Type Checking

Lecture 19 (from notes by G. Necula)

Administrivia

- Test run this evening around midnight
- Test is next Wednesday at 6 in 306 Soda
- Please let me know soon if you need an alternative time for the test.
- Please use bug-submit to submit problems/questions
- Review session Sunday in 310 Soda 4-6PM

Types

- What is a type?
 - The notion varies from language to language
- · Consensus
 - A set of values
 - A set of operations on those values
- Classes are one instantiation of the modern notion of type

Why Do We Need Type Systems?

Consider the assembly language fragment

What are the types of \$r1, \$r2, \$r3?

Types and Operations

- Most operations are legal only for values of some types
 - It doesn't make sense to add a function pointer and an integer in C
 - It does make sense to add two integers
 - But both have the same assembly language implementation!

Type Systems

- A language's type system specifies which operations are valid for which types
- The goal of type checking is to ensure that operations are used with the correct types
 - Enforces intended interpretation of values, because nothing else will!
- Type systems provide a concise formalization of the semantic checking rules

What Can Types do For Us?

- Can detect certain kinds of errors
- Memory errors:
 - Reading from an invalid pointer, etc.
- Violation of abstraction boundaries:

Type Checking Overview

- Three kinds of languages:
 - Statically typed: All or almost all checking of types is done as part of compilation (C, Java, Cool)
 - Dynamically typed: Almost all checking of types is done as part of program execution (Scheme)
 - Untyped: No type checking (machine code)

The Type Wars

- Competing views on static vs. dynamic typing
- Static typing proponents say:
 - Static checking catches many programming errors at compile time
 - Avoids overhead of runtime type checks
- Dynamic typing proponents say:
 - Static type systems are restrictive
 - Rapid prototyping easier in a dynamic type system

The Type Wars (Cont.)

- In practice, most code is written in statically typed languages with an "escape" mechanism
 - Unsafe casts in C, native methods in Java, unsafe modules in Modula-3

Type Inference

- Type Checking is the process of checking that the program obeys the type system
- Often involves inferring types for parts of the program
 - Some people call the process type inference when inference is necessary

Rules of Inference

- We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions (for the lexer)
 - Context-free grammars (for the parser)
- The appropriate formalism for type checking is logical rules of inference

Why Rules of Inference?

- Inference rules have the form
 If Hypothesis is true, then Conclusion is true
- Type checking computes via reasoning If E_1 and E_2 have certain types, then E_3 has a certain type
- Rules of inference are a compact notation for "If-Then" statements

From English to an Inference Rule

- The notation is easy to read (with practice)
- Start with a simplified system and gradually add features
- Building blocks
 - Symbol A is "and"
 - Symbol ⇒ is "if-then"
 - x:T is "x has type T"

From English to an Inference Rule (2)

```
If e_1 has type Int and e_2 has type Int,
then e_1 + e_2 has type Int
```

(e₁ has type Int
$$\wedge$$
 e₂ has type Int) \Rightarrow e₁ + e₂ has type Int

$$(e_1: Int \land e_2: Int) \Rightarrow e_1 + e_2: Int$$

From English to an Inference Rule (3)

The statement

$$(e_1: Int \land e_2: Int) \Rightarrow e_1 + e_2: Int$$
 is a special case of $(Hypothesis_1 \land ... \land Hypothesis_n) \Rightarrow Conclusion$

This is an inference rule

Notation for Inference Rules

By tradition inference rules are written

$$-$$
 Hypothesis₁ ... $-$ Hypothesis_n $-$ Conclusion

 Type rules have hypotheses and conclusions of the form:

- means "we can prove that . . . "

Two Rules

$$|-e_1: Int$$
 $|-e_2: Int$
 $|-e_1+e_2: Int$
 $|-e_1+e_2: Int$

Two Rules (Cont.)

- These rules give templates describing how to type integers and + expressions
- By filling in the templates, we can produce complete typings for expressions
- We can fill the template with ANY expression!
- Logic nerds: Why is the following correct?

Example: 1 + 2

Soundness

- · A type system is sound if
 - Whenever | e: T
 - Then e evaluates to a value of type T
- We only want sound rules
 - But some sound rules are better than others; here's one that's not very useful:

```
_____ (i is an integer)
```

Type Checking Proofs

- Type checking proves facts e: T
 - One type rule is used for each kind of expression
- In the type rule used for a node e:
 - The hypotheses are the proofs of types of e's subexpressions
 - The conclusion is the proof of type of e

Rules for Constants

Object Creation Example

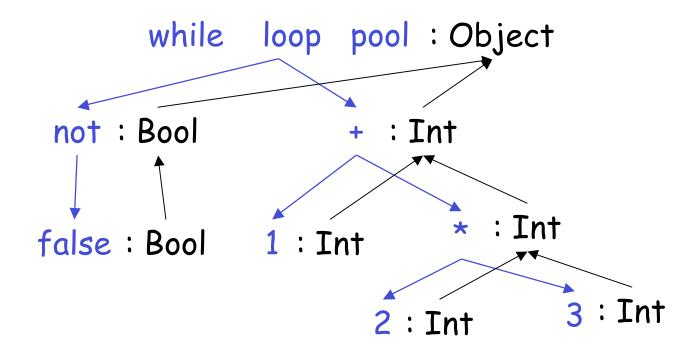
$$\frac{}{\text{I-T():T}}$$
 [New] (T denotes a class with parameterless constructor)

Two More Rules (Not From Pyth)

$$|-e_1:Bool$$
 $|-e_2:T$ [Loop]
 $|-while e_1 loop e_2 pool:Object$

Typing: Example

Typing for while not false loop 1 + 2 * 3 pool



Typing Derivations

 The typing reasoning can be expressed as a tree:

- |- while not false loop 1 + 2 * 3 : Object
- The root of the tree is the whole expression
- Each node is an instance of a typing rule
- · Leaves are the rules with no hypotheses

A Problem

What is the type of a variable reference?

$$\frac{}{|-x:?|}$$
 [Var] (x is an identifier)

- This rules does not have enough information to give a type.
 - We need a hypothesis of the form "we are in the scope of a declaration of x with type T")

A Solution: Put more information in the rules!

- A type environment gives types for free variables
 - A type environment is a mapping from Identifiers to Types
 - A variable is *free* in an expression if:
 - The expression contains an occurrence of the variable that refers to a declaration outside the expression
 - E.g. in the expression "x", the variable "x" is free
 - E.g. in "(lambda (x) (+ x y))" only "y" is free
 - E.g. in " $(+ \times (lambda(x)(+ \times y)))$ " both " \times " and " \times " are free

Type Environments

Let O be a function from Identifiers to Types

The sentence O | - e: T

is read: Under the assumption that variables in the current scope have the types given by O, it is provable that the expression e has the type T

Modified Rules

The type environment is added to the earlier rules:

$$O \mid -e_1 : Int$$
 $O \mid -e_2 : Int$
 $O \mid -e_1 + e_2 : Int$
[Add]

New Rules

And we can write new rules:

$$O | - x : T$$
 [Var] (if $O(x) = T$)

Lambda (from Python)

$$\frac{O[Any/x] \mid -e_1 : T_1}{O \mid - lambda x : e_1 : Any \rightarrow T_1} [Lambda]$$

O[Any/x] means "O modified to map x to Any and behaving as O on all other arguments":

$$O[Any/x](x) = Any$$

 $O[Any/x](y) = O(y), x$ and y distinct

Let (From the COOL Language)

• Let statement creates a variable x with given type T_0 that is then defined throughout e_1

$$\frac{O[T_0/x] | - e_1 : T_1}{O | - let x : T_0 in e_1 : T_1}$$
 [Let-No-Init]

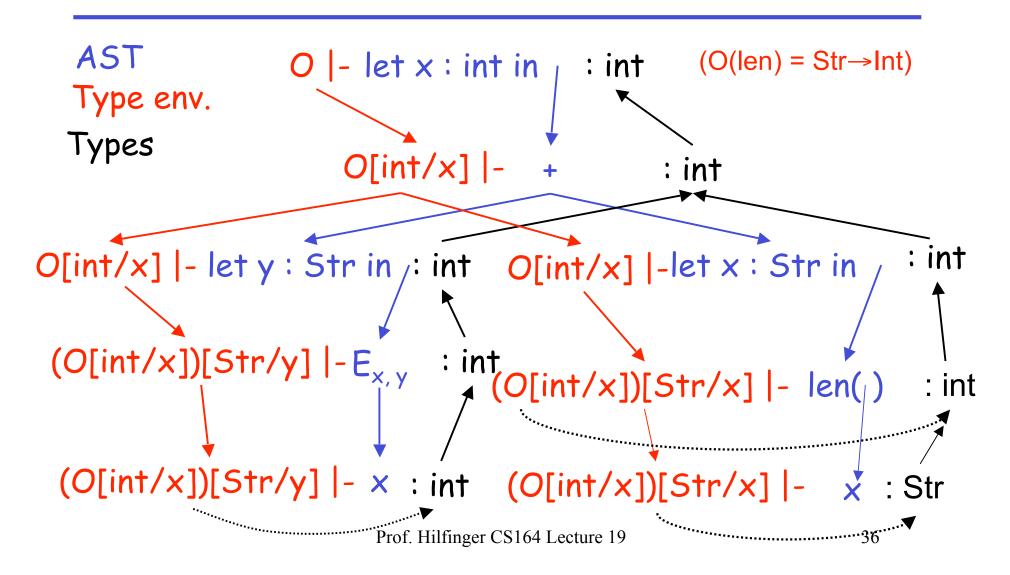
Let. Example.

· Consider the Cool expression

```
let x : T_0 in (let y : T_1 in E_{x,y}) + (let x : T_2 in F_{x,y})
(where E_{x,y} and F_{x,y} are some Cool expression that contain occurrences of "x" and "y")
```

- Scope
 - of "y" is $E_{x,y}$
 - of outer "x" is $E_{x,y}$
 - of inner "x" is $F_{x,y}$
- This is captured precisely in the typing rule.

Let Example.



Notes

- The type environment gives types to the free identifiers in the current scope
- The type environment is passed down the AST from the root towards the leaves
- Types are computed up the AST from the leaves towards the root

Let with Initialization

COOL also has a let with initialization (I'll let you guess what it's supposed to mean):

$$O \mid -e_0 : T_0$$

 $O[T_0/x] \mid -e_1 : T_1$ [Let-Init]
 $O \mid - \text{ let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$

This rule is weak (i.e. too conservative). Why?

Let with Initialization

Consider the example:

```
class C inherits P \{ ... \}
...

let x : P \leftarrow \text{new C in ...}
...
```

- The previous let rule does not allow this code
 - We say that the rule is too weak

Subtyping

- Define a relation X ≤ Y on classes to say that:
 - An object of type X could be used when one of type Y is acceptable, or equivalently
 - X conforms with Y
 - In Cool this means that X is a subclass of Y
- Define a relation ≤ on classes

```
X \le X

X \le Y if X inherits from Y

X \le Z if X \le Y and Y \le Z
```

Let with Initialization (Again)

$$O \mid -e_0 : T$$

$$T \leq T_0$$

$$O[T_0/x] \mid -e_1 : T_1$$

$$O \mid - \text{ let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$$
[Let-Init]

- Both rules for let are sound
- But more programs type check with the latter

Let with Subtyping. Notes.

- There is a tension between
 - Flexible rules that do not constrain programming
 - Restrictive rules that ensure safety of execution

Expressiveness of Static Type Systems

- A static type system enables a compiler to detect many common programming errors
- The cost is that some correct programs are disallowed
 - Some argue for dynamic type checking instead
 - Others argue for more expressive static type checking
- But more expressive type systems are also more complex

Dynamic And Static Types

- The dynamic type of an object is the class C that is used in the "new C" expression that creates the object
 - A run-time notion
 - Even languages that are not statically typed have the notion of dynamic type
- The static type of an expression is a notion that captures all possible dynamic types the expression could take
 - A compile-time notion

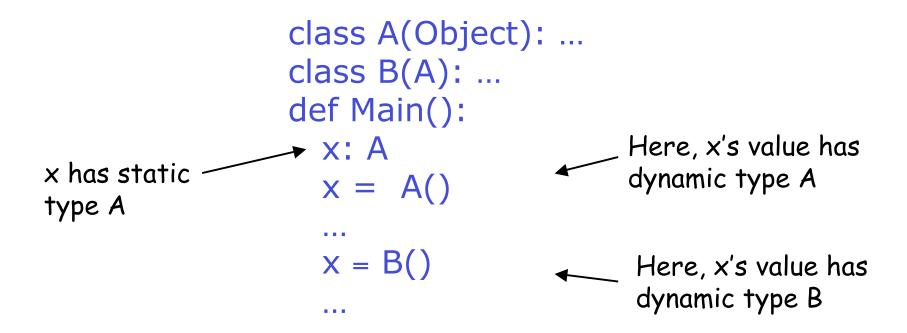
Dynamic and Static Types. (Cont.)

- In early type systems the set of static types correspond directly with the dynamic types
- Soundness theorem: for all expressions E

(in all executions, E evaluates to values of the type inferred by the compiler)

This gets more complicated in advanced type systems

Dynamic and Static Types



• A variable of static type A can hold values of static type B, if $B \le A$

Dynamic and Static Types

Soundness theorem:

 $\forall E. dynamic_type(E) \leq static_type(E)$

Why is this Ok?

- For E, compiler uses static_type(E) (call it C)
- All operations that can be used on an object of type C can also be used on an object of type $C' \leq C$
 - Such as fetching the value of an attribute
 - Or invoking a method on the object
- Subclasses can only add attributes or methods
- Methods can be redefined but with same type!

Let. Examples.

Consider the following Cool class definitions

```
Class A { a() : Int { 0 }; }
Class B inherits A { b() : Int { 1 }; }
```

- An instance of B has methods "a" and "b"
- An instance of A has method "a"
 - A type error occurs if we try to invoke method "b" on an instance of A

Example of Wrong Let Rule (1)

Now consider a hypothetical let rule:

$$O \mid -e_0 : T$$
 $T \le T_0$ $O \mid -e_1 : T_1$
 $O \mid - \text{ let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$

- How is it different from the correct rule?
- · The following good program does not typecheck

let
$$x : Int \leftarrow 0 in x + 1$$

And some bad programs do typecheck

foo(x : B) : Int { let x :
$$A \leftarrow \text{new } A \text{ in } A.b()$$
 }

Prof. Hilfinger CS164 Lecture 19

49

Example of Wrong Let Rule (2)

Now consider another hypothetical let rule:

$$O \mid -e_0 : T$$
 $T_0 \le T$ $O[T_0/x] \mid -e_1 : T_1$
 $O \mid - \text{ let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$

- How is it different from the correct rule?
- The following bad program is well typed

let
$$x : B \leftarrow \text{new } A \text{ in } x.b()$$

Why is this program bad?

Example of Wrong Let Rule (3)

Now consider another hypothetical let rule:

$$O \mid -e_0 : T$$
 $T \le T_0$ $O[T/x] \mid -e_1 : T_1$
 $O \mid - \text{ let } x : T_0 \leftarrow e_0 \text{ in } e_1 : T_1$

- How is it different from the correct rule?
- The following good program is not well typed
 let x : A ← new B in {... x ← new A; x.a(); }
- Why is this program not well typed?

Comments

- The typing rules use very concise notation
- · They are very carefully constructed
- Virtually any change in a rule either:
 - Makes the type system unsound (bad programs are accepted as well typed)
 - Or, makes the type system less usable (good programs are rejected)
- · But some good programs will be rejected anyway
 - The notion of a good program is undecidable

Assignment

More uses of subtyping: To the left, rule for languages with assignment expressions; to the right, assignment statements

$$O(id) = T_0$$
 $O \mid -e_1 : T_1$
 $T_1 \le T_0$
 $O \mid -id \leftarrow e_1 : T_1$

$$O(id) = T_0$$

$$O \mid - e_1 : T_1$$

$$T_1 \leq T_0$$

$$O \mid - id \leftarrow e_1 : void$$

Assignment in Pyth

- Pyth rule is looser than most.
- Doesn't by itself guarantee runtime type correctness, so check will be needed in some cases.

$$O(id) = T_0$$

$$O \mid -e_1 : T_1$$

$$T_1 \leq T_0 \vee T_0 \leq T_1$$

$$O \mid -id \leftarrow e_1 : Void$$

Function call in Pyth

- Parameter passing resembles assignment
- Taking just the single-parameter case:

$$\begin{array}{c|c}
O \mid -e_0 : T_1 \to T_2 \\
O \mid -e_1 : T_3 \\
T_1 \leq T_3 \vee T_3 \leq T_1 \\
\hline
O \mid -e_0 (e_1) : T_2
\end{array}$$

Conditional Expression

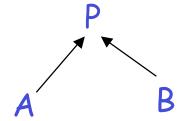
· Consider:

```
if e_0 then e_1 else e_2 fi or e_0? e_1: e_2 in C
```

- The result can be either e_1 or e_2
- The dynamic type is either e_1 's or e_2 's type
- The best we can do statically is the smallest supertype larger than the type of e_1 and e_2

If-Then-Else example

Consider the class hierarchy



- · ... and the expression
 - if ... then new A else new B fi
- Its type should allow for the dynamic type to be both
 A or B
 - Smallest supertype is P

Least Upper Bounds

- lub(X,Y), the least upper bound of X and Y, is Z if
 - $X \le Z \land Y \le Z$ Z is an upper bound
 - $X \le Z' \land Y \le Z' \Rightarrow Z \le Z'$ Z is least among upper bounds
- Typically, the least upper bound of two types is their least common ancestor in the inheritance tree

If-Then-Else Revisited

$$\begin{array}{c} O \mid -e_0 : Bool \\ O \mid -e_1 : T_1 \\ \hline O \mid -e_2 : T_2 \\ \hline O \mid - \text{ if } e_0 \text{ then } e_1 \text{ else } e_2 \text{ fi} : \text{lub}(T_1, T_2) \end{array} \quad \text{[If-Then-Else]}$$