
1

Prof. Hilfinger CS 164 Lecture 1 1

Introduction to Programming Languages and
Compilers

CS164
11:00-12:00 MWF

10 Evans
 Notes by G. Necula, with additions by P. Hilfinger

Prof. Hilfinger CS 164 Lecture 1 2

Administrivia

• Course home page:
 http://www-inst.eecs.berkeley.edu/~cs164

• Concurrent enrollment: see me after class
• Pick up class accounts at the end of lecture

Wednesday
• Pick a partner
• We’re understaffed. Those in 10-11, 3-4

sections might consider moving to 9-10, 4-5;
will discuss more in section meetings.

Prof. Hilfinger CS 164 Lecture 1 3

Course Structure

• Course has theoretical and practical aspects:
analysis and translation of programming
languages uses both.

• Regular homework = theory, should be
individual work.

• Programming assignments = practice, in teams
• All submissions will be electronic

Prof. Hilfinger CS 164 Lecture 1 4

Academic Honesty

• Don’t use work from uncited sources
– Including old code

• We use plagiarism detection software
– 6 cases in last few semesters

PLAGIARISM

Prof. Hilfinger CS 164 Lecture 1 5

The Course Project

• Course has hidden agenda: programming design
and experience.

• Substantial project in parts.
• Provides example of how complicated problem

might be approached.
• Validation (testing) is part of the project.
• Also a chance to introduce important tool:

version control, which we’ll use to monitor your
progress

• General rule: start early!
Prof. Hilfinger CS 164 Lecture 1 6

How are Languages Implemented?

• Two major strategies:
– Interpreters (older, less studied)
– Compilers (newer, more extensively studied)

• Interpreters run programs “as is”
– Little or no preprocessing

• Compilers do extensive preprocessing
– Most implementations use compilers

• New trend is hybrid: “Just-In-Time”
compilation, interpretation+compilation

2

Prof. Hilfinger CS 164 Lecture 1 7

(Short) History of High-Level Languages

• Initially, programs “hard-wired” or entered electro-
mechanically: Analytical Engine, Jacquard Loom,
ENIAC, punched-card-handling machines

• Programs encoded as numbers (machine language)
stored as data: Manchester Mark I, EDSAC.

• 1953 IBM develops the 701
• All programming done in assembly
• Problem: Software costs exceeded hardware costs!
• John Backus: “Speedcoding”

– An interpreter
– Ran 10-20 times slower than hand-written assembly

Prof. Hilfinger CS 164 Lecture 1 8

FORTRAN I

• 1954 IBM develops the 704
• John Backus

– Idea: translate high-level code to assembly
– Many thought this impossible

• 1954-7 FORTRAN I project
• By 1958, >50% of all software is in FORTRAN
• Cut development time dramatically

– (2 wks ! 2 hrs)

Prof. Hilfinger CS 164 Lecture 1 9

FORTRAN I

• The first compiler
– Produced code almost as good as hand-written
– Huge impact on computer science

• Led to an enormous body of theoretical work

• Modern compilers preserve the outlines of
FORTRAN I

Prof. Hilfinger CS 164 Lecture 1 10

After FORTRAN

• Lisp, late 1950s: dynamic, symbolic data
structures.

• Algol 60: Europe’s answer to FORTRAN:
modern syntax, block structure, explicit
declaration. Set standard for language
description. Dijkstra: “A marked improvement
on its successors.”

• COBOL: late 1950’s. Business-oriented.
Records.

Prof. Hilfinger CS 164 Lecture 1 11

The 60s Language Explosion

• APL (arrays), SNOBOL (strings), FORMAC
(formulae), and many more.

• 1967-68: Simula 67, first “object-oriented”
language.

• Algol 68: Combines FORTRAish numerical
constructs, COBOLish records, pointers, all
described in rigorous formalism. Remnants
remain in C, but Algol68 deemed too complex.

• 1968: “Software Crisis” announced. Trend
towards simpler languages: Algol W, Pascal, C

Prof. Hilfinger CS 164 Lecture 1 12

The 1970s

• Emphasis on “methodology”: modular
programming, CLU, Modula family.

• Mid 1970’s: Prolog. Declarative logic
programming.

• Mid 1970’s: ML (Metalanguage) type inference,
pattern-driven programming.

• Late 1970’s: DoD starts to develop Ada to
consolidate >500 languages.

3

Prof. Hilfinger CS 164 Lecture 1 13

And on into the present

• Complexity increases with C++.
• Then decreases with Java.
• Then increases again (C#).
• Proliferation of little or specialized languages

and scripting languages: HTML, PHP, Perl,
Python, Ruby, …

Prof. Hilfinger CS 164 Lecture 1 14

Problems to address

• How to describe language clearly for programmers,
precisely for implementors?

• How to implement description, and know you’re right?
– Automatic conversion of description to implementation
– Testing

• How to save implementation effort?
– Multiple languages to multiple targets: can we re-use effort?

• How to make languages usable?
– Handle errors reasonably
– Detect questionable constructs
– Compile quickly

Prof. Hilfinger CS 164 Lecture 1 15

The Structure of a Compiler

1. Lexical Analysis
2. Parsing
3. Semantic Analysis
4. Optimization
5. Code Generation

 The first 3, at least, can be understood by
analogy to how humans comprehend English.

Prof. Hilfinger CS 164 Lecture 1 16

Lexical Analysis

• First step: recognize letters and words.
– Words are smallest unit above letters

This is a sentence.

• Note the
– Capital “T” (start of sentence symbol)
– Blank “ “ (word separator)
– Period “.” (end of sentence symbol)

Prof. Hilfinger CS 164 Lecture 1 17

More Lexical Analysis

• Lexical analysis is not trivial. Consider:
ist his ase nte nce

• Plus, programming languages are typically more
cryptic than English:

*p->f+=-.12345e-5

Prof. Hilfinger CS 164 Lecture 1 18

And More Lexical Analysis

• Lexical analyzer divides program text into
“words” or “tokens”

if x == y then z = 1; else z = 2;

• Tokens:
if, x, ==, y, then, z, =, 1, ;, else, z, =, 2, ;

4

Prof. Hilfinger CS 164 Lecture 1 19

Parsing

• Once words are understood, the next step is
to understand sentence structure

• Parsing = Diagramming Sentences
– The diagram is a tree

Prof. Hilfinger CS 164 Lecture 1 20

Diagramming a Sentence

This line is a longer sentence

verbarticle noun article adjective noun

subject object

sentence

Prof. Hilfinger CS 164 Lecture 1 21

Parsing Programs

• Parsing program expressions is the same
• Consider:

If x == y then z = 1; else z = 2;
• Diagrammed:

if-then-else

x y z 1 z 2==

assignrelation assign

predicate else-stmtthen-stmt

Prof. Hilfinger CS 164 Lecture 1 22

Semantic Analysis

• Once sentence structure is understood, we
can try to understand “meaning”
– But meaning is too hard for compilers

• Compilers perform limited analysis to catch
inconsistencies

• Some do more analysis to improve the
performance of the program

Prof. Hilfinger CS 164 Lecture 1 23

Semantic Analysis in English

• Example:
Jack said Jerry left his assignment at home.

What does “his” refer to? Jack or Jerry?

• Even worse:
Jack said Jack left his assignment at home?

How many Jacks are there?
Which one left the assignment?

Prof. Hilfinger CS 164 Lecture 1 24

Semantic Analysis in Programming

• Programming
languages define
strict rules to avoid
such ambiguities

• This C++ code prints
“4”; the inner
definition is used

{
int Jack = 3;
{

int Jack = 4;
cout << Jack;

}
}

5

Prof. Hilfinger CS 164 Lecture 1 25

More Semantic Analysis

• Compilers perform many semantic checks
besides variable bindings

• Example:
Jack left her homework at home.

• A “type mismatch” between her and Jack; we
know they are different people
– Presumably Jack is male

Prof. Hilfinger CS 164 Lecture 1 26

Optimization

• No strong counterpart in English, but akin to
editing

• Automatically modify programs so that they
– Run faster
– Use less memory
– In general, conserve some resource

• Not an emphasis in the project.

Prof. Hilfinger CS 164 Lecture 1 27

Optimization Example (in C)

 for (int i = 0; i < N; i += 1) {
 for (int j = 0; j < N; j += 1) {
 A[i][j] += B[i]*C[j]
 }
 }

for (i = 0; i < N; i += 1) {
 double tmp1 = B[i];
 double* tmp2 = &A[i];
 for (int j = 0; j < N; j +=1)
 tmp2[j] += tmp1*C[j];
}

Prof. Hilfinger CS 164 Lecture 1 28

Optimization is tricky

for (i = 0; i < N; i += 1)

 A[i] *= D/A[0];

 is NOT

tmp1 = D/A[0];
for (i = 0; i < N; i += 1)

 A[i] *= tmp1;

Prof. Hilfinger CS 164 Lecture 1 29

Code Generation

• Produces assembly code (usually)
– which is then assembled into executables by an

assembler

• A translation into another language
– Analogous to human translation

Prof. Hilfinger CS 164 Lecture 1 30

Issues

• Compiling is almost this simple, but there are
many pitfalls.

• Example: How are erroneous programs
handled?

• Language design has big impact on compiler
– Determines what is easy and hard to compile
– Course theme: many trade-offs in language design

6

Prof. Hilfinger CS 164 Lecture 1 31

Compilers Today

• The overall structure of almost every compiler
adheres to our outline

• The proportions have changed since FORTRAN
– Early: lexing, parsing most complex, expensive

– Today: optimization dominates all other phases,
lexing and parsing are cheap

Prof. Hilfinger CS 164 Lecture 1 32

Trends in Compilation

• Optimization for speed is less interesting. But:
– scientific programs
– advanced processors (Digital Signal Processors,

advanced speculative architectures)
– Small devices where speed = longer battery life

• Ideas from compilation used for improving code
reliability:
– memory safety
– detecting concurrency errors (data races)
– ...

Prof. Hilfinger CS 164 Lecture 1 33

Trends, contd.

• Compilers
– More needed and more complex
– Driven by increasing gap between

• new languages
• new architectures

– Venerable and healthy area

Prof. Hilfinger CS 164 Lecture 1 34

Why Study Languages and Compilers ?

• Increase capacity of expression
• Improve understanding of program behavior
• Increase ability to learn new languages

• Learn to build a large and reliable system
• See many basic CS concepts at work

