Syntax Errors; Static Semantics

Lecture 14
(from notes by R. Bodik)

10/6/06 Prof. Hilfinger, CS164 Lecture 15

Dealing with Syntax Errors

One purpose of the parser is to filter out errors that
show up in parsing

- Later stages should not have to deal with possibility
of malformed constructs

» Parser must identify error so programmer knows what
to correct

» Parser should recover so that processing can continue
(and other errors found)

* Parser might even correct error (e.g., PL/C compiler
could "correct” some Fortran programs into equivalent
PL/1 programs!)

10/6/06 Prof. Hilfinger, CS164 Lecture 15 2

Identifying Errors

+ All of the valid parsers we've seen identify
syntax errors “as soon as possible.”

Valid prefix property: all the input that is
shifted or scanned is the beginning of some
valid program

* ... But the rest of the input might not be

» So in principle, deleting the lookahead (and
subsequent symbols) and inserting others will
give a valid program.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 3

Automating Recovery

» Unfortunately, best results require using
semantic knowledge and hand tuning.

- E.g., a(ily = 5 might be turned to a[ily =5 if ais
statically known to be a list, or a(i).y = 5 if a
function.

» Some automatic methods can do an OK job
that at least allows parser to catch more than
onhe error.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 4

Bison's Technique

* The special terminal symbol error is never
actually returned by the lexer.

+ Gets inserted by parser in place of erroneous
tokens.

» Parsing then proceeds normally.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 5

Example of Bison's Error Rules

» Suppose we want to throw away bad
statements and carry on

stmt : whileStmt
ifStmt

error NEWLINE

10/6/06 Prof. Hilfinger, CS164 Lecture 15

Response to Error

» Consider erroneous text like
if xvy: ..
* When parser gets to the y, will detect error.

* Then pops items of f parsing stack until it
finds a state that allows a shift or reduction
on ‘error' terminal

- Does reductions, then shifts ‘error'.

* Finally, throws away input until it finds a
symbol it can shift after ‘error’

10/6/06 Prof. Hilfinger, CS164 Lecture 15 7

Error Response, contd.

* So with our example:

o Bad input:
stmt : whileStmt if xy: ..
| if Stmt x=0

| ...
| error NEWLINE

+ We see 'y', throw away the 'if x’, so as to be
back to where a stmt can start.

» Shift ‘error’ and away more symbols to
NEWLINE. Then carry on.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 8

Of Course, It's Not Perfect

* "Throw away and punt” is sometimes called
"panic-mode error recovery"”

* Results are often annoying.

* For example, in our example, there's an
INDENT after the NEWLINE, which doesn't
fit the grammar and causes another error.

- Bison compensates in this case by not
reporting errors that are too close together

* But in general, can get cascade of errors.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 9

On to Static Semantics

+ Lexical analysis

- Produces tokens

- Detects & eliminates illegal tokens
» Parsing

- Produces trees

- Detects & eliminates ill-formed parse trees
+ Static semantic analysis

- Produces "decorated tree" with additional
information attached

- Detects & eliminates remaining static errors

10/6/06 Prof. Hilfinger, CS164 Lecture 15 10

Static vs. Dynamic

* The term static used to indicate properties
that the compiler can determine without
considering any particular execution.

- Eg.,in
def f(x): x+1
Both uses of x refer to same variable

* Dynamic properties are those that depend on
particular executions in general. E.g., will
x = x/y cause arithmetic exception.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 11

Tasks of the Semantic Analyzer

- Find the declaration that defines each
identifier instance

+ Determine the static types of expressions

* Perform re-organizations of the AST that
were inconvenient in parser, or required
semantic information

- Detect errors and fix to allow further
processing

10/6/06 Prof. Hilfinger, CS164 Lecture 15 12

Typical Semantic Errors: Java, C++

* Multiple declarations: a variable should be
declared (in the same region) at most once

- Undeclared variable: a variable should not be
used before being declared.

* Type mismatch: type of the left-hand side of
an assignment should match the type of the
right-hand side.

* Wrong arguments: methods should be called
with the right number and types of arguments.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 13

A sample semantic analyzer

works in two phases
- i.e., it traverses the AST created by the parser:

1. For each declarative region in the program:
process the declarations =
- add new entries to the symbol table and
- report any variables that are multiply declared
process the statements =
- find uses of undeclared variables, and

- update the "ID" nodes of the AST to point o the
appropriate symbol-table entry.

2. Process all of the statements in the program again,

use the symbol-table information o determine the type of
each expression, and to find type errors.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 14

Symbol Table = set of entries

* purpose:
- keep track of names declared in the program
- names of
- variables, classes, fields, methods,
» symbol table entry:

- associates a hame with a set of attributes, e.g.:
- kind of name (variable, class, field, method, etc)
- type (int, float, etc)
* hesting level
- memory location (i.e., where will it be found at runtime).

10/6/06 Prof. Hilfinger, CS164 Lecture 15 15

Scoping

symbol table design influenced by what kind of scoping
is used by the compiled language

Scope of a declaration: section of text where it
applies

Declarative region: section of text that bounds scopes
of declarations (we'll say "region” for short)

In most languages, the same name can be declared
multiple times

- if its declarations occur in different declarative regions,
and/or

- involve different kinds of names.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 16

Scoping: example

- Java: can use same nhame for
- a class,
- field of the class,
- a method of the class, and

- a local variable of the method
e legal Java program:

class Test {
int Test;
Test() { double Test; }

10/6/06 Prof. Hilfinger, CS164 Lecture 15

17

Scoping: overloading

» Java and C++ (but not in Pascal, C, or Pyth):

- can use the same name for more than one method

- as long as the number and/or types of parameters
are unique.

int add(int a, int b);
float add(float a, float b);

10/6/06 Prof. Hilfinger, CS164 Lecture 15 18

Scoping: general rules

* The scope rules of a language:

- determine which declaration of a hamed object corresponds
to each use of the object.

- i.e., scoping rules map uses of objects to their declarations.

- C++ and Java use static scoping.
- mapping from uses to declarations is made at compile time.

- C++ uses the "most closely nested" rule

- a use of variable x matches the declaration with the most closely
enclosing scope.

* a deeply nested variable x hides x declared in an outer region.
- in Java:
* inner regions cannot define variables defined in outer regions

10/6/06 Prof. Hilfinger, CS164 Lecture 15 19

Scope levels

+ In Java, each function has two or more
declarative regions:
- one for the parameters,
- one for the function body,

- and possibly additional regions in the function
» for each for loop and
» each nested block (delimited by curly braces)

» InPyth, each function has one per function
(possibly plus more for nested functions)

10/6/06 Prof. Hilfinger, CS164 Lecture 15 20

Example (assume C++ rules)

void f(int k) { // Kk is a parameter
int k = O; // also a local variable (not legal in Java)
while (k) {
int k = 1; // another local var, in a loop (hot ok in Java)
}
}

- the outermost region includes just the name "f", and
- function f itself has three (nested) regions:

1. The outer region for f just includes parameter k.

2. The next region is for the body of f, and includes the variable k
that is initialized to O.

3. The innermost region is for the body of the while loop, and
includes the variable k that is initialized to 1.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 21

Dynamic scoping

» Not all languages use static scoping.
» Original Lisp, APL, and Snobol use dynamic
scoping.
» Dynamic scoping:
- A use of a variable that has no corresponding
declaration in the same function corresponds to the

declaration in the most-recently-called still
active function.

* With this rule, difficult for compiler to
determine much about identifiers

10/6/06 Prof. Hilfinger, CS164 Lecture 15 22

Example

* For example, consider the following code:
void main() { £1(); £2(); }
void f1() { int x = 10; g(), }
void £2() { String x = "hello"; £3();g(); }
void £3() { double x = 30.5; }
void g() { print(x); }
With static scoping, illegal.

With dynamic scoping, prints 10 and hello

10/6/06 Prof. Hilfinger, CS164 Lecture 15

23

Used before declared?

» Can names be used before they are defined?

- Java: a method or field name can be used before
the definition appears; not true for a variable.

- In Pyth, almost anything can be used before
declaration, where syntactically possible

10/6/06 Prof. Hilfinger, CS164 Lecture 15 24

Simplification

* From now on, assume that our language:

uses static scoping
requires that all names be declared before they are used
does not allow multiple declarations of a name in the same
region

- even for different kinds of names
does allow the same name to be declared in multiple nested
regions

- but only once per region

uses the same region for a method's parameters and for the
local variables declared at the beginning of the method

* Rules in Project 3 will differ!

10/6/06 Prof. Hilfinger, CS164 Lecture 15 25

Symbol Table Implementations

*+ Inaddition to the above simplification, assume that
the symbol table will be used to answer two
questions:

1. Given a declaration of a name, is there already a declaration
of the same name in the current region

i.e., is it multiply declared?

2. Given a use of a name, to which declaration does it
correspond (using the "most closely nested" rule), or is it
undeclared?

10/6/06 Prof. Hilfinger, CS164 Lecture 15 26

Symbol Table is Just Means to an End

* The symbol table is only needed to answer
those two questions, i.e.

- once all declarations have been processed to build
the symbol table,

- and all uses have been processed to link each ID
node in the abstract-syntax tree with the
corresponding symbol-table entry,

- then the symbol table itself is no longer needed
* because no more lookups based on name will be performed

10/6/06 Prof. Hilfinger, CS164 Lecture 15 27

Decorating a Tree

) Program: stmtList
int y = 17, 4/\>
reTlern g(y):. A%ded{‘ reTm
int vy 17 call
9 Y

10/6/06 Prof. Hilfinger, CS164 Lecture 15 28

Decorating a Tree

* Program: stmtList
. vardecl| #1 return
return g(y): ﬂ\ \
+ Idea: decorate . _

: int y 17int call5tring
tree with type, /\
declaration data. X |

gm’r->5‘rr'|ng;qt42 ym‘r 41

10/6/06 Prof. Hilfinger, CS164 Lecture 15 29

What operations do we need?

+ Essentially, we need a data structure like
environment diagrams in CS61A, minus dynamic
information (i.e., variable values).

- So we will need to:

1. Look up a name in the current declarative region only to
check if it is multiply declared

2. Look up a name in the current and enclosing regions
to check for a use of an undeclared name, and
to link a use with the corresponding symbol-table entry

Insert a hew name into the symbol table with its attributes.
Do what must be done when entering a new region.
Do what must be done when leaving a region.

ok w

10/6/06 Prof. Hilfinger, CS164 Lecture 15 30

Two possible symbol table implementations

1. alist of tables
2. a table of lists

» For each approach, we will consider
- what must be done when entering and exiting a region,
- when processing a declaration, and
- when processing a use.
- Simplification:
- assume each symbol-table entry includes only:
the symbol hame
Its type
the nesting level of its declaration

10/6/06 Prof. Hilfinger, CS164 Lecture 15

31

Method 1: List of Dictionaries

* The idea:
- symbol table = a list of dictionaries,

- one dictionary for each currently visible region.

* When processing a declarative region S:

front of list end of list
———» >
declarations declarations made in
made in S regions that enclose S

10/6/06 Prof. Hilfinger, CS164 Lecture 15

32

Example:

void f(int a, int b) {
double x;
while (...) { int x, y; ... }

}
void g() { £(); }

- After processing declarations inside the while loop:

< int 3 a: int, 2
: int, S b: int, 2 — f: (int, int) = void, 1
Y- 1t x: double, 2

10/6/06 Prof. Hilfinger, CS164 Lecture 15

List of Dictionaries: The Operations

1. On entry to a declarative region:
- increment the current level number and add a new
empty dictionary to the front of the list.
2.To process a declaration of x:

* look up x in the first dictionary in the list.

- If it is there, then issue a "multiply declared variable"
error;

- otherwise, add x to the first table in the list.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 34

... continued

3. To process a use of x:
look up x starting in the first dictionary in the
list;
if it is not there, then look up x in each successive
dictionary in the list.

if it is not in any dictionary then issue an "undeclared
variable" error.

4. On leaving a region,

remove the first dictionary from the list and
decrement the current level number.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 35

Class Members

- For each class, associate a dictionary containing
entries for each member.
- So given an expression such as x.clear (), we
- find declaration for x in current dictionary
- find type of x from its declaration, and
- look up clear in dictionary associated with x's type.

10/6/06 Prof. Hilfinger, CS164 Lecture 15

36

The running times for each operation:

1.Region entry:
- time to initialize a new, empty dictionary:
- probably proportional to the size of the dictionary.

2 .Process a declaration:
- using hashing, constant expected time (O(1)).

3.Process a use:

- using hashing to do the lookup in each dictionary in the list,
the worst-case time is O(depth of nesting), when every table
in the list must be examined.

4 _Region exit:
- time to remove a dictionary from the list, which should be
O(1) if garbage collection is ignored

10/6/06 Prof. Hilfinger, CS164 Lecture 15 37

Method 2: Dictionary of Lists

- the idea:

- when processing a region, S, the structure of the
symbol table is:

X > >
y:
Z ———»

10/6/06 Prof. Hilfinger, CS164 Lecture 15 38

Definition

* there is just one big dictionary, containing an
entry for each variable for which there is
- some declaration in region S or
- in a region that encloses S.

- Associated with each variable is a list of
symbol-table entries.

- The first list item corresponds to the most closely
enclosing declaration;

- the other list items correspond to declarations in
enclosing regions.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 39

Example

void f£(int a) {
double x;
while (...) { int x, y;, ... }
void g() { £(); }

}

+ After processing the declarations inside the
while loop: |¢

int = void, 1
a. nt, 2
X: int, 3 — double, 2

10/6/06 y- int, 3 40

Nesting level information is crucial

+ The level-number attribute stored in each list
item enables us to determine whether the
most closely enclosing declaration was made
- in the current region or
- in an enclosing region.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 41

Dictionary of lists: the operations

1. On region entry:
- increment the current level number.

2.To process a declaration of x:

» look up x in the symbol table.

- If x is there, fetch the level number from the first list
item.

- ITf that level number = the current level then issue a
"multiply declared variable" error;

- otherwise, add a new item to the front of the list with
the appropriate type and the current level number.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 42

... continue

1. To process a use of x:
look up x in the symbol table.
- If it is not there, then issue an "undeclared variable" error.
2. On region exit:

» scan all entries in the symbol table, looking at the first item
on each list. If that item's level humber = the current level
humber, then remove it from its list (and if the list becomes
empty, remove the entire symbol-table entry). Finally,
decrement the current level number.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 43

Running times

1.Scope entry:
+ time to increment the level number, O(1).

2.Process a declaration:

- using hashing, constant expected time (O(1)).
3.Process a use:

- using hashing, constant expected time (O(1)).

4.Scope exit:

* time proportional fo the number of names in the symbol table
(assuming we can find the all names in linear time).

10/6/06 Prof. Hilfinger, CS164 Lecture 15 44

Type Checking

the job of the type-checking phase is to:

- Determine the type of each expression in the program
* (each node in the AST that corresponds o an expression)

- Find type errors

The type rules of a language define

- how to determine expression types, and

- what is considered to be an error.

The type rules specify, for every operator (including
assignment),

- what types the operands can have, and

- what is the type of the result.

10/6/06 Prof. Hilfinger, CS164 Lecture 15 45

Type Errors

- The type checker must also

1. find type errors having to do with the context of
expressions,

e.g., the context of some operators must be boolean,
2. type errors having to do with method calls.

+ Examples of the context errors:
- the condition of an i/f not boolean (Java)
- type of returned value not function's return type

- Examples of method errors:
- calling something that is not a method
- calling a method with the wrong number of arguments
- calling a method with arguments of the wrong types
10/6/06 Prof. Hilfinger, CS164 Lecture 15

46

