Bottom-Up Parsing

Lecture 11-12
(From slides by G. Necula \& R. Bodik)

Bottom-Up Parsing

- Bottom-up parsing is more general than topdown parsing
- And just as efficient
- Builds on ideas in top-down parsing
- Most common form is LR parsing
- L means that tokens are read left to right
- R means that it constructs a rightmost derivation

An Introductory Example

- LR parsers don't need left-factored grammars and can also handle left-recursive grammars
- Consider the following grammar:

$$
E \rightarrow E+(E) \mid \mathrm{int}
$$

- Why is this not $\operatorname{LL}(1)$?
- Consider the string: int + (int) + (int)

The Idea

- LR parsing reduces a string to the start symbol by inverting productions:
str \leftarrow input string of terminals while $s t r \neq S$:
- Identify first β in str such that $A \rightarrow \beta$ is a production and $S \rightarrow^{\star} \alpha A \gamma \rightarrow \alpha \beta \gamma=s t r$
- Replace β by A in str (so $\alpha A \gamma$ becomes new str)
- Such $\alpha \beta^{\prime}$'s are called handles

A Bottom-up Parse in Detail (1)

int + (int) + (int)

A Bottom-up Parse in Detail (2)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& \text { E + (int) + (int) }
\end{aligned}
$$

A Bottom-up Parse in Detail (3)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& E+(\text { int })+(\text { int }) \\
& E+(E)+\text { int })
\end{aligned}
$$

A Bottom-up Parse in Detail (4)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& E+(\text { int })+(\text { int }) \\
& E+(E)+\text { int }) \\
& E+(\text { int })
\end{aligned}
$$

A Bottom-up Parse in Detail (5)

$$
\begin{aligned}
& \text { int + (int) + (int) } \\
& \text { E + (int) }+ \text { (int) } \\
& E+(E)+\text { int }) \\
& E+(\text { int }) \\
& E+(E)
\end{aligned}
$$

A Bottom-up Parse in Detail (6)

$$
\left\{\begin{array}{l}
\text { int + (int) + (int) } \\
E+\text { (int) }+ \text { (int) } \\
E+(E)+\text { (int) } \\
E+(\text { int }) \\
E+(E) \\
E
\end{array}\right.
$$

A reverse rightmost derivation

Where Do Reductions Happen

Because an LR parser produces a reverse rightmost derivation:

- If $\alpha \beta \gamma$ is step of a bottom-up parse with handle $\alpha \beta$
- And the next reduction is by $A \rightarrow \beta$
- Then γ is a string of terminals!
... Because $\alpha A \gamma \rightarrow \alpha \beta \gamma$ is a step in a right-most derivation
Intuition: We make decisions about what reduction to use after seeing all symbols in handle, rather that before (as for LL(1))

Notation

- Idea: Split the string into two substrings
- Right substring (a string of terminals) is as yet unexamined by parser
- Left substring has terminals and non-terminals
- The dividing point is marked by a
- The I is not part of the string
- Marks end of next potential handle
- Initially, all input is unexamined: $\mid x_{1} x_{2} \ldots x_{n}$

Shift-Reduce Parsing

- Bottom-up parsing uses only two kinds of actions: Shift: Move one place to the right, shifting a terminal to the left string

$$
E+(\mathrm{int}) \Rightarrow E+(\text { int } \mathrm{I})
$$

Reduce: Apply an inverse production at the handle. If $E \rightarrow E+(E)$ is a production, then

$$
E+(E+(E) \prime) \Rightarrow E+(E)
$$

Shift-Reduce Example

$1 \mathrm{int}+$ (int) + (int)\$ shift

$$
\text { int }+(\operatorname{int})+(\operatorname{int})
$$

Shift-Reduce Example

```
| int + (int) + (int)$ shift
int I + (int)+(int)$ red. E }->\mathrm{ int
```

$$
{ }_{\uparrow}^{\text {int }}+(\text { int })+(\text { int })
$$

Shift-Reduce Example

```
| int + (int) + (int)$ shift
int I + (int)+(int)$ red. E }->\mathrm{ int
El+ (int) + (int)$ shift 3 times
```


Shift-Reduce Example

I int + (int) + (int)\$ shift
int I + (int) + (int)\$ red. $E \rightarrow$ int
EI + (int) + (int)\$ shift 3 times
$E+($ int I $)+($ int $) \$$ red. $E \rightarrow$ int

Shift-Reduce Example

```
l int + (int) + (int)$ shift
int I + (int) + (int)$ red. E }->\mathrm{ int
El + (int) + (int)$ shift 3 times
E + (int I ) + (int)$ red. E }->\mathrm{ int
E + (EI) + (int)$ shift
```


Shift-Reduce Example

```
| int + (int) + (int)$ shift
int I + (int)+(int)$ red. E }->\mathrm{ int
E I + (int) + (int)$ shift 3 times
E ( (int I) + (int)$ red. E -> int
E +(EI) + (int)$ shift
E +(E)I + (int)$ red. E G E + (E)
```


Shift-Reduce Example

```
| int + (int) + (int)$ shift
int I + (int)+(int)$ red. E }->\mathrm{ int
E I + (int) + (int)$ shift 3 times
E+(int I)+(int)$ red. E -> int
E+(EI)+(int)$ shift
E + (E)I + (int)$ red. E G E (E)
El+(int)$ shift 3 times
```


Shift-Reduce Example

nt + (int) + (int)\$	shift
int I + (int) + (int)\$	red. $\mathrm{E} \rightarrow$ int
El + (int) + (int)\$	shift 3 times
E + (int l) + (int)\$	red. $\mathrm{E} \rightarrow$ int
$E+\left(E_{1}\right)+(\mathrm{int}) \$$	shift
$E+(E) I+(i n t) \$$	red. $E \rightarrow E+(E)$
E I + (int)\$	shift 3 times
E + (int l $)$ \$	red. $\mathrm{E} \rightarrow \mathrm{int}$

Shift-Reduce Example

$1 \mathrm{int}+$ (int$)+$ (int) \$	shift
int I + (int) + (int)\$	red. $E \rightarrow$ int
El+ (int) + (int)\$	shift 3 times
$E+(\mathrm{int}$) $)+(\mathrm{int}) \$$	red. $\mathrm{E} \rightarrow \mathrm{int}$
$E+(E)+(\mathrm{int}) \$$	shift
$E+(E) I+(\mathrm{int}) \$$	red. $E \rightarrow E+(E)$
E I + (int)\$	shift 3 times
E + (int I) \$	red. $\mathrm{E} \rightarrow \mathrm{int}$
E + (E) $)$ \$	shift

Shift-Reduce Example

```
| int + (int) + (int)$ shift
int I + (int) + (int)$ red. E }->\mathrm{ int
EI+ (int)+ (int)$ shift 3 times
E ( (int I ) + (int)$ red. E }->\mathrm{ int
E + (EI) + (int)$ shift
E + (E)I+ (int)$ red. E G E + (E)
EI+ (int)$ shift 3 times
E (int l)$ red. E }->\mathrm{ int
E+(E|)$ shift
E+(E)|$
    red. E G + (E)
```


Shift-Reduce Example

$1 \mathrm{int}+$ (int) + (int)\$	sh	
int I + (int) + (int)\$	red. $E \rightarrow$ int	
$E I+(i n t)+(i n t) \$$	shift 3 times	
$E+(i n t l)+(i n t) \$$	red. $E \rightarrow$ int	
$E+(E l)+(i n t) \$$	shift	
$E+(E) I+(i n t) \$$	red. $E \rightarrow E+(E)$	
EI+ (int)\$	shift 3 times	
$E+(\mathrm{int} \mathrm{l})$ \$	red. $\mathrm{E} \rightarrow$ int	
$E+(E)$ \$	shift	
$E+(E) \mid \$$	red. $E \rightarrow E+(E)$	
E\\|\$	accept	

The Stack

- Left string can be implemented as a stack
- Top of the stack is the ।
- Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols from the stack (production rhs) and pushes a non-terminal on the stack (production Ihs)

Key Issue: When to Shift or Reduce?

- Decide based on the left string (the stack)
- Idea: use a finite automaton (DFA) to decide when to shift or reduce
- The DFA input is the stack up to potential handle
- DFA alphabet consists of terminals and nonterminals
- DFA recognizes complete handles
- We run the DFA on the stack and we examine the resulting state X and the token tok after ।
- If X has a transition labeled tok then shift
- If X is labeled with " $A \rightarrow \beta$ on tok" then reduce

LR(1) Parsing. An Example

Representing the DFA

- Parsers represent the DFA as a 2D table
- As for table-driven lexical analysis
- Lines correspond to DFA states
- Columns correspond to terminals and nonterminals
- In classical treatments, columns are split into:
- Those for terminals: action table
- Those for non-terminals: goto table

Representing the DFA. Example

- The table for a fragment of our DFA:

The LR Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack
- This is wasteful, since most of the work is repeated
- So record, for each stack element, state of the DFA after that state
- LR parser maintains a stack
$\left\langle\right.$ sym $_{1}$, state $\left._{1}\right\rangle \ldots\left\langle\right.$ sym $_{n}$, state $\left._{n}\right\rangle$
state $_{\mathrm{k}}$ is the final state of the DFA on sym $_{1} \ldots$ sym $_{\mathrm{k}}$

The LR Parsing Algorithm

Let $I=w_{1} w_{2} \ldots w_{n} \$$ be initial input
Let $\mathrm{j}=1$
Let DFA state 0 be the start state
Let stack $=\langle$ dummy, 0\rangle
repeat
case action[top_state(stack), I[j]] of
shift k: push $\langle I[j], k\rangle ; j+=1$
reduce $X \rightarrow \alpha$:
pop $|\alpha|$ pairs,
push $\langle X$, Goto[top_state(stack), X] \rangle
accept: halt normally
error: halt and report error

LR Parsing Notes

- Can be used to parse more grammars than LL
- Most programming languages grammars are LR
- Can be described as a simple table
- There are tools for building the table
- How is the table constructed?

To Be Done

- Review of bottom-up parsing
- Computing the parsing DFA
- Using parser generators

Bottom-up Parsing (Review)

- A bottom-up parser rewrites the input string to the start symbol
- The state of the parser is described as

$$
\alpha \mid \gamma
$$

- α is a stack of terminals and non-terminals
- γ is the string of terminals not yet examined
- Initially: | $x_{1} x_{2} \ldots x_{n}$

The Shift and Reduce Actions (Review)

- Recall the CFG: $E \rightarrow$ int $\mid E+(E)$
- A bottom-up parser uses two kinds of actions:
- Shift pushes a terminal from input on the stack

$$
E+(\mathrm{int}) \Rightarrow E+(\mathrm{int} \mathrm{I})
$$

- Reduce pops 0 or more symbols from the stack (production rhs) and pushes a non-terminal on the stack (production lhs)

$$
E+(\underline{E}+(E) ı) \Rightarrow E+(\underline{E} \mid)
$$

Key Issue: When to Shift or Reduce?

- Idea: use a finite automaton (DFA) to decide when to shift or reduce
- The input is the stack
- The language consists of terminals and non-terminals
- We run the DFA on the stack and we examine the resulting state X and the token tok after I
- If X has a transition labeled tok then shift
- If X is labeled with " $A \rightarrow \beta$ on tok" then reduce

LR(1) Parsing. An Example

Key Issue: How is the DFA Constructed?

- The stack describes the context of the parse
- What non-terminal we are looking for
- What productions we are looking for
- What we have seen so far from the rhs

Parsing Contexts

- Consider the state:
- The stack is

- Context:
- We are looking for an $E \rightarrow E+(\cdot E)$
- Have have seen E + (from the right-hand side
- We are also looking for $E \rightarrow \bullet$ int or $E \rightarrow \bullet E+(E)$
- Have seen nothing from the right-hand side
- One DFA state describes several contexts

LR(1) Items

- An $L R(1)$ item is a pair:

$$
X \rightarrow \alpha \cdot \beta, a
$$

$-X \rightarrow \alpha \beta$ is a production

- a is a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal
- $[X \rightarrow \alpha \bullet \beta, a]$ describes a context of the parser
- We are trying to find an X followed by an a, and
- We have a already on top of the stack
- Thus we need to see next a prefix derived from βa

Note

- The symbol I was used before to separate the stack from the rest of input
- $\alpha \mid \gamma$, where α is the stack and γ is the remaining string of terminals
- In LR(1) items • is used to mark a prefix of a production rhs:

$$
X \rightarrow \alpha \cdot \beta, a
$$

- Here β might contain non-terminals as well
- In both case the stack is on the left

Convention

- We add to our grammar a fresh new start symbol S and a production $S \rightarrow E$
- Where E is the old start symbol
- No need to do this if E had only one production
- The initial parsing context contains:

$$
S \rightarrow \cdot E, \$
$$

- Trying to find an S as a string derived from $E \$$
- The stack is empty

LR(1) Items (Cont.)

- In context containing

$$
E \rightarrow E+\cdot(E),+
$$

- If (follows then we can perform a shift to context containing

$$
E \rightarrow E+(\cdot E),+
$$

- In context containing

$$
E \rightarrow E+(E) \cdot,+
$$

- We can perform a reduction with $E \rightarrow E+(E)$
- But only if a + follows

LR(1) Items (Cont.)

- Consider a context with the item

$$
E \rightarrow E+(\cdot E),+
$$

- We expect next a string derived from E) +
- There are two productions for E

$$
E \rightarrow \text { int and } E \rightarrow E+(E)
$$

- We describe this by extending the context with two more items:

$$
\begin{aligned}
& E \rightarrow \cdot \operatorname{int},) \\
& E \rightarrow \cdot E+(E),)
\end{aligned}
$$

The Closure Operation

- The operation of extending the context with items is called the closure operation

Closure $($ Items $)=$
repeat

$$
\text { for each }\left[X \rightarrow \alpha \cdot Y_{\beta}, a\right] \text { in Items }
$$

for each production $Y \rightarrow \gamma$

$$
\text { for each } b \in \text { First }(\beta a)
$$ add $[\mathrm{Y} \rightarrow \stackrel{\gamma}{ }, \mathrm{b}$] to Items

until Items is unchanged

Constructing the Parsing DFA (1)

- Construct the start context: Closure $(\{s \rightarrow \bullet E, \$\})$

$$
\begin{aligned}
& S \rightarrow \bullet E, \$ \\
& E \rightarrow \bullet E+(E), \$ \\
& E \rightarrow \bullet \text { int, \$ } \\
& E \rightarrow \bullet E+(E),+ \\
& E \rightarrow \bullet \text { int, }+
\end{aligned}
$$

- We abbreviate as:

$$
\begin{aligned}
& S \rightarrow \bullet E, \$ \\
& E \rightarrow \bullet E+(E), \$ /+ \\
& E \rightarrow \bullet \text { int, } \$ /+
\end{aligned}
$$

Constructing the Parsing DFA (2)

- A DFA state is a closed set of LR(1) items
- This means that we performed Closure
- The start state is Closure $([S \rightarrow \bullet E, \$])$
- A state that contains [$X \rightarrow \alpha \cdot, b]$ is labeled with "reduce with $X \rightarrow \alpha$ on b "
- And now the transitions ...

The DFA Transitions

- A state "State" that contains [X $\left.\rightarrow \alpha^{\circ} y \beta, b\right]$ has a transition labeled y to a state that contains the items "Transition(State, y)"
- y can be a terminal or a non-terminal

Transition(State, y)
Items $\leftarrow \varnothing$
for each $\left[X \rightarrow \alpha^{\bullet} y \beta, b\right] \in$ State add $\left[X \rightarrow \alpha y^{\bullet} \beta, b\right]$ to Items
return Closure(Items)

Constructing the Parsing DFA. Example.

LR Parsing Tables. Notes

- Parsing tables (i.e. the DFA) can be constructed automatically for a CFG
- But we still need to understand the construction to work with parser generators
- E.g., they report errors in terms of sets of items
- What kind of errors can we expect?

Shift/Reduce Conflicts

- If a DFA state contains both

$$
[X \rightarrow \alpha \cdot a \beta, b] \text { and }\left[Y \rightarrow \gamma^{\bullet}, a\right]
$$

- Then on input "a" we could either
- Shift into state $[X \rightarrow \alpha a \bullet \beta$, b], or
- Reduce with $Y \rightarrow \gamma$
- This is called a shift-reduce conflict

Shift/Reduce Conflicts

- Typically due to ambiguities in the grammar
- Classic example: the dangling else $S \rightarrow$ if E then S | if E then S else $S \mid$ OTHER
- Will have DFA state containing

$$
\begin{array}{ll}
{[S \rightarrow \text { if } E \text { then } S \bullet,} & \text { else }] \\
{[S \rightarrow \text { if } E \text { then } S \cdot \text { else } S,} & \$]
\end{array}
$$

- If else follows then we can shift or reduce

More Shift/Reduce Conflicts

- Consider the ambiguous grammar

$$
E \rightarrow E+E|E * E| \mathrm{int}
$$

- We will have the states containing

$$
\begin{aligned}
& {\left[E \rightarrow E^{*} \cdot E,+\right]} \\
& {[E \rightarrow \bullet E+E,+] \Rightarrow E \quad[E \rightarrow E * E \bullet,+]} \\
& {[E \rightarrow E \cdot+E,+]}
\end{aligned}
$$

- Again we have a shift/reduce on input +
- We need to reduce (* binds more tightly than +)
- Solution: declare the precedence of * and +

More Shift/Reduce Conflicts

- In bison declare precedence and associativity of terminal symbols:

$$
\begin{aligned}
& \text { \%left + } \\
& \text { \%left * }
\end{aligned}
$$

- Precedence of a rule $=$ that of its last terminal
- See bison manual for ways to override this default
- Resolve shift/reduce conflict with a shift if:
- input terminal has higher precedence than the rule
- the precedences are the same and right associative

Using Precedence to Solve S/R Conflicts

- Back to our example:

$$
\begin{array}{ll}
{\left[E \rightarrow E^{*} \cdot E_{1}+\right]} \\
{[E \rightarrow \bullet E+E,+] \Rightarrow E} & {\left[E \rightarrow E^{*} E_{\bullet},+\right]} \\
{\left[E \rightarrow E \cdot+E_{1}+\right]}
\end{array}
$$

- Will choose reduce because precedence of rule $E \rightarrow E$ * E is higher than of terminal +

Using Precedence to Solve S/R Conflicts

- Same grammar as before

$$
E \rightarrow E+E|E * E| \operatorname{int}
$$

- We will also have the states

$$
\begin{aligned}
& {\left[E \rightarrow E+\cdot E_{1}+\right]} \\
& {\left[E \rightarrow \cdot E+E_{1}+\right] \quad \Rightarrow E \quad[E \rightarrow E+E \cdot,+]} \\
& {\left[E \rightarrow E \cdot+E_{1}+\right]}
\end{aligned}
$$

- Now we also have a shift/reduce on input +
- We choose reduce because $E \rightarrow E+E$ and + have the same precedence and + is left-associative

Using Precedence to Solve S/R Conflicts

- Back to our dangling else example

$$
\begin{array}{ll}
{\left[S \rightarrow \text { if } E \text { then } S^{\bullet},\right.} & e l s e] \\
{\left[S \rightarrow \text { if } E \text { then } S^{\bullet} \text { else } S,\right.} & x]
\end{array}
$$

- Can eliminate conflict by declaring else with higher precedence than then
- However, best to avoid overuse of precedence declarations or you'll end with unexpected parse trees

Reduce/Reduce Conflicts

- If a DFA state contains both

$$
[X \rightarrow \alpha \cdot a] \text { and }[Y \rightarrow \beta \cdot, a]
$$

- Then on input "a" we don't know which production to reduce
- This is called a reduce/reduce conflict

Reduce/Reduce Conflicts

- Usually due to gross ambiguity in the grammar
- Example: a sequence of identifiers

$$
S \rightarrow \varepsilon \mid \text { id } \mid \text { id } S
$$

- There are two parse trees for the string id

$$
\begin{aligned}
& S \rightarrow i d \\
& S \rightarrow i d S \rightarrow i d
\end{aligned}
$$

- How does this confuse the parser?

More on Reduce/Reduce Conflicts

- Consider the states

$$
\begin{array}{ll}
\text { sider the states } \\
{\left[S^{\prime} \rightarrow \bullet S,\right.} & \$] \\
{[S \rightarrow \bullet,} & \$] \\
{[S \rightarrow \bullet i d,} & \$] \\
{[S \rightarrow \bullet \text { id } S, \$]}
\end{array} \quad \Rightarrow \begin{array}{ll}
\text { id } & {[S \rightarrow \text { id } \cdot S, \$]} \\
{[S \rightarrow \bullet,} & \$] \\
& {[S \rightarrow \bullet \text { id, }} \\
\hline S] \\
& {[S \rightarrow \bullet \text { id } S, \$]}
\end{array}
$$

- Reduce/reduce conflict on input \$

$$
\begin{aligned}
& \mathrm{S}^{\prime} \rightarrow \mathrm{S} \rightarrow \mathrm{id} \\
& \mathrm{~S}^{\prime} \rightarrow \mathrm{S} \rightarrow \mathrm{id} S \rightarrow \mathrm{id}
\end{aligned}
$$

- Better rewrite the grammar: $S \rightarrow \varepsilon \mid$ id S

Using Parser Generators

- Parser generators construct the parsing DFA given a CFG
- Use precedence declarations and default conventions to resolve conflicts
- The parser algorithm is the same for all grammars (and is provided as a library function)
- But most parser generators do not construct the DFA as described before
- Because the LR(1) parsing DFA has 1000s of states even for a simple language

LR(1) Parsing Tables are Big

- But many states are similar, e.g.

- Idea: merge the DFA states whose items differ only in the lookahead tokens
- We say that such states have the same core
- We obtain

The Core of a Set of LR Items

- Definition: The core of a set of LR items is the set of first components
- Without the lookahead terminals
- Example: the core of

$$
\left\{[X \rightarrow \alpha \bullet \beta, b],\left[Y \rightarrow \gamma^{\bullet} \delta, d\right]\right\}
$$

is

$$
\left\{X \rightarrow \alpha \bullet \beta, Y \rightarrow \gamma^{\bullet} \delta\right\}
$$

LALR States

- Consider for example the LR(1) states

$$
\begin{aligned}
& \{[X \rightarrow \alpha \cdot a],[Y \rightarrow \beta \bullet, c]\} \\
& \left\{\left[X \rightarrow \alpha \cdot \alpha^{\bullet}, b\right],[Y \rightarrow \beta \cdot d]\right\}
\end{aligned}
$$

- They have the same core and can be merged
- And the merged state contains:

$$
\{[X \rightarrow \alpha \cdot a / b],[Y \rightarrow \beta \bullet, c / d]\}
$$

- These are called LALR(1) states
- Stands for LookAhead LR
- Typically 10 times fewer LALR(1) states than LR(1)

A LALR(1) DFA

- Repeat until all states have distinct core
- Choose two distinct states with same core
- Merge the states by creating a new one with the union of all the items
- Point edges from predecessors to new state
- New state points to all the previous successors

Conversion LR(1) to LALR(1). Example.

The LALR Parser Can Have Conflicts

- Consider for example the LR(1) states

$$
\begin{aligned}
& \{[X \rightarrow \alpha \cdot a],[Y \rightarrow \beta \cdot b]\} \\
& \{[X \rightarrow \alpha \cdot b],[Y \rightarrow \beta \cdot, a]\}
\end{aligned}
$$

- And the merged LALR(1) state

$$
\{[X \rightarrow \alpha \cdot a / b],[Y \rightarrow \beta \bullet, a / b]\}
$$

- Has a new reduce-reduce conflict
- In practice such cases are rare

LALR vs. LR Parsing

- LALR languages are not natural
- They are an efficiency hack on LR languages
- But any reasonable programming language has a LALR(1) grammar
- LALR(1) has become a standard for programming languages and for parser generators

A Hierarchy of Grammar Classes

From Andrew Appel, "Modern Compiler Implementation in Java"

Notes on Parsing

- Parsing
- A solid foundation: context-free grammars
- A simple parser: LL(1)
- A more powerful parser: LR(1)
- An efficiency hack: LALR(1)
- We use LALR(1) parser generators

