
1

10/6/06 Prof. Hilfinger, CS164 Lecture 15 1

Syntax Errors; Static Semantics

Lecture 14
(from notes by R. Bodik)

10/6/06 Prof. Hilfinger, CS164 Lecture 15 2

Dealing with Syntax Errors

• One purpose of the parser is to filter out errors that
show up in parsing

• Later stages should not have to deal with possibility
of malformed constructs

• Parser must identify error so programmer knows what
to correct

• Parser should recover so that processing can continue
(and other errors found)

• Parser might even correct error (e.g., PL/C compiler
could “correct” some Fortran programs into equivalent
PL/1 programs!)

10/6/06 Prof. Hilfinger, CS164 Lecture 15 3

Identifying Errors

• All of the valid parsers we’ve seen identify
syntax errors “as soon as possible.”

• Valid prefix property: all the input that is
shifted or scanned is the beginning of some
valid program

• … But the rest of the input might not be
• So in principle, deleting the lookahead (and

subsequent symbols) and inserting others will
give a valid program.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 4

Automating Recovery

• Unfortunately, best results require using
semantic knowledge and hand tuning.
– E.g., a(i].y = 5 might be turned to a[i].y = 5 if a is

statically known to be a list, or a(i).y = 5 if a
function.

• Some automatic methods can do an OK job
that at least allows parser to catch more than
one error.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 5

Bison’s Technique

• The special terminal symbol error is never
actually returned by the lexer.

• Gets inserted by parser in place of erroneous
tokens.

• Parsing then proceeds normally.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 6

Example of Bison’s Error Rules

• Suppose we want to throw away bad
statements and carry on

 stmt : whileStmt
 | ifStmt
 | …

 | error NEWLINE
 ;

2

10/6/06 Prof. Hilfinger, CS164 Lecture 15 7

Response to Error

• Consider erroneous text like
 if x y: …
• When parser gets to the y, will detect error.
• Then pops items off parsing stack until it

finds a state that allows a shift or reduction
on ‘error’ terminal

• Does reductions, then shifts ‘error’.
• Finally, throws away input until it finds a

symbol it can shift after ‘error’
10/6/06 Prof. Hilfinger, CS164 Lecture 15 8

Error Response, contd.

• So with our example:
 stmt : whileStmt

 | ifStmt
 | …

 | error NEWLINE
 ;

• We see ‘y’, throw away the ‘if x’, so as to be
back to where a stmt can start.

• Shift ‘error’ and away more symbols to
NEWLINE. Then carry on.

Bad input:
 if x y: …
 x = 0

10/6/06 Prof. Hilfinger, CS164 Lecture 15 9

Of Course, It’s Not Perfect

• “Throw away and punt” is sometimes called
“panic-mode error recovery”

• Results are often annoying.
• For example, in our example, there’s an

INDENT after the NEWLINE, which doesn’t
fit the grammar and causes another error.

• Bison compensates in this case by not
reporting errors that are too close together

• But in general, can get cascade of errors.
10/6/06 Prof. Hilfinger, CS164 Lecture 15 10

On to Static Semantics

• Lexical analysis
– Produces tokens
– Detects & eliminates illegal tokens

• Parsing
– Produces trees
– Detects & eliminates ill-formed parse trees

• Static semantic analysis
– Produces “decorated tree” with additional

information attached
– Detects & eliminates remaining static errors

10/6/06 Prof. Hilfinger, CS164 Lecture 15 11

Static vs. Dynamic

• The term static used to indicate properties
that the compiler can determine without
considering any particular execution.
– E.g., in
 def f(x) : x + 1

 Both uses of x refer to same variable
• Dynamic properties are those that depend on

particular executions in general. E.g., will
x = x/y cause arithmetic exception.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 12

Tasks of the Semantic Analyzer

• Find the declaration that defines each
identifier instance

• Determine the static types of expressions
• Perform re-organizations of the AST that

were inconvenient in parser, or required
semantic information

• Detect errors and fix to allow further
processing

3

10/6/06 Prof. Hilfinger, CS164 Lecture 15 13

Typical Semantic Errors: Java, C++

• Multiple declarations: a variable should be
declared (in the same region) at most once

• Undeclared variable: a variable should not be
used before being declared.

• Type mismatch: type of the left-hand side of
an assignment should match the type of the
right-hand side.

• Wrong arguments: methods should be called
with the right number and types of arguments.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 14

A sample semantic analyzer

• works in two phases
– i.e., it traverses the AST created by the parser:

1. For each declarative region in the program:
• process the declarations =

– add new entries to the symbol table and
– report any variables that are multiply declared

• process the statements =
– find uses of undeclared variables, and
– update the “ID" nodes of the AST to point to the

appropriate symbol-table entry.
2. Process all of the statements in the program again,

• use the symbol-table information to determine the type of
each expression, and to find type errors.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 15

Symbol Table = set of entries

• purpose:
– keep track of names declared in the program
– names of

• variables, classes, fields, methods,

• symbol table entry:
– associates a name with a set of attributes, e.g.:

• kind of name (variable, class, field, method, etc)
• type (int, float, etc)
• nesting level
• memory location (i.e., where will it be found at runtime).

10/6/06 Prof. Hilfinger, CS164 Lecture 15 16

Scoping

• symbol table design influenced by what kind of scoping
is used by the compiled language

• Scope of a declaration: section of text where it
applies

• Declarative region: section of text that bounds scopes
of declarations (we’ll say “region” for short)

• In most languages, the same name can be declared
multiple times
– if its declarations occur in different declarative regions,

and/or
– involve different kinds of names.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 17

Scoping: example

• Java: can use same name for
– a class,
– field of the class,
– a method of the class, and
– a local variable of the method

• legal Java program:

class Test {
int Test;
Test() { double Test; }

}

10/6/06 Prof. Hilfinger, CS164 Lecture 15 18

Scoping: overloading

• Java and C++ (but not in Pascal, C, or Pyth):
– can use the same name for more than one method
– as long as the number and/or types of parameters

are unique.

int add(int a, int b);
float add(float a, float b);

4

10/6/06 Prof. Hilfinger, CS164 Lecture 15 19

Scoping: general rules

• The scope rules of a language:
– determine which declaration of a named object corresponds

to each use of the object.
– i.e., scoping rules map uses of objects to their declarations.

• C++ and Java use static scoping:
– mapping from uses to declarations is made at compile time.
– C++ uses the "most closely nested" rule

• a use of variable x matches the declaration with the most closely
enclosing scope.

• a deeply nested variable x hides x declared in an outer region.
– in Java:

• inner regions cannot define variables defined in outer regions

10/6/06 Prof. Hilfinger, CS164 Lecture 15 20

Scope levels

• In Java, each function has two or more
declarative regions:
– one for the parameters,
– one for the function body,
– and possibly additional regions in the function

• for each for loop and
• each nested block (delimited by curly braces)

• In Pyth, each function has one per function
(possibly plus more for nested functions)

10/6/06 Prof. Hilfinger, CS164 Lecture 15 21

Example (assume C++ rules)

void f(int k) { // k is a parameter
int k = 0; // also a local variable (not legal in Java)
while (k) {

int k = 1; // another local var, in a loop (not ok in Java)
}

}
– the outermost region includes just the name "f", and
– function f itself has three (nested) regions:

1. The outer region for f just includes parameter k.
2.The next region is for the body of f, and includes the variable k

that is initialized to 0.
3.The innermost region is for the body of the while loop, and

includes the variable k that is initialized to 1.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 22

Dynamic scoping

• Not all languages use static scoping.
• Original Lisp, APL, and Snobol use dynamic

scoping.
• Dynamic scoping:

– A use of a variable that has no corresponding
declaration in the same function corresponds to the
declaration in the most-recently-called still
active function.

• With this rule, difficult for compiler to
determine much about identifiers

10/6/06 Prof. Hilfinger, CS164 Lecture 15 23

Example

• For example, consider the following code:
void main() { f1(); f2(); }
void f1() { int x = 10; g(); }
void f2() { String x = "hello"; f3();g(); }
void f3() { double x = 30.5; }
void g() { print(x); }

• With static scoping, illegal.
• With dynamic scoping, prints 10 and hello

10/6/06 Prof. Hilfinger, CS164 Lecture 15 24

Used before declared?

• Can names be used before they are defined?
– Java: a method or field name can be used before

the definition appears; not true for a variable.
– In Pyth, almost anything can be used before

declaration, where syntactically possible

5

10/6/06 Prof. Hilfinger, CS164 Lecture 15 25

Simplification

• From now on, assume that our language:
– uses static scoping
– requires that all names be declared before they are used
– does not allow multiple declarations of a name in the same

region
• even for different kinds of names

– does allow the same name to be declared in multiple nested
regions

• but only once per region
– uses the same region for a method's parameters and for the

local variables declared at the beginning of the method

• Rules in Project 3 will differ!

10/6/06 Prof. Hilfinger, CS164 Lecture 15 26

Symbol Table Implementations

• In addition to the above simplification, assume that
the symbol table will be used to answer two
questions:

1. Given a declaration of a name, is there already a declaration
of the same name in the current region
• i.e., is it multiply declared?

2. Given a use of a name, to which declaration does it
correspond (using the "most closely nested" rule), or is it
undeclared?

10/6/06 Prof. Hilfinger, CS164 Lecture 15 27

Symbol Table is Just Means to an End

• The symbol table is only needed to answer
those two questions, i.e.
– once all declarations have been processed to build

the symbol table,
– and all uses have been processed to link each ID

node in the abstract-syntax tree with the
corresponding symbol-table entry,

– then the symbol table itself is no longer needed
• because no more lookups based on name will be performed

10/6/06 Prof. Hilfinger, CS164 Lecture 15 28

Decorating a Tree

• Program:
 int y = 17;
 return g(y);

stmtList

vardecl #1

yint 17

return

call

 g y

10/6/06 Prof. Hilfinger, CS164 Lecture 15 29

Decorating a Tree

• Program:
 int y = 17;
 return g(y);
• Idea: decorate

tree with type,
declaration data.

stmtList

vardecl #1

yint 17int

return

callString

 gint->String
#42 yint

#1

10/6/06 Prof. Hilfinger, CS164 Lecture 15 30

What operations do we need?

• Essentially, we need a data structure like
environment diagrams in CS61A, minus dynamic
information (i.e., variable values).

• So we will need to:
1. Look up a name in the current declarative region only to

check if it is multiply declared
2. Look up a name in the current and enclosing regions

• to check for a use of an undeclared name, and
• to link a use with the corresponding symbol-table entry

3. Insert a new name into the symbol table with its attributes.
4. Do what must be done when entering a new region.
5. Do what must be done when leaving a region.

6

10/6/06 Prof. Hilfinger, CS164 Lecture 15 31

Two possible symbol table implementations

1. a list of tables
2. a table of lists

• For each approach, we will consider
– what must be done when entering and exiting a region,
– when processing a declaration, and
– when processing a use.

• Simplification:
– assume each symbol-table entry includes only:

• the symbol name
• its type
• the nesting level of its declaration

10/6/06 Prof. Hilfinger, CS164 Lecture 15 32

Method 1: List of Dictionaries

• The idea:
– symbol table = a list of dictionaries,
– one dictionary for each currently visible region.

• When processing a declarative region S:

front of list end of list

declarations
made in S

declarations made in
regions that enclose S

10/6/06 Prof. Hilfinger, CS164 Lecture 15 33

Example:
void f(int a, int b) {

double x;

while (...) { int x, y; ... }
}
void g() { f(); }

• After processing declarations inside the while loop:

x: int, 3
y: int, 3

a: int, 2
b: int, 2
x: double, 2

f: (int, int)  void, 1

10/6/06 Prof. Hilfinger, CS164 Lecture 15 34

List of Dictionaries: The Operations

1. On entry to a declarative region:
• increment the current level number and add a new

empty dictionary to the front of the list.
2.To process a declaration of x:

• look up x in the first dictionary in the list.
• If it is there, then issue a "multiply declared variable"

error;
• otherwise, add x to the first table in the list.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 35

… continued

3. To process a use of x:
• look up x starting in the first dictionary in the

list;
• if it is not there, then look up x in each successive

dictionary in the list.
• if it is not in any dictionary then issue an "undeclared

variable" error.

4. On leaving a region,
• remove the first dictionary from the list and

decrement the current level number.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 36

Class Members

• For each class, associate a dictionary containing
entries for each member.

• So given an expression such as x.clear (), we
– find declaration for x in current dictionary
– find type of x from its declaration, and
– look up clear in dictionary associated with x’s type.

7

10/6/06 Prof. Hilfinger, CS164 Lecture 15 37

The running times for each operation:

1.Region entry:
• time to initialize a new, empty dictionary;
• probably proportional to the size of the dictionary.

2.Process a declaration:
• using hashing, constant expected time (O(1)).

3.Process a use:
• using hashing to do the lookup in each dictionary in the list,

the worst-case time is O(depth of nesting), when every table
in the list must be examined.

4.Region exit:
• time to remove a dictionary from the list, which should be

O(1) if garbage collection is ignored

10/6/06 Prof. Hilfinger, CS164 Lecture 15 38

Method 2: Dictionary of Lists

• the idea:
– when processing a region, S, the structure of the

symbol table is:

x:

y:

z:

10/6/06 Prof. Hilfinger, CS164 Lecture 15 39

Definition

• there is just one big dictionary, containing an
entry for each variable for which there is
– some declaration in region S or
– in a region that encloses S.

• Associated with each variable is a list of
symbol-table entries.
– The first list item corresponds to the most closely

enclosing declaration;
– the other list items correspond to declarations in

enclosing regions.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 40

Example

void f(int a) {
double x;

while (...) { int x, y; ... }
void g() { f(); }

}

• After processing the declarations inside the
while loop: f:

a:

x:

y:

int, 2

int, 3 double, 2

int, 3

int  void, 1

10/6/06 Prof. Hilfinger, CS164 Lecture 15 41

Nesting level information is crucial

• The level-number attribute stored in each list
item enables us to determine whether the
most closely enclosing declaration was made
– in the current region or
– in an enclosing region.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 42

Dictionary of lists: the operations

1. On region entry:
• increment the current level number.

2.To process a declaration of x:
• look up x in the symbol table.

• If x is there, fetch the level number from the first list
item.

• If that level number = the current level then issue a
"multiply declared variable" error;

• otherwise, add a new item to the front of the list with
the appropriate type and the current level number.

8

10/6/06 Prof. Hilfinger, CS164 Lecture 15 43

… continue

1. To process a use of x:
• look up x in the symbol table.
• If it is not there, then issue an "undeclared variable" error.

2. On region exit:
• scan all entries in the symbol table, looking at the first item

on each list. If that item's level number = the current level
number, then remove it from its list (and if the list becomes
empty, remove the entire symbol-table entry). Finally,
decrement the current level number.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 44

Running times

1.Scope entry:
• time to increment the level number, O(1).

2.Process a declaration:
• using hashing, constant expected time (O(1)).

3.Process a use:
• using hashing, constant expected time (O(1)).

4.Scope exit:
• time proportional to the number of names in the symbol table

(assuming we can find the all names in linear time).

10/6/06 Prof. Hilfinger, CS164 Lecture 15 45

Type Checking

• the job of the type-checking phase is to:
– Determine the type of each expression in the program

• (each node in the AST that corresponds to an expression)
– Find type errors

• The type rules of a language define
– how to determine expression types, and
– what is considered to be an error.

• The type rules specify, for every operator (including
assignment),
– what types the operands can have, and
– what is the type of the result.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 46

Type Errors

• The type checker must also
1. find type errors having to do with the context of

expressions,
• e.g., the context of some operators must be boolean,

2. type errors having to do with method calls.
• Examples of the context errors:

– the condition of an if not boolean (Java)
– type of returned value not function’s return type

• Examples of method errors:
– calling something that is not a method
– calling a method with the wrong number of arguments
– calling a method with arguments of the wrong types

