nested with-transaction forms (supported) 68
non-iterator

a function that creates a list of objects in a database (e.g. retrieve) 90
notification-kind (method, allegrostore package) 148
notification-object (method, allegrostore package) 148
notification-queue-status (function, allegrostore package) 148
notification-receive (function, allegrostore package) 149
Notifications 110, 148
notification-string (method, allegrostore package) 149
notification-subscribe (method, allegrostore package) 149
notification-unsubscribe (method, allegrostore package) 149
notify (method, allegrostore package) 149
242 AllegroStore 2.1

O
object identifier (defined) 141
Object identifiers 141
Object interrelations 44
Object manipulation 135
object updating (defined) 97
object-from-object-id (function, allegrostore package) 142
object-id (function, allegrostore package) 142
objects

types that can be stored in a database 73
ObjectStore

showing current version 232
ObjectStore (persistent storage manager) 59
ObjectStore Cache Manager 169

Cache Directory parameter 170
client cache 169
Commseg Directory parameter 170
Hard Allocation Limit parameter 170
parameters file 169
Soft Allocation Limit parameter 170
specifying parameter values 170

ObjectStore database 159
changing GID of 207
changing owner of 211
changing permissions of 208
changing references 206
copying 214
getting size of 226
listing types of 226
moving 220
removing 221
renaming 220
verifying pointers 230

ObjectStore directory
changing GID of 207
changing owner of 211
changing permissions of 208
creating 219
Directory Manager 174–??
listing contents of 218
moving 220
removing 222
renaming 220

ObjectStore Directory Manager 174–??
ObjectStore file system

showing disk space and utilization 215
ObjectStore Processes 160
ObjectStore Server

access control 161
Allow Shared Communications parameter 164
Authentication Required parameter 164
DB Expiration Time parameter 165
Deadlock Victim parameter 165
AllegroStore 2.1 243

deadlock victim selection 165
Direct to Segment Threshold parameter 165
garbage collection wait time 165
Host Access List parameter 166
Log Data Segment Growth Increment parameter 166
Log Data Segment Initial Size parameter 166
Log File parameter 166
Log Record Segment Buffer Size parameter 167
Log Record Segment Growth Increment parameter 167
Log Record Segment Initial Size parameter 167
Max Data Propagation Per Propagate parameter 167
Max Data Propagation Threshold parameter 167
Message Buffer Size parameter 167
Message Buffers parameter 167
Notification Retry Time parameter 167
OS_ROOTDIR environment variable 163, 169
osserver command 160
parameters file 163
PartitionN parameter 167
shared memory communications 164
specifying parameter values 163

objectstore source document
permissions 208

ObjectStore utilities
osbackup 182
oschangedbref 206
oschgrp 207
oschhost 184
oschmod 208
oschown 211
oscmrf 185
oscmshtd 186
oscmstat 187
oscompact 212
oscp 214
osdf 215
osglob 216
oshostof 217
osls 218, 221
osmkdir 219
osmv 220
osrestore 189
osrm 221
osrmdir 222
osrverf 221
ossetasp 223
ossevol 224
ossize 226
ossvrchkpt 192
ossvrclntkill 193
ossvrmtr 194
ossvrping 228
ossvrshtd 196
ossvrstat 197
244 AllegroStore 2.1

ostest 229
osverifydb 230
osversion 232

ObjectStore Virtual Memory Mapping Architecture 24
objectstore, the class

set_client_name() 188, 197
On-line backup 177
on-line backup 177
On-line Backup and Restore of ObjectStore Databases 177
on-line restore 177
open-database (function, allegrostore package) 62, 129
OS_AS_SIZE (shell environment variable) 121
OS_AS_START (shell environment variable) 121
OS_CACHE_DIR environment variable 171
OS_CACHE_SIZE environment variable 171
OS_COMMSEG_DIR environment variable 171
OS_DEF_EXCEPT_ACTION environment variable 171
OS_DIRMAN _HOST 181
OS_DIRMAN_HOST environment variable 171
OS_DISABLE_PRE2_QUERY_SYNTAX_SUPPORT environment variable 172
OS_ENABLE_PRE2_QUERY_SYNTAX_WARNINGS environment variable 172
OS_HANDLE_TRANS environment variable 172
OS_INC_SCHEMA_INSTALLATION environment variable 172
OS_INHIBIT_TIX_HANDLE environment variable 172
OS_LOG_TIX_FORMAT environment variable 172
astore

os_notification_get_fd (function, name unexported from allegrostore package) 148
OS_PORT_FILE environment variable 173
OS_RESERVE_AS environment variable 173
OS_ROOTDIR (environment variable) 39
OS_ROOTDIR (shell environment variable) 120
OS_ROOTDIR environment variable 163, 173
os_schema_evolution, the class

evolve() 224
oscp (command for copying database files) 117
osmv (command for moving database files) 117
osrm (shell command to remove database files) 117
osserver command

options 161
ossetasp 117
:os-threads (feature on platform that support multithreading) 98
outline of manual 18
overview of AllegroStore 23
owner (user name found in the objectstore password file, allegrostore package) 211

P
packages

allegrostore 39
using allegrostore 39

page lock contention 105
Parameter terms 163
parameters file
AllegroStore 2.1 245

Server 163
partitions 167
partitions, for Directory Manager databases 167
Password and license management 169
patches 20
patching bugs 20
PATH (shell environment variable) 122
performance monitoring 35
Performing filename expansion 216
permission (database file, allegrostore package) 208
:persistent (potential value of :allocation argument to defclass) 41
persistent class 117
Persistent class slots 49
persistent hash table 79
persistent hash table (defined) 79
Persistent hash tables 142
persistent object 100
persistent object (consists of two parts) 92
persistent object (does not dissappear) 42
persistent pointer (points at the persistent part of a persistent object) 92
persistent-ftype-array-data (generic function, allegrostore package) 146
persistent-ftype-array-n (generic function, allegrostore package) 146
persistent-ftype-array-name (generic function, allegrostore package) 146
persistent-ftype-array-type (generic function, allegrostore package) 146
persistent-hash-table (defined) 142
persistent-standard-class (allegrostore package) 41
persistent-standard-class (discussed) 117
persistent-standard-class (metaclass, allegrostore package) 117
persistent-standard-class (new metaclass, allegrostore package) 58
persistent-standard-class (program, allegrostore package) 117
persistent-standard-object (superclass) 119
Ports File 175
ports file 175
pptr (abbreviation for persistent pointer) 92
allegrostore

pptr-to-lisp-value (function, name unexported from allegrostore package) 147
preserve-pointer (function, allegrostore package) 136
prompt in examples (different from actual prompt) 18

Q
Query functions 90
Query language 137

R
read-locked (defined) 119
read-locked pages (defined) 119
read-locks 67
read-lock-timeout (function, allegrostore package) 147
read-only processing 107
redefine (a class) 43
redefined class (how it begins) 97
reference (defined) 141
246 AllegroStore 2.1

References 141
Referential integrity 49
referential integrity (defined) 49, 95
relationships 26
relative (local database filename type) 59
removing a database 221
removing a directory 222
Removing directories 222
Renaming directories and databases 220
renaming directory and database 220
replacement file management functions (for moving and copying databases) 117
reporting bugs 19
Reporting database and segment sizes 226
restoring ObjectStore databases 177
retried (what can happen to a transaction after a roll back) 42
retries (default number after a transaction) 122
retrieve (function, allegrostore package) 141
Retrieving specific stored instances of a class 45
roll back 67
rolled back (applied to transactions) 42
rolled back (defined) 65
rolled back (transactions) 120
rolled back (vs. committed) 65
rolls back (what a transaction can do, defined) 42

S
scalar slot (same as single-valued slot) 72
schema (defined for traditional databases) 62
schema (defined) 62
schema (function, allegrostore package) 134
schema (how to modify) 62
schema changes (how AllegroStore and CLOS implement) 43
schema manipulation 130
schema resolution (defined) 63
Search order 163, 169
Searching the database and retrieving an instance 46
Sector 164
sector

defined 164
Server

see ObjectStore Server
server 30
Server command line options 161
Server parameters 164
:set (slot option) 118
set of slots (instance composed of) 57
set slot (defined) 46
:set t (defclass option) 45
set_client_name()

objectstore, defined by 188, 197
set-current-database (function, allegrostore package) 129

sets the value of *db* 62
set-dbtag (function, allegrostore package) 147
AllegroStore 2.1 247

set-schema (function, allegrostore package) 132
function for adding classes 62

set-valued persistent slots 72
SHLIB_PATH (shell environment variable on HP) 121
Showing disk space and usage 215
shrinking the transaction log 122
side-effects (code within a transaction should be free of) 42
single-valued persistent slots

slots
single-valued 72

slot-cons (method, allegrostore package) 137
slot-delete (method, allegrostore package) 137
slot-gethash (method, allegrostore package) 143
slot-maphash (mathos, allegrostore package) 144
slot-puthash-push (method, allegrostore package) 143
slot-remhash (method, allegrostore package) 144
slots

set valued 72
slot-svref (method, allegrostore package) 136
slot-valid-p (generic function, allegrostore package) 137
slot-value (function, common-lisp package) 57, 135
Starting the server 160
superclasses (and persistent-standard-object) 119
Symbolic links to commands in /bin 205

T
technical overview 23
the Cache Manager (defined) 60
the Cache Manager (process running on the same machine) 60
the Database Server (defined) 60
traditional database (how the schema gets modified) 62
transaction (defined) 42, 65, 120
transaction (retried automatically after a deadlock) 122
transaction log (defined) 122
transaction model 163
transaction restart (and deadlock) 70
transaction-active-p (function, allegrostore package) 134
Transactions 42, 134
tutorial

code samples 39
types of Lisp objects that can be stored in a database 73

U
Unhandled exceptions 171
:unique (slot option) 118

unique (slot option) 89
Upcoming technical memoranda 21
update-instance-for-redefined-class (generic function, common-lisp package) 97
updating objects (lazy algorithm) 97
:use :memory (arguments to with-database) 44
use-db (restart, allegrostore package) 151
use-db-all (restart, allegrostore package) 151
248 AllegroStore 2.1

use-memory (restart, allegrostore package) 151
use-memory-all (restart, allegrostore package) 151
using the allegrostore package 39
Using the ObjectStore documentation 157
utilities (for database management) 35

V
variable binding clauses (defined) 90
Variables 125
:vector (slot option) 118
verifying database pointers 230
Verifying pointers 230
VMMA (ObjectStore Virtual Memory Mapping Architecture) 24

W
where-clause (defined) 45
where-clause-list (defined) 45
with-current-database (macro, allegrostore package) 128
with-database (macro, allegrostore package) 41, 126
with-open-file (macro, common-lisp package) 41
with-transaction (macro, allegrostore package) 134

example showing a form can be executed more than once 70
write-locked (defined) 119
write-locked pages (defined) 119
write-locks 67
write-lock-timeout (function, allegrostore package) 147
AllegroStore 2.1 249

250 AllegroStore 2.1

	Title/copyrights
	Contents
	Preface
	Chapter 1 Installation
	Chapter 2 Release notes
	2.1 How to use this section

	Chapter 3 Introduction
	3.1 Format of the manual
	Examples may not exactly match what is on the screen
	A note on the prompt

	3.2 An outline of the manual
	3.3 Comments and suggestions
	3.4 Reporting bugs
	excl:dribble- bug
	Patches

	3.5 Upcoming technical memoranda

	Chapter 4 Technical ove�rview
	4.1 Product description - What does AllegroStore do?
	4.1.1 AllegroStore features
	Persistent object access
	Minimal locking overhead
	Locking granularity
	Minimal data caching overhead
	Minimal per-object network overhead
	Minimal disk access overhead
	Transparent lock management

	4.2 Relationships
	What are relationships?
	Example
	Referential integrity
	Garbage collection

	4.3 Distributed object management
	Client/server architecture
	4.3.1 The Server
	What is a server?
	Restart/recovery

	4.3.2 The client
	What is a client?

	4.4 Concurrency control in a client/server environment
	What is concurrency control?
	Client/server locking model
	Lock management
	Example
	Deadlock detection

	4.5 Heterogeneous operation
	What is heterogeneity?

	4.6 An administrator's view of AllegroStore
	What is a database?
	Choice of native or ObjectStore file system
	Database management utilities
	Performance monitoring
	Restart/recovery
	Access control

	4.7 Continuous operation
	Non-stop database backup
	Archive logging protects against media failure

	Chapter 5 Tutorial
	5.1 Getting started
	Put the databases on the server machine
	Use the allegrostore package
	Assumed background
	Further things before you start the tutorial
	with-database and with-transaction
	Our running example

	5.2 The database
	Define the book class
	Create a database and put some stuff in it
	Transactions
	Displaying and verifying the contents of the library
	Displaying the contents of the database
	Changing the schema
	Object interrelations
	Retrieving specific stored instances of a class
	Searching the database and retrieving an instance
	Inverse functions
	The :inverse slot definition
	Deleting instances
	Referential integrity

	5.3 Persistent class slots
	5.4 Multiple databases

	Chapter 6 Programmer’s guide
	A quick example
	6.1 Organization of this chapter
	6.2 A review of CLOS concepts
	Classes
	Slots
	Instance creation
	Metaclasses
	Defining your own metaclasses
	The Cache Manager

	6.3 The database
	Database naming conventions
	Moving and copying databases
	Creating the database
	The current database

	6.4 The schema
	What is a schema?
	How a schema is set
	How schema differences are reconciled

	6.5 Transactions
	A quick illustrative example
	What is a transaction?
	A model for transactions
	The real database
	The problem of deadlocks
	How are transactions started and committed or rolled back?
	Nested transactions and top-level transactions
	Top-level transactions: committed when complete
	The transaction-active-p function
	Transaction restarts
	Code in a with-transaction form may execute many times

	6.6 Slots
	Types of slots
	:persistent slots
	:persistent-class slots
	Non-persistent slots
	Set-valued slots
	What type of values can be stored in slots
	Table 6.1: Lisp types that can be stored in a database
	Program-defined types
	6.6.1 Caching Persistent Slot Values
	When will caching improve performance?
	How does caching improve performance?
	Manual caching
	Automatic caching
	Manual caching vs. Automatic caching
	What about write caching?
	When stale caches are reinitialized
	Slot values other than CLOS instances are eq with automatic caching

	6.7 Persistent hash tables
	Why use persistent hash tables?
	Properties of persistent hash tables
	Creating and manipulating persistent hash tables

	6.8 Blobs
	Why use blobs?
	Properties of blobs
	Creating and manipulating blobs
	Blobs and files

	6.9 Persistent Ftype (Foreign Type) Arrays
	Why use persistent ftype arrays?
	When are persistent ftype arrays the wrong choice?
	Persistent ftype array properties
	Creating and manipulating persistent ftype arrays
	Using pointers to persistent Lisp objects
	Dynamically determining foreign type definitions
	Freeing persistent foreign type array memory
	Discarding unneeded foreign types from a database
	Using tags to retrieve an initial persistent address

	6.10 Inverse functions
	Readers and accessors
	The problem of finding an object given a slot value
	Inverse functions
	Inverse functions speed up querying, but may cost
	Unique slot values

	6.11 Queries and iterators
	Iterators
	Non-iterator: retrieve

	6.12 Pointers
	The validity of pointers

	6.13 Implicit object creation
	6.14 Object deletion
	6.15 Referential integrity
	Finding references to an object (collect-references)

	6.16 Object update
	Handling object update automatically

	6.17 Multiprocessing
	Platforms with :os-threads on *features*
	Platforms without :os-threads on *features*

	6.18 Interactive transactions during application development
	6.19 Persistent Object Check Out and Check In
	The Example Database
	Designing Persistent Classes for Check Out And Check In
	Check Out and Check In Methods
	Creating New Instances
	Some Example Sessions
	Conclusions

	6.20 Reducing Page Lock Contention
	6.21 Read-Only Processing
	6.22 Multi Version Concurrency Control (MVCC) Processing
	6.23 Long Transactions
	6.24 Notifications
	Why use notifications?
	Setting up notifications
	Sending a notification
	Waiting for notifications
	Examining notification objects

	Chapter 7 Reference guide
	7.1 General information
	About saving and restoring databases
	About multiprocessing (:os-threads version)
	About multitasking (non :os-threads version)
	About the configuration database
	About moving and copying database files
	About deleting database files
	About persistent-standard-class
	About persistent slots
	About persistent-standard-object
	About read-locks and write-locks
	About schema
	About transaction
	About commit
	About roll back
	About shell environment variables
	OS_ROOTDIR [shell environment variable]
	OS_AS_START [shell environment variable]
	OS_AS_SIZE [shell environment variable]
	LD_LIBRARY_PATH [shell environment variable]
	SHLIB_PATH [shell environment variable]
	AS_CONFIG_PATH [shell environment variable]
	PATH [shell environment variable]

	About deadlock resolution
	About shrinking the transaction log
	New arguments to open-database and with-database allowing instance/pointer/segment allocation

	7.2 Definitions
	7.2.1 Variables
	allegrostore-version [Variable]
	as-config-path [Variable]
	db [Variable]
	astore::*channel* [Variable]
	astore:*allegrostore-release-heap* [Variable]

	7.2.2 Databases: saving and restoring
	asdump [Program]
	asrestore [Program]

	7.2.3 Database manipulation
	with-database [Macro]
	with-current-database [Macro]
	open-database [Function]
	close-database [Function]
	set-current-database [Function]
	Program to verify database consistency
	asverify [Program]

	7.2.4 Schema manipulation
	defclass [Macro]
	Executable subforms of the defclass macro and lexical environments
	set-schema [Function]
	dump-schema [Function]
	schema [Function]
	describe-db [Function]

	7.2.5 Transactions
	with-transaction [Macro]
	transaction-active-p [Function]
	begin-transaction [Function]
	commit-transaction [Function]
	abort-transaction [Function]

	7.2.6 Object manipulation
	make-instance [Generic function]
	slot-value [Function]
	slot-svref [Method]
	database-of [Generic function]
	database-of [Method]
	delete-instance [Generic function]
	delete-instance [Method]
	preserve-pointer [Function]
	slot-valid-p [Generic function]
	slot-cons [Method]
	slot-delete [Method]

	7.2.7 Query language
	for-each [Macro]
	for-each* [Function]
	instance-count [Function]
	for-each-class [Macro]
	eqo [Function]
	equalo [Function]
	retrieve [Function]

	7.2.8 References
	collect-references [Function]
	map-references [Function]

	7.2.9 Object identifiers
	object-id [Function]
	object-from-object-id [Function]

	7.2.10 Persistent hash tables
	make-instance [Function]
	Package: common-lisp

	generic-gethash [Generic function]
	generic-gethash [Method]
	generic-remhash [Generic function]
	generic-remhash [Method]
	generic-maphash [Generic function]
	generic-maphash [Method]
	generic-puthash-push [Generic function]
	generic-puthash-push [Method]
	Persistent hash tables as slot values
	make-slot-hash-table [Method]
	slot-gethash [Method]
	slot-puthash-push [Method]
	slot-maphash [Method]
	slot-remhash [Method]

	7.2.11 Blobs
	blob-data [Generic function]
	blob-data [Method]
	blob-size [Generic function]
	blob-size [Method]
	blob-name [Generic function]
	blob-name [Method]
	blob-read [Function]
	blob-write [Function]

	7.2.12 Persistent ftypes
	add-persistent-ftype [Generic function]
	add-persistent-ftype [Method]
	add-persistent-ftype [Method]
	make-instance [Function]
	persistent-ftype-array-data [Method]
	persistent-ftype-array-type [Method]
	persistent-ftype-array-n [Method]
	persistent-ftype-array-name [Method]
	describe-ftype [Function]
	allegrostore::lisp-value-to-pptr [Function]
	allegrostore::pptr-to-lisp-value [Function]
	set-dbtag [Function]
	get-dbtag [Function]

	7.2.13 Lock timeouts
	read-lock-timeout [Function]
	write-lock-timeout [Function]

	7.2.14 Notifications
	astore::os_notification_get_fd [Function]
	database-of [Method]
	notification-kind [Method]
	notification-object [Method]
	notification-queue-status [Function]
	notification-receive [Function]
	notification-string [Method]
	notification-subscribe [Method]
	notification-unsubscribe [Method]
	notify [Method]

	7.2.15 Conditions
	The condition hierarchy
	allegrostore [Condition]
	allegrostore-error [Condition]
	allegrostore-class-mismatch [Condition]
	allegrostore::use-db [Restart]
	allegrostore::use-db-all [Restart]
	allegrostore::use-memory [Restart]
	allegrostore::use-memory-all [Restart]

	allegrostore-specific-error [Condition]
	allegrostore-exception [Condition]
	allegrostore-exception-deadlock [Condition]
	allegrostore-exception-mismatch-in-config- file [Condition]
	allegrostore-package-missing [Condition]
	allegrostore-specific-error-code [Generic function]
	allegrostore-exception-id [Generic function]

	Chapter 8 Database m�aintenance & administration
	8.1 Using the ObjectStore documentation
	8.2 In this chapter
	8.3 File databases
	8.4 The server
	8.4.1 Server command line options
	8.4.2 Server access control

	8.5 Authentication
	8.5.1 User interface to authentication

	8.6 Server parameters file
	8.6.1 Parameter terms
	8.6.2 Server parameters
	Allow shared communications
	Authentication required
	DB expiration time
	Deadlock victim
	Direct to segment threshold
	Host access list
	Log data segment growth increment
	Log data segment initial size
	Log file
	Log record segment buffer size
	Log record segment growth increment
	Log record segment initial size
	Max data propagation per propagate
	Max data propagation threshold
	Message buffer size
	Message buffers
	Notification retry time
	PartitionN
	Propagation buffer size
	Propagation sleep time

	8.7 Password and license management
	8.8 Cache manager
	8.8.1 Cache manager parameters

	8.9 The client environment
	8.9.1 Client environment variables
	OS_CACHE_DIR
	OS_CACHE_SIZE
	OS_COMMSEG_DIR
	OS_DEF_EXCEPT_ACTION
	OS_DIRMAN_HOST
	OS_DISABLE_PRE2_QUERY_SYNTAX_SUPPORT
	OS_ENABLE_PRE2_QUERY_SYNTAX_WARNINGS
	OS_HANDLE_TRANS
	OS_INC_SCHEMA_INSTALLATION
	OS_INHIBIT_TIX_HANDLE
	OS_LOG_TIX_FORMAT
	OS_PORT_FILE
	OS_RESERVE_AS
	OS_ROOTDIR

	8.10 Directory manager databases
	8.11 Ports file
	8.12 Error reporting by ObjectStore daemons
	8.13 On-line backup and restore of ObjectStore databases
	8.13.1 On-line backup
	8.13.2 On-line restore

	Chapter 9 Admini�stration u�tilities
	9.1 Using the ObjectStore documentation
	9.2 In this chapter
	9.3 Specifying pathnames
	9.4 Rawfs pathname wildcard processing
	9.5 Using the OS_DIRMAN_HOST variable
	9.6 osbackup
	osbackup [options] -f backup-image-file pathname ...

	9.7 oschhost
	oschhost [-fR] newhost pathname ...
	oschhost [-fR] oldhost newhost

	9.8 oscmrf
	oscmrf hostname

	9.9 oscmshtd
	oscmshtd hostname

	9.10 oscmstat
	oscmstat hostname

	9.11 osrestore
	osrestore [options] -f backup-file [pathname ...]

	9.12 ossvrchkpt
	ossvrchkpt hostname

	9.13 ossvrclntkill
	ossvrclntkill hostname client-hostname client-pid
	ossvrclntkill hostname [-p client-pid] [-n name]

	9.19 ossvrmtr
	ossvrmtr hostname

	9.20 ossvrshtd
	ossvrshtd [-f] hostname

	9.21 ossvrstat
	ossvrstat hostname

	Chapter 10 User ut�ilities
	10.1 Using the ObjectStore documentation
	10.2 In this chapter
	10.3 oschangedbref
	oschangedbref db from to

	10.4 oschgrp
	oschgrp [-R][-f] group pathname...

	10.5 oschmod
	oschmod [-R][-f] new-mode pathname...

	10.6 oschown
	oschown [-R][-f] owner[.group] pathname...

	10.7 oscompact
	oscompact [-dbs_to_compact pathname+]

	10.8 oscp
	oscp source-pathname destination-pathname

	10.9 osdf
	osdf hostname

	10.10 osglob
	osglob wordlist

	10.11 oshostof
	oshostof pathname

	10.12 osls
	osls [-dRlsu] [-Rlu] pathname ...

	10.13 osmkdir
	osmkdir [-p] directory

	10.14 osmv
	osmv [-fi] directory1 directory2
	osmv [-fi] database1 database2
	osmv [-fi] database directory

	10.15 osrm
	osrm [-firR][-iR] database...
	osrm -u [-f] Server-host uid0 uid1 uid2

	10.16 osrmdir
	osrmdir directory...

	10.17 ossetasp
	ossetasp executable-pathname database-pathname
	ossetasp -p executable-pathname

	10.18 ossevol
	ossevol workdb schemadb evolvedb+ [keyword-options]

	10.19 ossize
	ossize [options] pathname

	10.20 ossvrping
	ossvrping [-v] [hostname]

	10.21 ostest
	ostest -dfprsw pathname

	10.22 osverifydb
	osverifydb [-o] [-v] [-m][-w workspace-name][-limit number] pathname

	10.23 osversion
	osversion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

