Introduction to Programming Languages and
Compilers

CsS164
11:00-12:00 MWF
10 Evans

Notes by 6. Necula, with additions by P. Hilfinger

Prof. Hilfinger CS 164 Lecture 1 1

Administrivia

+ Course home page:
http://www-inst.eecs.berkeley.edu/~cs164

+ Concurrent enrollment: see me after class

+ Pick up class accounts at the end of lecture
Wednesday

+ Pick a partner

+ We're understaffed. Those in 10-11, 3-4
sections might consider moving to 9-10, 4-5;
will discuss more in section meetings.

Prof. Hilfinger CS 164 Lecture 1 2

Course Structure

+ Course has theoretical and practical aspects:
analysis and translation of programming
languages uses both.

+ Regular homework = theory, should be
individual work.

* Programming assignments = practice, in feams
+ All submissions will be electronic

Prof. Hilfinger CS 164 Lecture 1 3

Academic Honesty

- Don't use work from uncited sources
- Including old code

+ We use plagiarism detection software
- 6 cases in last few semesters

Prof. Hilfinger CS 164 Lecture 1 4

The Course Project

+ Course has hidden agenda: programming design
and experience.

+ Substantial project in parts.

+ Provides example of how complicated problem
might be approached.

+ Validation (testing) is part of the project.

+ Also a chance to introduce important tool:
version control, which we'll use o monitor your
progress

* General rule: start early!

Prof. Hilfinger CS 164 Lecture 1 5

How are Languages Implemented?

* Two major strategies:
- Interpreters (older, less studied)
- Compilers (newer, more extensively studied)
+ Interpreters run programs “as is"
- Little or no preprocessing
+ Compilers do extensive preprocessing
- Most implementations use compilers
+ New trend is hybrid: "Just-In-Time"
compilation, interpretation+compilation

Prof. Hilfinger CS 164 Lecture 1 6

(Short) History of High-Level Languages

FORTRAN I

+ TInitially, programs “hard-wired” or entered electro-
mechanically: Analytical Engine, Jacquard Loom,
ENIAC, punched-card-handling machines

+ Programs encoded as numbers (machine language)
stored as data: Manchester Mark I, EDSAC.

+ 1953 IBM develops the 701

+ All programming done in assembly

+ Problem: Software costs exceeded hardware costs!
+ John Backus: "Speedcoding”

- Aninterpreter
- Ran 10-20 times slower than hand-written assembly

Prof. Hilfinger CS 164 Lecture 1 7

+ 1954 IBM develops the 704

+ John Backus
- Idea: translate high-level code to assembly
- Many thought this impossible

+ 1954-7 FORTRAN I project
+ By 1958, >50% of all software is in FORTRAN
+ Cut development time dramatically

- (2 wks! 2 hrs)

Prof. Hilfinger CS 164 Lecture 1 8

FORTRAN I

After FORTRAN

* The first compiler
- Produced code almost as good as hand-written
- Huge impact on computer science

+ Led to an enormous body of theoretical work

*+ Modern compilers preserve the outlines of
FORTRAN I

Prof. Hilfinger CS 164 Lecture 1 9

Lisp, late 1950s: dynamic, symbolic data
structures.

+ Algol 60: Europe's answer to FORTRAN:
modern syntax, block structure, explicit
declaration. Set standard for language
description. Dijkstra: *A marked improvement
on its successors."

+ COBOL: late 1950's. Business-oriented.
Records.

Prof. Hilfinger CS 164 Lecture 1 10

The 60s Language Explosion

The 1970s

+ APL (arrays), SNOBOL (strings), FORMAC
(for-mulaeg, and many more.

+ 1967-68: Simula 67, first "object-oriented"”
language.

+ Algol 68: Combines FORTRAish numerical
constructs, COBOLish records, pointers, all
described in rigorous formalism. Remnants

remain in C, but Algol68 deemed too complex.

+ 1968: "Software Crisis" announced. Trend
towards simpler languages: Algol W, Pascal, C

Prof. Hilfinger CS 164 Lecture 1 11

+ Emphasis on "methodology": modular
programming, CLU, Modula family.

+ Mid 1970's: Prolog. Declarative logic
programming.

+ Mid 1970's: ML (Metalanguage) type inference,
pattern-driven programming.

+ Late 1970's: DoD starts to develop Ada to
consolidate >500 languages.

Prof. Hilfinger CS 164 Lecture 1 12

And on into the present

+ Complexity increases with C++.
+ Then decreases with Java.
+ Then increases again (C#).

* Proliferation of little or specialized languages
and scripting languages: HTML, PHP, Perl,
Python, Ruby, ...

Prof. Hilfinger CS 164 Lecture 1 13

Problems to address

+ How to describe language clearly for programmers,
precisely for implementors?
+ How to implement description, and know you're right?
- Automatic conversion of description to implementation
- Testing
+ How to save implementation effort?
- Multiple languages to multiple targets: can we re-use effort?
+ How to make languages usable?
- Handle errors reasonably
- Detect questionable constructs
- Compile quickly

Prof. Hilfinger CS 164 Lecture 1 14

The Structure of a Compiler

Lexical Analysis
Parsing

Semantic Analysis
Optimization
Code Generation

OswN e

The first 3, at least, can be understood by
analogy to how humans comprehend English.

Prof. Hilfinger CS 164 Lecture 1 15

Lexical Analysis

+ First step: recognize letters and words.
- Words are smallest unit above letters

This is a sentence.

* Note the
- Capital "T" (start of sentence symbol)
- Blank " * (word separator)
- Period "." (end of sentence symbol)

Prof. Hilfinger CS 164 Lecture 1 16

More Lexical Analysis

+ Lexical analysis is not trivial. Consider:
ist his ase nte nce

+ Plus, programming languages are typically more
cryptic than English:

*p->f+=-.12345e-5

Prof. Hilfinger CS 164 Lecture 1 17

And More Lexical Analysis

+ Lexical analyzer divides program text into
“words" or “tokens"

if x==ythenz=1elsez=2;

+ Tokens:
if, x,==,y,then, z,=,1,;,else, z,=, 2, ;

Prof. Hilfinger CS 164 Lecture 1 18

Parsing

+ Once words are understood, the next step is
to understand sentence structure

+ Parsing = Diagramming Sentences
- The diagram is a tree

Prof. Hilfinger CS 164 Lecture 1 19

Diagramming a Sentence

This line is a longer sentence

o

arficle noun verb article adjective noun

NSO T

subject object
sentence

Prof. Hilfinger CS 164 Lecture 1 20

Parsing Programs

+ Parsing program expressions is the same
+ Consider:

fx==ythenz=1;elsez=2;
+ Diagrammed:

X ==y z 1 z 2
1 S~ ~_
relation assign assign

\ \ \
predicate then-stmt else-stmt
e TEEmE ERER
if-then-else

Prof. Hilfinger CS 164 Lecture 1 21

Semantic Analysis

+ Once sentence structure is understood, we
can try to understand “meaning”
- But meaning is too hard for compilers

+ Compilers perform limited analysis to catch
inconsistencies

+ Some do more analysis to improve the
performance of the program

Prof. Hilfinger CS 164 Lecture 1 22

Semantic Analysis in English

+ Example:
Jack said Jerry left his assighment at home.
What does “his" refer to? Jack or Jerry?

+ Even worse:
Jack said Jack left his assignment at home?
How many Jacks are there?
Which one left the assignment?

Prof. Hilfinger CS 164 Lecture 1 23

Semantic Analysis in Programming

+ Programming {
languages define int Jack = 3:
strict rules to avoid {

such ambiguities
uch ambiguitie int Jack = 4;

. . t << Jack;
* This C++ code prints cov ac

“4": the inner }
definition is used }

Prof. Hilfinger CS 164 Lecture 1 24

More Semantic Analysis

+ Compilers perform many semantic checks
besides variable bindings

+ Example:
Jack left her homework at home.

+ A “type mismatch" between her and Jack; we
know they are different people
- Presumably Jack is male

Prof. Hilfinger CS 164 Lecture 1 25

Optimization

+ No strong counterpart in English, but akin to
editing

+ Automatically modify programs so that they
- Run faster
- Use less memory
- In general, conserve some resource

* Not an emphasis in the project.

Prof. Hilfinger CS 164 Lecture 1 26

Optimization Example (in C)

o)) for =0;i<N;i+=1) {
for (inti=0;1<N;i+=1) { double tmpl = B[i];
for (intj=0;j <N;j+= 1) { double* tmpg = &A[i];
A[i][j]+= B[i]*C[j]

} }

Prof. Hilfinger CS 164 Lecture 1 27

Optimization is tricky

for (intj=0;j <N;j+=1)
} tmpl[j] += tmpl *C[j];

for(i=0;i<N;i+=1)
A[i] *=D/A[0Q];

is NOT
tmpl = D/A[O];

for (i=0;i<N;i+=1)
A[i] *=tmpl;

Prof. Hilfinger CS 164 Lecture 1 28

Code Generation

* Produces assembly code (usually)

- which is then assembled into executables by an
assembler

+ A translation into another language
- Analogous o human translation

Prof. Hilfinger CS 164 Lecture 1 29

Issues

+ Compiling is almost this simple, but there are
many pitfalls.

+ Example: How are erroneous programs
handled?

+ Language design has big impact on compiler
- Determines what is easy and hard to compile
- Course theme: many trade-offs in language designh

Prof. Hilfinger CS 164 Lecture 1 30

Compilers Today

* The overall structure of almost every compiler
adheres to our outline

* The proportions have changed since FORTRAN
- Early: lexing, parsing most complex, expensive

- Today: optimization dominates all other phases,
lexing and parsing are cheap

Prof. Hilfinger CS 164 Lecture 1 31

Trends in Compilation

+ Optimization for speed is less interesting. But:
- scientific programs
- advanced processors (Digital Signal Processors,
advanced speculative architectures)
- Small devices where speed = longer battery life

+ Ideas from compilation used for improving code
reliability:
- memory safety
- detecting concurrency errors (data races)

Prof. Hilfinger CS 164 Lecture 1 32

Trends, contd.

+ Compilers
- More needed and more complex

- Driven by increasing gap between
* new languages
* new architectures

- Venerable and healthy area

Prof. Hilfinger CS 164 Lecture 1 33

Why Study Languages and Compilers ?

+ Increase capacity of expression
+ Improve understanding of program behavior
Increase ability to learn new languages

Learn to build a large and reliable system
+ See many basic CS concepts at work

Prof. Hilfinger CS 164 Lecture 1 34

