Bottom-Up Parsing

Lecture 11-12
(From slides by 6. Necula & R. Bodik)

9/22/06 Prof. Hilfinger CS164 Lecture 11 1

Bottom-Up Parsing

+ Bottom-up parsing is more general than top-
down parsing
- And just as efficient
- Builds on ideas in top-down parsing
* Most common form is LR parsing
- L means that tokens are read left to right
- R means that it constructs a rightmost derivation

©

9/22/06 Prof. Hilfinger CS164 Lecture 11

An Introductory Example

+ LR parsers don't need left-factored grammars
and can also handle left-recursive grammars

+ Consider the following grammar:
E—-E+(E)|int
- Why is this not LL(1)?

+ Consider the string: int + (int)+ (int)

9/22/06 Prof. Hilfinger CS164 Lecture 11 3

The Idea

* LR parsing reduces a string to the start
symbol by inverting productions:

str < input string of terminals
while str = S:

- Identify first § in str such that A = B isa
productionand S =* a Ay — a py =str

- Replace p by A instr (so a Ay becomes new str)
+ Such a B's are called handles

9/22/06 Prof. Hilfinger CS164 Lecture 11 4

A Bottom-up Parse in Detail (1)

int + (int) + (int)

int + (int) + (int)

9/22/06 Prof. Hilfinger CS164 Lecture 11 5

A Bottom-up Parse in Detail (2)

int + (int) + (int)
E + (int) + (int)

E
int + (int) + (int
9/22/06 Prof. Hilfinger CS164 Lecture 11 6

A Bottom-up Parse in Detail (3)

int + (int) + (int)
E + (int) + (int)
E + (E)+ (int)

E E
| |
int + (int) + (int)

9/22/06 Prof. Hilfinger CS164 Lecture 11 7

A Bottom-up Parse in Detail (4)

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)

E + (int) E
E E
| \
inf + (int) + (int
9/22/06 Prof. Hilfinger CS164 Lecture 11 8

A Bottom-up Parse in Detail (5)

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)

E + (int) E
E+(E)
E E E
| [\
inf + (int) + (int)
9/22/06 Prof. Hilfinger CS164 Lecture 11 9

A Bottom-up Parse in Detail (6)

int + (int) + (int) E
E + (int) + (int)
E + (E)+ (int)
E + (int)
E+(E)

E

A reverse rightmost E E E
derivation | | |
int + (int) + (int

9/22/06 Prof. Hilfinger CS164 Lecture 11 10

Where Do Reductions Happen

Because an LR parser produces a reverse
rightmost derivation:
- If apy is step of a bottom-up parse with handle a.ff
- And the next reduction is by A—
- Theny is a string of terminals !

.. Because a Ay — ofly is a step in a right-most
derivation

Intuition: We make decisions about what
reduction to use after seeing all symbols in
handle, rather that before (as for LL(1))

9/22/06 Prof. Hilfinger CS164 Lecture 11 11

Notation

+ Idea: Split the string into two substrings

- Right substring (a string of terminals) is as yet
unexamined by parser

- Left substring has terminals and non-terminals
+ The dividing point is marked by a |
- The I is not part of the string

- Marks end of next potential handle

+ Initially, all input is unexamined: Ix;x, . .. X,

9/22/06 Prof. Hilfinger CS164 Lecture 11 12

Shift-Reduce Parsing

- Bottom-up parsing uses only two kinds of actions:
Shift: Move | one place to the right, shifting a
terminal fo the left string
E+(int) = E+(int1)

Reduce: Apply an inverse production at the handle.
If E — E+ (E)isaproduction, then
E+(E+(E)1) =E+E")

9/22/06 Prof. Hilfinger CS164 Lecture 11 13

Shift-Reduce Example

I int + (int) + (int)$ shift

Shift-Reduce Example

I int + (int) + (int)$ shift
int |+ (int) + (int)$ red.E — int

int + (int)+ (int
Shift-Reduce Example
I int + (int) + (int)$ shift
int |+ (int) + (int)$ red.E — int
E |+ (inf) + (int)$ shift 3 times
E+(int1)+(int)$ red E— int
E
int + (int)+ (int

int + (int)+ (int
Shift-Reduce Example
I int + (int) + (int)$ shift
int |+ (int) + (int)$ red.E — int
E |+ (inf) + (int)$ shift 3 times
E
int + (int)+ (int
Shift-Reduce Example
I int + (int) + (int)$ shift
int |+ (int) + (int)$ red.E — int
E |+ (inf) + (int)$ shift 3 times
E+(int1)+(int)$ red E— int
E+(EI)+(int)$ shift
E E
/ \
int + (int)+ (int

Shift-Reduce Example

I int + (int) + (int)$
int | + (int) + (in)$
E |+ (inf) + (int)$
E+(int 1)+ (int)$
E+(E1)+(nD$
E+(E) I+ (int)$

shift

red. E — int
shift 3 times
red. E — int
shift

red. E — E + (E)

E

/

int +

(

E

int)+ |

int

Shift-Reduce Example

I int + (int) + (int)$

shift

Shift-Reduce Example

Iint + (int) + (int)$
int | + (int) + (int)$
E | + (inf) + (int)$
E+(int 1)+ (int)$
E+(E1)+(in)$
E+(E) I+ (inh)$
El+(int)$
E+(int1)$

shift

red. E — int
shift 3 times
red. E — int
shift

red.E — E + (E)
shift 3 times
red. E — int

E

/

int +

(

\

int)+ |

int

Shift-Reduce Example

I int + (int) + (int)$ shift
int | + (int) + (int)$ red. E — int

E | + (inf) + (int)$
E+(int 1)+ (int)$
E+(E1)+(in)$
E+(E) I+ (inh)$
E 1+ (int)$
E+(int1)$
E+(EN$
E+(E)I$

shift 3 times
red. E — int
shift

red. E — E + (E)
shift 3 times
red. E — int
shift

red. E — E + (E)

int |+ (int) + (int)$ red.E — int
E |+ (inf) + (int)$ shift 3 times
E+(int1)+(int)$ red E— int
E+(EI)+(int)$ shift
E+(E) I+ (inH)$ red. E —E + (E)
El+ (int)$ shift 3 times
E E
/ \
int + (int)+ (int)
Shift-Reduce Example
| int + (int) + (int)$ shift
int |+ (int) + (int)$ red.E — int
E |+ (inf) + (int)$ shift 3 times
E+(int 1)+ (int)$ red E— int
E+(E1)+(int)$ shift E
E+ (E) 1+ (inH)$ red. E—E + (E)
El+ (int)$ shift 3 times
E+ (int1)$ red. E — int
E+(E1$ shift £ E E
/ \
int + int)+ (int
Shift-Reduce Example
Iint + (int) + (int)$ shift E
int | + (int) + (int)$ red. E — int
E |+ (inf) + (int)$ shift 3 times
E+(int 1)+ (int)$ red E—int
E+(EI)+(int)$ shift
E+ (E) 1+ (inH)$ red. E— E + (E)
El+(int)$ shift 3 times
E+ (int1)$ red. E — int
E+(E1$ shift
E+(E)I$ red E~E+(E) E £
EI$ accept / \
int + int)+ (int)

f

The Stack

- Left string can be implemented as a stack
- Top of the stack is the |

+ Shift pushes a terminal on the stack

+ Reduce pops O or more symbols from the stack
(production rhs) and pushes a non-terminal on
the stack (production |hs)

9/22/06 Prof. Hilfinger CS164 Lecture 11 25

Key Issue: When to Shift or Reduce?

+ Decide based on the left string (the stack)
+ Idea: use a finite automaton (DFA) to decide

when to shift or reduce

- The DFA input is the stack up to potential handle

- DFA alphabeft consists of terminals and nonterminals
- DFA recognizes complete handles

- We run the DFA on the stack and we examine

the resulting state X and the token tok after |
- If X has a transition labeled tok then shift
- If X is labeled with "A — B on tok" then reduce

9/22/06 Prof. Hilfinger CS164 Lecture 11 26

LR(1) Parsing. An Example

—_ int Iint + (int) + (int)$ shift
E jl IE Lint infi+(int)+ (int)$ E - int
on$,+ El+(int)+(int)$ shift(x3)

+ (
aciEnt e o) E+(int1)+(int)$ E - int
on$ E/ | int E+(E1)+(@n)$ shift
E—int E+(E)1+(int)$ E-E+E)
ESE® on)+ El+(int)$ shift (x3)
on$,+ int E+(int1)$ E - int
E+(E1)$ shift
E+(E)1$ E - E+(E)
E Ei$ accept
@ D¢ -0

on), +

Representing the DFA

+ Parsers represent the DFA as a 2D table
- As for table-driven lexical analysis

* Lines correspond to DFA states

+ Columns correspond to terminals and non-
terminals

* In classical tfreatments, columns are split into:
- Those for terminals: action table
- Those for non-terminals: goto table

9/22/06 Prof. Hilfinger CS164 Lecture 11 28

Representing the DFA. Example

* The table for a fragment of our DFA:

int + () $ E
3 s4
4|s5 g6
5 PE~ int PE~ int
6 |s8 s7
7 e~ E+(E) e -~ E+(E)
E—-E+(E)on$, +
9/22/06 Prof. Hilfinger CS164 Lecture 11 29

The LR Parsing Algorithm

+ After a shift or reduce action we rerun the
DFA on the entire stack

- This is wasteful, since most of the work is
repeated

- So record, for each stack element, state of
the DFA after that state

* LR parser maintains a stack
('symy, state;) ... (sym,, state,)
state, is the final state of the DFA on sym, ... sym,

9/22/06 Prof. Hilfinger CS164 Lecture 11 30

The LR Parsing Algorithm

Let I = ww,..w,$ be initial input
Letj=1
Let DFA state O be the start state
Let stack = (dummy, O)
repeat
case action[top_state(stack), I[j]] of
shift ki push (I[j], k) j+=1
reduce X — a:
pop la| pairs,
push (X, Goto[top_state(stack), X])
accept: halt normally
error: halt and report error

9/22/06 Prof. Hilfinger CS164 Lecture 11 31

LR Parsing Notes

+ Can be used to parse more grammars than LL
* Most programming languages grammars are LR
+ Can be described as a simple table

* There are tools for building the table

+ How is the table constructed?

9/22/06 Prof. Hilfinger CS164 Lecture 11 32

To Be Done

* Review of bottom-up parsing
+ Computing the parsing DFA

* Using parser generators

9/22/06 Prof. Hilfinger CS164 Lecture 11 33

Bottom-up Parsing (Review)

* A bottom-up parser rewrites the input string
to the start symbol

+ The state of the parser is described as
aly
- ais a stack of terminals and non-terminals
- vy is the string of terminals not yet examined

+ Initially: | x;x, ... X,

9/22/06 Prof. Hilfinger CS164 Lecture 11 34

The Shift and Reduce Actions (Review)

Recall the CFG: E - int | E + (E)
A bottom-up parser uses two kinds of actions:

Shift pushes a terminal from input on the stack
E+(int) = E+(int1)

Reduce pops O or more symbols from the stack
(production rhs) and pushes a non-terminal on
the stack (production |hs)

E+E+(E)1) =E+E")

9/22/06 Prof. Hilfinger CS164 Lecture 11 35

Key Issue: When to Shift or Reduce?

+ Idea: use a finite automaton (DFA) to decide
when to shift or reduce
- The input is the stack
- The language consists of terminals and non-terminals

+ We run the DFA on the stack and we examine
the resulting state X and the token tok after |
- If X has a transition labeled tok then shift
- If X is labeled with "A — § on tok" then reduce

9/22/06 Prof. Hilfinger CS164 Lecture 11 36

LR(1) Parsing. An Example

—_ int Iint + (int) + (int)$ shift
E jl IE Lint infi+(int)+ (int)$ E - int
on$,+ El+(int)+(int)$ shift(x3)

+ (
e o] E+(int1)+(int)$ E —int
int E+(E1)+(int)$ shift

E—int E+(E)1+(int)$ E—E+(E)
ESE® on)+ E| +‘(im‘)$ shiff (x3)
on$,+ int E+(int1)$ E - int

Key Issue: How is the DFA Constructed?

- The stack describes the context of the parse
- What non-terminal we are looking for
- What productions we are looking for
- What we have seen so far from the rhs

9/22/06 Prof. Hilfinger CS164 Lecture 11 38

E+(E1)$ shift
E+(E)1$ E — E+(E)
E Ei$ accept
(e -e-®
on), +
Parsing Contexts
. E
- Consider the state: /

int + (int)+ (int)

- The stack is E + (lint)+ (int)
+ Context:
- Weare looking foranE — E+(* E)
+ Have have seen E + (from the right-hand side
- Weare also looking for E — © int orE — < E+ (E)
+ Have seen nothing from the right-hand side
+ One DFA state describes several contexts

9/22/06 Prof. Hilfinger CS164 Lecture 11 39

LR(1) Items

* An LR(1) item is a pair:
X —=af,a
- X — ap is a production
- ais a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal

+ [X — aB, a] describes a context of the parser
- We are trying to find an X followed by an a, and
- We have o already on top of the stack
- Thus we need to see next a prefix derived from fa

9/22/06 Prof. Hilfinger CS164 Lecture 11 40

Note

+ The symbol | was used before to separate the
stack from the rest of input
- aly, where a is the stack and y is the remaining
string of terminals
-+ InLR(1) items ° is used to mark a prefix of a
production rhs:
X —of,a
- Here B might contain non-terminals as well
- Inboth case the stack is on the left

9/22/06 Prof. Hilfinger CS164 Lecture 11 41

Convention

+ We add to our grammar a fresh new start
symbol S and a production S - E
- Where E is the old start symbol
- No need to do this if E had only one production

+ The initial parsing context contains:
S-+E$
- Trying to find an S as a string derived from E$
- The stack is empty

9/22/06 Prof. Hilfinger CS164 Lecture 11 42

LR(1) Items (Cont.)

+ In context containing
E-E+-(E) +

- If (follows then we can perform a shift to context
containing

E-E+(-E)+
+ In context containing
E-E+(E)-,+
- We can perform a reduction withE — E + (E)
- But only if a + follows

9/22/06 Prof. Hilfinger CS164 Lecture 11 43

LR(1) Items (Cont.)

+ Consider a context with the item
E-E+(-E),+
- We expect next a string derived from E) +
* There are two productions for E
E—-int and E—-E+(E)
+ We describe this by extending the context
with fwo more items:
E - «int,)
E--E+(E).)

9/22/06 Prof. Hilfinger CS164 Lecture 11 44

The Closure Operation

* The operation of extending the context with
items is called the closure operation

Closure(Items) =
repeat
for each [X — a°YB, a] in Items
for each production Y — y
for each b € First(Ba)
add [Y — *y, b] to Items
until Items is unchanged

9/22/06 Prof. Hilfinger CS164 Lecture 11 45

Constructing the Parsing DFA (1)

+ Construct the start context: Closure({s — °E, $})

S—°E,$
E — °E+(E), $
E— eint, $
E — *E+(E), +
E — ¢int, +

+ We abbreviate as:
S—°E,$
E — °E+(E), $/+
E — eint, $/+

9/22/06 Prof. Hilfinger CS164 Lecture 11 46

Constructing the Parsing DFA (2)

- A DFA state is a closed set of LR(1) items
- This means that we performed Closure

+ The start state is Closure([S — °E, $1)

- A state that contains [X — ae, b] is labeled
with "reduce with X — o on b"

+ And now the transitions ...

9/22/06 Prof. Hilfinger CS164 Lecture 11 47

The DFA Transitions

+ A state "State” that contains [X — a°yp, b]
has a transition labeled y to a state that
contains the items "Transition(State, y)"

- y can be a terminal or a non-terminal

Transition(State, y)
Items < J
for each [X — a*yp, b] € State
add [X — ay*B, b] to Items
return Closure(Items)

9/22/06 Prof. Hilfinger CS164 Lecture 11 48

Constructing the Parsing DFA. Example.

Ns_.es$ |9
int

E — *E+(E), $/+1 LA 7o AP

5]

€ iy, 3/
2 S—Ee* $ (
E — E*+(E), $/+ E — E+(*E), $/+4]
accept E E— -E+(E),)/+
on E— inf,)/+
@ E — E+(E*), $/+ int
E — E*+(E),)/+

om0 ANd SO ON...

Prof. Hilfinger CS164 Lecture 11

E - inte,)/+| EZint

on),+
49

LR Parsing Tables. Notes

+ Parsing tables (i.e. the DFA) can be
constructed automatically for a CFG

+ But we still need to understand the

construction to work with parser generators
- E.g., they report errors in terms of sets of items

+ What kind of errors can we expect?

9/22/06 Prof. Hilfinger CS164 Lecture 11 50

Shift/Reduce Conflicts

+ If a DFA state contains both
[X - a-aB, b] and [Y -y, a]

+ Then on input “a" we could either
- Shift into state [X — aa*B, b], or
- Reduce with Y -y

+ This is called a shift-reduce conflict

9/22/06 Prof. Hilfinger CS164 Lecture 11

Shift/Reduce Conflicts

+ Typically due to ambiguities in the grammar
+ Classic example: the dangling else
S— if EthenS | if EthenSelse S | OTHER
+ Will have DFA state containing
[S — if E then Se, else]
[S— if Ethen S* else S, $]
- If else follows then we can shift or reduce

9/22/06 Prof. Hilfinger CS164 Lecture 11 52

More Shift/Reduce Conflicts

+ Consider the ambiguous grammar
E—-E+E|E*E|int
*+ We will have the states containing
[E—E*-E, +] [E—-E*Ee, +]
[E—-<E+E, +] =F [E—E-+E, +]

* Again we have a shift/reduce on input +
- We need to reduce (* binds more tightly than +)
- Solution: declare the precedence of * and +

9/22/06 Prof. Hilfinger CS164 Lecture 11 53

More Shift/Reduce Conflicts

+ In bison declare precedence and associativity
of terminal symbols:
%left +
%left *

+ Precedence of a rule = that of its last terminal

- See bison manual for ways to override this default

+ Resolve shift/reduce conflict with a shift if:

- input terminal has higher precedence than the rule
- the precedences are the same and right associative

9/22/06 Prof. Hilfinger CS164 Lecture 11 54

Using Precedence to Solve S/R Conflicts

* Back to our example:
[E%E*'EI‘F] [EeE*E:l-b]
[E—<-E+E +] =F [E—E-+E +]

+ Will choose reduce because precedence of
rule E — E * E is higher than of terminal +

9/22/06 Prof. Hilfinger CS164 Lecture 11 55

Using Precedence to Solve S/R Conflicts

- Same grammar as before
E—-E+E|E*E]|int
+ We will also have the states
[E—~E++E,+] [E~E+Ee,+]
[E—><E+E+] =E [E—E++E+]

* Now we also have a shift/reduce on input +

- We choose reduce because E — E + E and + have
the same precedence and + is left-associative

9/22/06 Prof. Hilfinger CS164 Lecture 11 56

Using Precedence to Solve S/R Conflicts

+ Back to our dangling else example
[S — if E then Se, else]
[S — if Ethen S®else S, x]

+ Can eliminate conflict by declaring else with
higher precedence than then
* However, best to avoid overuse of precedence

declarations or you'll end with unexpected
parse trees

9/22/06 Prof. Hilfinger CS164 Lecture 11 57

Reduce/Reduce Conflicts

+ If a DFA state contains both
[X = ae,aland [Y - B°, a]

- Then on input "a" we don't know which
production to reduce

 This is called a reduce/reduce conflict

9/22/06 Prof. Hilfinger CS164 Lecture 11 58

Reduce/Reduce Conflicts

+ Usually due to gross ambiguity in the grammar
- Example: a sequence of identifiers
S—¢|id]ids

+ There are two parse trees for the string id
S—id
S—idS—id
How does this confuse the parser?

9/22/06 Prof. Hilfinger CS164 Lecture 11 59

More on Reduce/Reduce Conflicts

- Consider the states [S—ide, $]
[S =<5, $] [S—ideS, $]
[S—-, $] =id [S—-, $]
[S—-<id, $] [S—-id, $]
[S—>-ids, $] [S—-idS, $]

- Reduce/reduce conflict on input $

S'—=S—id
S—-S5—-idS—id

+ Better rewrite the grammar: s —¢ |idS

9/22/06 Prof. Hilfinger CS164 Lecture 11 60

10

Using Parser Generators

+ Parser generators construct the parsing DFA
given a CFG
- Use precedence declarations and default
conventions to resolve conflicts
- The parser algorithm is the same for all grammars
(and is provided as a library function)
* But most parser generators do not construct
the DFA as described before
- Because the LR(1) parsing DFA has 1000s of states
even for a simple language

9/22/06 Prof. Hilfinger CS164 Lecture 11

LR(1) Parsing Tables are Big

+ But many states are similar, e.g.

B
CEE o

+ Idea: merge the DFA states whose items
differ only in the lookahead tokens
- We say that such states have the same core

+ We obtain
E —inte, $/+/)| E Zint
on$,+)

9/22/06 Prof. Hilfinger CS164 Lecture 11

The Core of a Set of LR Items

+ Definition: The core of a set of LR items is
the set of first components
- Without the lookahead terminals

+ Example: the core of
{[X—ap,b], [Y = y*5,d]}
is
{X—=ap, Y—y8}

9/22/06 Prof. Hilfinger CS164 Lecture 11

LALR States

+ Consider for example the LR(1) states
{IX—=ae,a], [Y—Be,cl}
{[X = a°,b], [Y —= B, d]}
* They have the same core and can be merged
* And the merged state contains:
{[X = a°,a/b]l, [Y — B, c/d]}
+ These are called LALR(1) states

- Stands for LookAhead LR
- Typically 10 times fewer LALR(1) states than LR(1)

9/22/06 Prof. Hilfinger CS164 Lecture 11 64

A LALR(1) DFA

* Repeat until all states have distinct core
- Choose two distinct states with same core
- Merge the states by creating a new one with the
union of all the items
- Point edges from predecessors to new state
- New state points to all the previous successors

°®O
© ®

9/22/06 Prof. Hilfinger CS164 Lecture 11 65

Conversion LR(1) to LALR(1). Example.
_ 0 int

"G5
E — int E—int
on$,+ on$,+,)

F-6-5@)
accept E

on$

int
E — int accept
on), + on$

int

1

The LALR Parser Can Have Conflicts

+ Consider for example the LR(1) states
{[X—as,al, [Y = e, b]}
{[X—=ae°, bl [Y =B, a]}

+ And the merged LALR(1) state
{[X = a°,a/b], [Y = B, a/b]}

* Has a hew reduce-reduce conflict

+ In practice such cases are rare

9/22/06 Prof. Hilfinger CS164 Lecture 11 67

LALR vs. LR Parsing

+ LALR languages are not natural
- They are an efficiency hack on LR languages

+ But any reasonable programming language has
a LALR(1) grammar

+ LALR(1) has become a standard for
programming languages and for parser
generators

9/22/06 Prof. Hilfinger CS164 Lecture 11 68

A Hierarchy of 6rammar Classes

‘Unambiguous Grammars Ambiguous
Grammars

\

From Andrew Appel,
“Modern Compiler
Implementation in Java"

9/22/06 Prof. Hilfinger CS164 Lecture 11 69

Notes on Parsing

+ Parsing
- A solid foundation: context-free grammars
- A simple parser: LL(1)
- A more powerful parser: LR(1)
- An efficiency hack: LALR(1)
- We use LALR(1) parser generators

9/22/06 Prof. Hilfinger CS164 Lecture 11 70

12

