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Introduction to Programming Languages and
Compilers

CS164
11:00-12:00 MWF

10 Evans
                   Notes by G. Necula, with additions by P. Hilfinger
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Administrivia

• Course home page:
      http://www-inst.eecs.berkeley.edu/~cs164

• Concurrent enrollment: see me after class
• Pick up class accounts at the end of lecture

Wednesday
• Pick a partner
• We’re understaffed.  Those in 10-11, 3-4

sections might consider moving to 9-10, 4-5;
will discuss more in section meetings.
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Course Structure

• Course has theoretical and practical aspects:
analysis and translation of programming
languages uses both.

• Regular homework = theory, should be
individual work.

• Programming assignments = practice, in teams
• All submissions will be electronic
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Academic Honesty

• Don’t use work from uncited sources
– Including old code

• We use plagiarism detection software
– 6 cases in last few semesters

PLAGIARISM
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The Course Project

• Course has hidden agenda: programming design
and experience.

• Substantial project in parts.
• Provides example of how complicated problem

might be approached.
• Validation (testing) is part of the project.
• Also a chance to introduce important tool:

version control, which we’ll use to monitor your
progress

• General rule: start early!
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How are Languages Implemented?

• Two major strategies:
– Interpreters (older, less studied)
– Compilers (newer, more extensively studied)

• Interpreters run programs “as is”
– Little or no preprocessing

• Compilers do extensive preprocessing
– Most implementations use compilers

• New trend is hybrid: “Just-In-Time”
compilation, interpretation+compilation
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(Short) History of High-Level Languages

• Initially, programs “hard-wired” or entered electro-
mechanically: Analytical Engine, Jacquard Loom,
ENIAC, punched-card-handling machines

• Programs encoded as numbers (machine language)
stored as data: Manchester Mark I, EDSAC.

• 1953 IBM develops the 701
• All programming done in assembly
• Problem: Software costs exceeded hardware costs!
• John Backus: “Speedcoding”

– An interpreter
– Ran 10-20 times slower than hand-written assembly
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FORTRAN I

• 1954 IBM develops the 704
• John Backus

– Idea: translate high-level code to assembly
– Many thought this impossible

• 1954-7 FORTRAN I project
• By 1958, >50% of all software is in FORTRAN
• Cut development time dramatically

– (2 wks ! 2 hrs)
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FORTRAN I

• The first compiler
– Produced code almost as good as hand-written
– Huge impact on computer science

• Led to an enormous body of theoretical work

• Modern compilers preserve the outlines of
FORTRAN I
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After FORTRAN

•  Lisp, late 1950s: dynamic, symbolic data
structures.

• Algol 60: Europe’s answer to FORTRAN:
modern syntax, block structure, explicit
declaration. Set standard for language
description.  Dijkstra: “A marked improvement
on its successors.”

• COBOL: late 1950’s. Business-oriented.
Records.
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The 60s Language Explosion

• APL (arrays), SNOBOL (strings), FORMAC
(formulae), and many more.

• 1967-68: Simula 67, first “object-oriented”
language.

• Algol 68: Combines FORTRAish numerical
constructs, COBOLish records, pointers, all
described in rigorous formalism.  Remnants
remain in C, but Algol68 deemed too complex.

• 1968: “Software Crisis” announced.  Trend
towards simpler languages: Algol W, Pascal, C
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The 1970s

• Emphasis on “methodology”: modular
programming, CLU, Modula family.

• Mid 1970’s: Prolog. Declarative logic
programming.

• Mid 1970’s: ML (Metalanguage) type inference,
pattern-driven programming.

• Late 1970’s: DoD starts to develop Ada to
consolidate >500 languages.
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And on into the present

• Complexity increases with C++.
• Then decreases with Java.
• Then increases again (C#).
• Proliferation of little or specialized languages

and scripting languages: HTML, PHP, Perl,
Python, Ruby, …
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Problems to address

• How to describe language clearly for programmers,
precisely for implementors?

• How to implement description, and know you’re right?
– Automatic conversion of description to implementation
– Testing

• How to save implementation effort?
– Multiple languages to multiple targets: can we re-use effort?

• How to make languages usable?
– Handle errors reasonably
– Detect questionable constructs
– Compile quickly
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The Structure of a Compiler

1. Lexical Analysis
2. Parsing
3. Semantic Analysis
4. Optimization
5. Code Generation

  The first 3, at least, can be understood by
analogy to how humans comprehend English.
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Lexical Analysis

• First step: recognize letters and words.
– Words are smallest unit above letters

This is a sentence.

• Note the
– Capital “T” (start of sentence symbol)
– Blank “ “ (word separator)
– Period “.” (end of sentence symbol)
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More Lexical Analysis

• Lexical analysis is not trivial.  Consider:
ist his ase nte nce

• Plus, programming languages are typically more
cryptic than English:

*p->f+=-.12345e-5
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And More Lexical Analysis

• Lexical analyzer divides program text into
“words” or “tokens”

if x == y then z = 1; else z = 2;

• Tokens:
if, x, ==, y, then, z, =, 1, ;, else, z, =, 2, ;
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Parsing

• Once words are understood, the next step is
to understand sentence structure

• Parsing = Diagramming Sentences
– The diagram is a tree
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Diagramming a Sentence

This line is a longer sentence

verbarticle noun article adjective noun

subject object

sentence
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Parsing Programs

• Parsing program expressions is the same
• Consider:

If x == y then z = 1; else z = 2;
• Diagrammed:

if-then-else

x y z 1 z 2==

assignrelation assign

predicate else-stmtthen-stmt
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Semantic Analysis

• Once sentence structure is understood, we
can try to understand “meaning”
– But meaning is too hard for compilers

• Compilers perform limited analysis to catch
inconsistencies

• Some do more analysis to improve the
performance of the program
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Semantic Analysis in English

• Example:
Jack said Jerry left his assignment at home.

What does “his” refer to? Jack or Jerry?

• Even worse:
Jack said Jack left his assignment at home?

How many Jacks are there?
Which one left the assignment?
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Semantic Analysis in Programming

• Programming
languages define
strict rules to avoid
such ambiguities

• This C++ code prints
“4”; the inner
definition is used

{
int Jack = 3;
{

int Jack = 4;
cout << Jack;

}
}
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More Semantic Analysis

• Compilers perform many semantic checks
besides variable bindings

• Example:
Jack left her homework at home.

• A “type mismatch” between her and Jack; we
know they are different people
– Presumably Jack is male

Prof. Hilfinger CS 164  Lecture 1 26

Optimization

• No strong counterpart in English, but akin to
editing

• Automatically modify programs so that they
– Run faster
– Use less memory
– In general, conserve some resource

• Not an emphasis in the project.
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Optimization Example (in C)

  for (int i = 0; i < N; i += 1) {
       for (int j = 0; j < N; j += 1) {
             A[i][j] += B[i]*C[j]
       }
  }

for (i = 0; i < N; i += 1) {
   double tmp1 = B[i];
   double* tmp2 = &A[i];
   for (int j = 0; j  < N; j +=1)
       tmp2[j] += tmp1*C[j];
}
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Optimization is tricky

for (i = 0; i < N; i += 1)

    A[i] *= D/A[0];

         is NOT

tmp1 = D/A[0];
for (i = 0; i < N; i += 1)

    A[i] *= tmp1;
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Code Generation

• Produces assembly code (usually)
– which is then assembled into executables by an

assembler

• A translation into another language
– Analogous to human translation
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Issues

• Compiling is almost this simple, but there are
many pitfalls.

• Example: How are erroneous programs
handled?

• Language design has big impact on compiler
– Determines what is easy and hard to compile
– Course theme: many trade-offs in language design
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Compilers Today

• The overall structure of almost every compiler
adheres to our outline

• The proportions have changed since FORTRAN
– Early: lexing, parsing most complex, expensive

– Today: optimization dominates all other phases,
lexing and parsing are cheap
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Trends in Compilation

• Optimization for speed is less interesting. But:
– scientific programs
– advanced processors (Digital Signal Processors,

advanced speculative architectures)
– Small devices where speed = longer battery life

• Ideas from compilation used for improving code
reliability:
– memory safety
– detecting concurrency errors (data races)
– ...
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Trends, contd.

• Compilers
– More needed and more complex
– Driven by increasing gap between

• new languages
• new architectures

– Venerable and healthy area
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Why Study Languages and Compilers ?

• Increase capacity of expression
• Improve understanding of program behavior
• Increase ability to learn new languages

• Learn to build a large and reliable system
• See many basic CS concepts at work


