
Prof. Hilfinger CS164 Lecture 19 1

Type Checking

Lecture 19
(from notes by G. Necula)

Prof. Hilfinger CS164 Lecture 19 2

Administrivia

• Test run this evening around midnight
• Test is next Wednesday at 6 in 306 Soda
• Please let me know soon if you need an

alternative time for the test.
• Please use bug-submit to submit

problems/questions
• Review session Sunday in 310 Soda 4-6PM

Prof. Hilfinger CS164 Lecture 19 3

Types

• What is a type?
– The notion varies from language to language

• Consensus
– A set of values
– A set of operations on those values

• Classes are one instantiation of the modern
notion of type

Prof. Hilfinger CS164 Lecture 19 4

Why Do We Need Type Systems?

Consider the assembly language fragment

addi $r1, $r2, $r3

What are the types of $r1, $r2, $r3?

Prof. Hilfinger CS164 Lecture 19 5

Types and Operations

• Most operations are legal only for values of
some types

– It doesn’t make sense to add a function pointer and
an integer in C

– It does make sense to add two integers

– But both have the same assembly language
implementation!

Prof. Hilfinger CS164 Lecture 19 6

Type Systems

• A language’s type system specifies which
operations are valid for which types

• The goal of type checking is to ensure that
operations are used with the correct types
– Enforces intended interpretation of values,

because nothing else will!

• Type systems provide a concise formalization
of the semantic checking rules

Prof. Hilfinger CS164 Lecture 19 7

What Can Types do For Us?

• Can detect certain kinds of errors
• Memory errors:

– Reading from an invalid pointer, etc.
• Violation of abstraction boundaries:

class FileSystem {
 open(x : String) : File {
 …
 }
…
}

class Client {
 f(fs : FileSystem) {
 File fdesc <- fs.open(“foo”)
 …
 } -- f cannot see inside fdesc !
}

Prof. Hilfinger CS164 Lecture 19 8

Type Checking Overview

• Three kinds of languages:

– Statically typed: All or almost all checking of types
is done as part of compilation (C, Java, Cool)

– Dynamically typed: Almost all checking of types is
done as part of program execution (Scheme)

– Untyped: No type checking (machine code)

Prof. Hilfinger CS164 Lecture 19 9

The Type Wars

• Competing views on static vs. dynamic typing
• Static typing proponents say:

– Static checking catches many programming errors
at compile time

– Avoids overhead of runtime type checks
• Dynamic typing proponents say:

– Static type systems are restrictive
– Rapid prototyping easier in a dynamic type system

Prof. Hilfinger CS164 Lecture 19 10

The Type Wars (Cont.)

• In practice, most code is written in statically
typed languages with an “escape” mechanism
– Unsafe casts in C, native methods in Java, unsafe

modules in Modula-3

Prof. Hilfinger CS164 Lecture 19 11

Type Inference

• Type Checking is the process of checking that
the program obeys the type system

• Often involves inferring types for parts of
the program
– Some people call the process type inference when

inference is necessary

Prof. Hilfinger CS164 Lecture 19 12

Rules of Inference

• We have seen two examples of formal notation
specifying parts of a compiler
– Regular expressions (for the lexer)
– Context-free grammars (for the parser)

• The appropriate formalism for type checking
is logical rules of inference

Prof. Hilfinger CS164 Lecture 19 13

Why Rules of Inference?

• Inference rules have the form
If Hypothesis is true, then Conclusion is true

• Type checking computes via reasoning
If E1 and E2 have certain types, then E3 has a

certain type

• Rules of inference are a compact notation for
“If-Then” statements

Prof. Hilfinger CS164 Lecture 19 14

From English to an Inference Rule

• The notation is easy to read (with practice)

• Start with a simplified system and gradually
add features

• Building blocks
– Symbol ∧ is “and”
– Symbol ⇒ is “if-then”
– x:T is “x has type T”

Prof. Hilfinger CS164 Lecture 19 15

From English to an Inference Rule (2)

If e1 has type Int and e2 has type Int,
then e1 + e2 has type Int

(e1 has type Int ∧ e2 has type Int) ⇒
e1 + e2 has type Int

(e1: Int ∧ e2: Int) ⇒ e1 + e2: Int

Prof. Hilfinger CS164 Lecture 19 16

From English to an Inference Rule (3)

The statement
(e1: Int ∧ e2: Int) ⇒ e1 + e2: Int

is a special case of
(Hypothesis1 ∧ . . . ∧ Hypothesisn) ⇒ Conclusion

This is an inference rule

Prof. Hilfinger CS164 Lecture 19 17

Notation for Inference Rules

• By tradition inference rules are written

• Type rules have hypotheses and conclusions of
the form:

 − e : T
• − means “we can prove that . . .”

|- Conclusion
− Hypothesis1 … − Hypothesisn

Prof. Hilfinger CS164 Lecture 19 18

Two Rules

|- i : Int [Int]

|- e1 + e2 : Int

|- e1 : Int
|- e2 : Int [Add]

(i is an integer)

Prof. Hilfinger CS164 Lecture 19 19

Two Rules (Cont.)

• These rules give templates describing how to
type integers and + expressions

• By filling in the templates, we can produce
complete typings for expressions

• We can fill the template with ANY expression!
• Logic nerds: Why is the following correct?

|- true + false : Int
|- true : Int |- false : Int

Prof. Hilfinger CS164 Lecture 19 20

Example: 1 + 2

|- 1 : Int
|- 1 + 2 : Int

|- 2 : Int

Prof. Hilfinger CS164 Lecture 19 21

Soundness

• A type system is sound if
– Whenever |- e : T
– Then e evaluates to a value of type T

• We only want sound rules
– But some sound rules are better than others;

here’s one that’s not very useful:

|- i : Any
(i is an integer)

Prof. Hilfinger CS164 Lecture 19 22

Type Checking Proofs

• Type checking proves facts e : T
– One type rule is used for each kind of expression

• In the type rule used for a node e:
– The hypotheses are the proofs of types of e’s

subexpressions
– The conclusion is the proof of type of e

Prof. Hilfinger CS164 Lecture 19 23

Rules for Constants

|- False : Bool [Bool]

|- s : String
[String] (s is a string

constant)

Prof. Hilfinger CS164 Lecture 19 24

Object Creation Example

|- T() : T [New]
(T denotes a class with
parameterless constructor)

Prof. Hilfinger CS164 Lecture 19 25

Two More Rules (Not From Pyth)

|- not e : Bool
|- e : Bool

[Not]

|- while e1 loop e2 pool : Object

|- e1 : Bool
|- e2 : T [Loop]

Prof. Hilfinger CS164 Lecture 19 26

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2 3

: Bool

: Bool

: Int

: Int : Int

: Int

: Int

: Object

Prof. Hilfinger CS164 Lecture 19 27

Typing Derivations

• The typing reasoning can be expressed as a
tree:

|- 2 * 3 : Int

|- 2 : Int |- 3 :
Int

|- not false : Bool

|- false : Bool
|- 1 : Int

|- while not false loop 1 + 2 * 3 : Object
|- 1 + 2 * 3: Int

• The root of the tree is the whole expression
• Each node is an instance of a typing rule
• Leaves are the rules with no hypotheses

Prof. Hilfinger CS164 Lecture 19 28

A Problem

• What is the type of a variable reference?

• This rules does not have enough information to
give a type.
– We need a hypothesis of the form “we are in the

scope of a declaration of x with type T”)

|- x : ? [Var]
(x is an
identifier)

Prof. Hilfinger CS164 Lecture 19 29

A Solution: Put more information in the rules!

• A type environment gives types for free variables
– A type environment is a mapping from Identifiers to Types
– A variable is free in an expression if:

• The expression contains an occurrence of the variable that
refers to a declaration outside the expression

– E.g. in the expression “x”, the variable “x” is free
– E.g. in “(lambda (x) (+ x y))” only “y” is free
– E.g. in “(+ x (lambda (x) (+ x y))” both “x” and “y” are free

Prof. Hilfinger CS164 Lecture 19 30

Type Environments

Let O be a function from Identifiers to Types

The sentence O |- e : T

is read: Under the assumption that variables in
the current scope have the types given by O,
it is provable that the expression e has the
type T

Prof. Hilfinger CS164 Lecture 19 31

Modified Rules

The type environment is added to the earlier
rules:

O |- i : Int [Int]

O |- e1 + e2 : Int

O |- e1 : Int
 O |- e2 : Int [Add]

(i is an integer)

Prof. Hilfinger CS164 Lecture 19 32

New Rules

And we can write new rules:

O |- x : T [Var] (if O(x) = T)

Prof. Hilfinger CS164 Lecture 19 33

Lambda (from Python)

O[Any/x] means “O modified to map x to Any
and behaving as O on all other arguments”:
 O[Any/x] (x) = Any
 O[Any/x] (y) = O(y), x and y distinct

O |- lambda x: e1 : Any ->T1

O[Any/x] |- e1 : T1
[Lambda]

Prof. Hilfinger CS164 Lecture 19 34

Let (From the COOL Language)

• Let statement creates a variable x with given
type T0 that is then defined throughout e1

O |- let x : T0 in e1 : T1

O[T0/x] |- e1 : T1 [Let-No-Init]

Prof. Hilfinger CS164 Lecture 19 35

Let. Example.

• Consider the Cool expression
let x : T0 in (let y : T1 in Ex, y) + (let x : T2 in Fx, y)
 (where Ex, y and Fx, y are some Cool expression that

contain occurrences of “x” and “y”)
• Scope

– of “y” is Ex, y

– of outer “x” is Ex, y

– of inner “x” is Fx, y

• This is captured precisely in the typing rule.

Prof. Hilfinger CS164 Lecture 19 36

Let Example.

let x : int in

let y : Str in

+

let x : Str in

Ex, y len()

O |-

x

O[int/x] |-

AST
Type env.
Types

: int : int

: int

: int

O[int/x] |- O[int/x] |-

(O[int/x])[Str/y] |-
(O[int/x])[Str/x] |-

x: int : Str(O[int/x])[Str/y] |- (O[int/x])[Str/x] |-

(O(len) = Str→Int)

: int
: int

Prof. Hilfinger CS164 Lecture 19 37

Notes

• The type environment gives types to the free
identifiers in the current scope

• The type environment is passed down the AST
from the root towards the leaves

• Types are computed up the AST from the
leaves towards the root

Prof. Hilfinger CS164 Lecture 19 38

Let with Initialization

COOL also has a let with initialization (I’ll let
you guess what it’s supposed to mean):

This rule is weak (i.e. too conservative). Why?

O |- let x : T0 ← e0 in e1 : T1

O |- e0 : T0

O[T0/x] |- e1 : T1
[Let-Init]

Prof. Hilfinger CS164 Lecture 19 39

Let with Initialization

• Consider the example:

 class C inherits P { … }
 …
 let x : P ← new C in …
 …
• The previous let rule does not allow this code

– We say that the rule is too weak

Prof. Hilfinger CS164 Lecture 19 40

Subtyping

• Define a relation X ≤ Y on classes to say
that:
– An object of type X could be used when one of

type Y is acceptable, or equivalently
– X conforms with Y
– In Cool this means that X is a subclass of Y

• Define a relation ≤ on classes
 X ≤ X
 X ≤ Y if X inherits from Y
 X ≤ Z if X ≤ Y and Y ≤ Z

Prof. Hilfinger CS164 Lecture 19 41

Let with Initialization (Again)

• Both rules for let are sound
• But more programs type check with the latter

O |- let x : T0 ← e0 in e1 : T1

O |- e0 : T
T ≤ T0

O[T0/x] |- e1 : T1 [Let-Init]

Prof. Hilfinger CS164 Lecture 19 42

Let with Subtyping. Notes.

• There is a tension between
– Flexible rules that do not constrain programming

– Restrictive rules that ensure safety of execution

Prof. Hilfinger CS164 Lecture 19 43

Expressiveness of Static Type Systems

• A static type system enables a compiler to
detect many common programming errors

• The cost is that some correct programs are
disallowed
– Some argue for dynamic type checking instead
– Others argue for more expressive static type

checking

• But more expressive type systems are also
more complex

Prof. Hilfinger CS164 Lecture 19 44

Dynamic And Static Types

• The dynamic type of an object is the class C
that is used in the “new C” expression that
creates the object
– A run-time notion
– Even languages that are not statically typed have

the notion of dynamic type
• The static type of an expression is a notion

that captures all possible dynamic types the
expression could take
– A compile-time notion

Prof. Hilfinger CS164 Lecture 19 45

Dynamic and Static Types. (Cont.)

• In early type systems the set of static types
correspond directly with the dynamic types

• Soundness theorem: for all expressions E
 dynamic_type(E) = static_type(E)
 (in all executions, E evaluates to values of the type

inferred by the compiler)

• This gets more complicated in advanced type
systems

Prof. Hilfinger CS164 Lecture 19 46

Dynamic and Static Types

• A variable of static type A can hold values of
static type B, if B ≤ A

class A(Object): …
class B(A): …
def Main():
 x: A
 x = A()
 …
 x = B()
 …

x has static
type A

Here, x’s value has
dynamic type A

Here, x’s value has
dynamic type B

Prof. Hilfinger CS164 Lecture 19 47

Dynamic and Static Types

Soundness theorem:
 ∀ E. dynamic_type(E) ≤ static_type(E)

Why is this Ok?
– For E, compiler uses static_type(E) (call it C)
– All operations that can be used on an object of

type C can also be used on an object of type C’ ≤ C
• Such as fetching the value of an attribute
• Or invoking a method on the object

– Subclasses can only add attributes or methods
– Methods can be redefined but with same type !

Prof. Hilfinger CS164 Lecture 19 48

Let. Examples.

• Consider the following Cool class definitions

 Class A { a() : Int { 0 }; }
 Class B inherits A { b() : Int { 1 }; }

• An instance of B has methods “a” and “b”
• An instance of A has method “a”

– A type error occurs if we try to invoke method “b”
on an instance of A

Prof. Hilfinger CS164 Lecture 19 49

Example of Wrong Let Rule (1)

• Now consider a hypothetical let rule:

• How is it different from the correct rule?

O |- let x : T0 ← e0 in e1 : T1

O |- e0 : T T ≤ T0 O |- e1 : T1

• The following good program does not typecheck
 let x : Int ← 0 in x + 1
• And some bad programs do typecheck
 foo(x : B) : Int { let x : A ← new A in A.b() }

Prof. Hilfinger CS164 Lecture 19 50

Example of Wrong Let Rule (2)

• Now consider another hypothetical let rule:

• How is it different from the correct rule?

O |- let x : T0 ← e0 in e1 : T1

O |- e0 : T T0 ≤ T O[T0/x] |- e1 : T1

• The following bad program is well typed
 let x : B ← new A in x.b()
• Why is this program bad?

Prof. Hilfinger CS164 Lecture 19 51

Example of Wrong Let Rule (3)

• Now consider another hypothetical let rule:

• How is it different from the correct rule?

O |- let x : T0 ← e0 in e1 : T1

O |- e0 : T T ≤ T0 O[T/x] |- e1 : T1

• The following good program is not well typed
 let x : A ← new B in {… x ← new A; x.a(); }
• Why is this program not well typed?

Prof. Hilfinger CS164 Lecture 19 52

Comments

• The typing rules use very concise notation
• They are very carefully constructed
• Virtually any change in a rule either:

– Makes the type system unsound
(bad programs are accepted as well typed)

– Or, makes the type system less usable
(good programs are rejected)

• But some good programs will be rejected anyway
– The notion of a good program is undecidable

Prof. Hilfinger CS164 Lecture 19 53

Assignment

More uses of subtyping: To the left, rule for
languages with assignment expressions; to the
right, assignment statements

O |- id ← e1 : T1

O(id) = T0

O |- e1 : T1

T1 < T0

O(id) = T0

O |- e1 : T1

T1 < T0

O |- id ← e1 : void

Prof. Hilfinger CS164 Lecture 19 54

Assignment in Pyth

• Pyth rule is looser than most.
• Doesn’t by itself guarantee runtime type

correctness, so check will be needed in some
cases.

O |- id ← e1 : Void

O(id) = T0

O |- e1 : T1

T1 < T0 ∨ T0 <T1

Prof. Hilfinger CS164 Lecture 19 55

Function call in Pyth

• Parameter passing resembles assignment
• Taking just the single-parameter case:

O |- e0 (e1) : T2

O |- e0 : T1→T2

O |- e1 : T3

T1 < T3 ∨ T3 <T1

Prof. Hilfinger CS164 Lecture 19 56

Conditional Expression

• Consider:
if e0 then e1 else e2 fi or e0 ? e1 : e2 in C

• The result can be either e1 or e2

• The dynamic type is either e1’s or e2’s type
• The best we can do statically is the smallest

supertype larger than the type of e1 and e2

Prof. Hilfinger CS164 Lecture 19 57

If-Then-Else example

• Consider the class hierarchy

• … and the expression
 if … then new A else new B fi
• Its type should allow for the dynamic type to be both

A or B
– Smallest supertype is P

P

A B

Prof. Hilfinger CS164 Lecture 19 58

Least Upper Bounds

• lub(X,Y), the least upper bound of X and Y, is
Z if
– X ≤ Z ∧ Y ≤ Z

Z is an upper bound

– X ≤ Z’ ∧ Y ≤ Z’ ⇒ Z ≤ Z’
Z is least among upper bounds

• Typically, the least upper bound of two types
is their least common ancestor in the
inheritance tree

Prof. Hilfinger CS164 Lecture 19 59

If-Then-Else Revisited

[If-Then-Else]
O |- if e0 then e1 else e2 fi : lub(T1, T2)

O |- e0 : Bool
O |- e1 : T1

O |- e2 : T2

