

Administrivia

- Moving to 60 Evans on Wednesday
- HW1 available
- Pyth manual available on line.
- Please log into your account and electronically register today.
- Register your team with "make-team". See class announcement page. Project \#1 available Friday.
- Use "submit hw1" to submit your homework this week.
- Section 101 (9AM) is gone.

The Structure of a Compiler

What's a Token?

- Output of lexical analysis is a stream of tokens
- A token is a syntactic category
- In English:
noun, verb, adjective, .
- In a programming language:

Identifier, Integer, Keyword, Whitespace, ...

- Parser relies on the token distinctions:
- E.g., identifiers are treated differently than keywords

Prof. Hilfinger CS 164 Lecture

Tokens

- Tokens correspond to sets of strings:
- Identifiers: strings of letters or digits, starting with a letter
- Integers: non-empty strings of digits
- Keywords: "else" or "if" or "begin" or ...
- Whitespace: non-empty sequences of blanks, newlines, and tabs
- OpenPars: left-parentheses

Example

- Our example again
\backslash tif $(i==j) \backslash n \backslash+\backslash t z=0 ; \backslash n \backslash t e \mid s e \backslash n \backslash+\backslash t z=1$;
- Token-lexeme pairs returned by the lexer:
- (Whitespace, " $\backslash \dagger$ ")
- (Keyword, "if")
- (OpenPar, "(")
- (Identifier, "i")
- (Relation, "==")
- (Identifier, "j")
-

Lookahead.

- Two important points:

1. The goal is to partition the string. This is implemented by reading left-to-right, recognizing one token at a time
2. "Lookahead" may be required to decide where one token ends and the next token begins

- Even our simple example has lookahead issues

> i vs. if
= vs. $==$

Lexical Analyzer: Implementation

- An implementation must do two things:

1. Recognize substrings corresponding to tokens
2. Return:
3. The type or syntactic category of the token,
4. the value or lexeme of the token (the substring itself).

Lexical Analyzer: Implementation

- The lexer usually discards "uninteresting" tokens that don't contribute to parsing.
- Examples: Whitespace, Comments
- Question: What happens if we remove all whitespace and all comments prior to lexing?

Next

- We need
- A way to describe the lexemes of each token
- A way to resolve ambiguities
- Is if two variables iand f?
- Is == two equal signs = =?

Regular Languages
- There are several formalisms for specifying tokens
- Regular languages are the most popular
- Simple and useful theory
- Easy to understand
- Efficient implementations
Prof Hilinger cs 164 Lecture 2

Languages

Def. Let Σ be a set of characters. A language over $\boldsymbol{\Sigma}$ is a set of strings of characters drawn from Σ
(Σ is called the alphabet)

Examples of Languages

- Alphabet = English
- Alphabet = ASCII
characters
- Language $=C$ programs
- Language = English sentences
- Not every string on English characters is an English sentence
- Note: ASCII character set is different from English character set

Regular Expressions and Regular Languages

- Each regular expression is a notation for a regular language (a set of words)
- If A is a regular expression then we write $L(A)$ to refer to the language denoted by A

Notation

- Languages are sets of strings.
- Need some notation for specifying which sets we want
- For lexical analysis we care about regular languages, which can be described using regular expressions.

Atomic Regular Expressions

- Single character: ' c '

$$
L\left(c^{\prime}\right)=\{\text { "c" }\} \quad \text { (for any } c \in \Sigma \text {) }
$$

- Concatenation: $A B$ (where A and B are reg. exp.)

$$
L(A B)=\{a b \mid a \in L(A) \text { and } b \in L(B)\}
$$

- Example: L('i' 'f') = \{ "if" \}
(we will abbreviate 'i' ' f ' as 'if')

Compound Regular Expressions

- Union

$$
\begin{aligned}
L(A \mid B) & =L(A) \cup L(B) \\
& =\{s \mid s \in L(A) \text { or } s \in L(B)\}
\end{aligned}
$$

- Examples:
'if' | 'then' | 'else' = \{ "if", "then", "else"\}
'0' | '1' | ... | '9' = \{ "0", "1", ..., "9" \}
(note the ... are just an abbreviation)
- Another example:

L(('0' | '1') ('0' | '1')) = \{ "00", "01", "10", "11" \}

Example: Keyword

- Keyword: "else" or "if" or "begin" or ...
'else' | 'if' | 'begin' | ...
('else' abbreviates 'e' Il' 's' 'e')

Example: Identifier

Identifier: strings of letters or digits, starting with a letter
letter = 'A' | ... | 'Z' | 'a' | ... | 'z' identifier $=$ letter (letter \mid digit $)$ *

Is (letter* \mid digit*) the same as (letter | digit) *?

More Compound Regular Expressions

- So far we do not have a notation for infinite languages
- Iteration: A^{*}

$$
L\left(A^{*}\right)=\{" "\}|L(A)| L(A A)|L(A A A)| \ldots
$$

- Examples:
'0"* = \{", "0", "00", "000", ...\}
'1' $0^{\prime *}=$ \{ strings starting with 1 and followed by 0's \}
- Epsilon: ε

$$
\begin{aligned}
L(\varepsilon) & =\{" "\} \\
& \text { Prof. Hilfinger CS } 164 \text { Lecture 2 }
\end{aligned}
$$

Example: Integers

Integer: a non-empty string of digits

```
digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
```

number $=$ digit digit ${ }^{*}$

Abbreviation: $\mathrm{A}^{+}=A \mathrm{~A}^{*}$

Example: Whitespace

Whitespace: a non-empty sequence of blanks, newlines, and tabs

$$
\left('^{\prime}\left|' \backslash t^{\prime}\right| ' \backslash n^{\prime}\right)^{+}
$$

(Can you spot a subtle omission?)

Example: Phone Numbers

- Regular expressions are all around you!
- Consider (510) 643-1481
$\Sigma=\{0,1,2,3, \ldots, 9,(),-$,
area $=$ digit 3
exchange $=$ digit 3
phone $=\operatorname{digit}^{4}$
number = '(' area ')' exchange '-' phone

Summary

- Regular expressions describe many useful languages
- Next: Given a string s and a R.E. R, is

$$
s \in L(R) ?
$$

- But a yes/no answer is not enough!
- Instead: partition the input into lexemes
- We will adapt regular expressions to this goal

Example: Email Addresses

- Consider necula@cs.berkeley.edu
$\Sigma \quad=\operatorname{letters}[\{$., @ \}
name $=$ letter ${ }^{+}$
address = name '@' name ('.' name)*

Next: Outline

- Specifying lexical structure using regular expressions
- Finite automata
- Deterministic Finite Automata (DFAs)
- Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions RegExp \Rightarrow NFA \Rightarrow DFA \Rightarrow Tables

Prof. Hilfinger CS 164 Lecture 2

Regular Expressions => Lexical Spec. (1)

1. Select a set of tokens

- Number, Keyword, Identifier, ...

2. Write a R.E. for the lexemes of each token

- Number = digit ${ }^{+}$
- Keyword = 'if' | 'else' | ...
- Identifier = letter (letter \mid digit)*
- OpenPar = '('

Regular Expressions => Lexical Spec. (2)
3. Construct R, matching all lexemes for all tokens

> | R | $=$ Keyword | Identifier \mid Number $\mid \ldots$ | |
| ---: | :--- | :--- | :--- |
| | $=R_{1}$ | $\mid R_{2}$ | $\mid R_{3}$ |$| \ldots$

Facts: If $s \in L(R)$ then s is a lexeme

- Furthermore $s \in L\left(R_{i}\right)$ for some " i "
- This " i " determines the token that is reported

Regular Expressions => Lexical Spec. (3)
4. Let the input be $x_{1} \ldots x_{n}$
($x_{1} \ldots x_{n}$ are characters in the language alphabet)

- For $1 \leq i \leq n$ check

$$
x_{1} \ldots x_{i} \in L(R) ?
$$

5. It must be that
$x_{1} \ldots x_{i} \in L\left(R_{j}\right)$ for some i and j
6. Remove $x_{1} \ldots x_{i}$ from input and go to (4)

Ambiguities (1)

- There are ambiguities in the algorithm
- Example:
$R=$ Whitespace | Integer | Identifier | ' + '
- Parse "foo+3"
- " f " matches R, more precisely Identifier
- But also "fo" matches R, and "foo", but not "foo+"
- How much input is used? What if

$$
\text { - } x_{1} \ldots x_{i} \in L(R) \text { and also } x_{1} \ldots x_{K} \in L(R)
$$

- "Maximal munch" rule: Pick the longest possible substring that matches R

Error Handling
$R=$ Whitespace \| Integer
- Parse " $=56$ "
- No prefix matches R: not " $=$ ", nor " $=5$ ", nor " $=56$ "
- Problem: Can' \dagger just get stuck ...
- Solution:
- Add a rule matching all "bad" strings; and put it last
- Lexer tools allow the writing of:
$R=R_{1}\|\ldots\| R_{n} \mid$ Error
- Token Error matches if nothing else matches
\quad Prof. Hilfinger cs 164 Lecture 2

Lexing Example

$R=$ Whitespace | Integer | Identifier | '+'

- Parse " $f+3$ + g "
- "f" matches R, more precisely Identifier
- "+" matches R, more precisely '+'
-
- The token-lexeme pairs are (Identifier, " f "), (+ ', " + ""), (Integer, " 3 ") (Whitespace, " "), ('+', "+"), (Identifier, "9")
- We would like to drop the Whitespace tokens
- after matching Whitespace, continue matching

More Ambiguities

$R=$ Whitespace | 'new' | Integer | Identifier

- Parse "new foo"
- "new" matches R, more precisely 'new'
- but also Identifier, which one do we pick?
- In general, if $x_{1} \ldots x_{i} \in L\left(R_{j}\right)$ and $x_{1} \ldots x_{i} \in L\left(R_{k}\right)$
- Rule: use rule listed first (j if $\mathrm{j}<\mathrm{k}$)
- We must list 'new' before Identifier

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
- To resolve ambiguities
- To handle errors
- Good algorithms known (next)
- Require only single pass over the input
- Few operations per character (table lookup)

Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- A finite automaton consists of
- An input alphabet Σ
- A set of states S
- A start state n
- A set of accepting states F \subseteq S
- A set of transitions state \rightarrow input state

Finite Automata State Graphs

- A state

- The start state
- An accepting state

- A transition

A Simple Example

- A finite automaton that accepts only "1"

- A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state

Another Simple Example

- A finite automaton accepting any number of 1's
- Alphabet $\{0,1\}$
- What language does this recognize?
- Alphabet: $\{0,1\}$

- Check that " 1110 " is accepted but " 110 ..." is not Prof. Hilfinger CS 164 Lecture 2

And Another Example

- Alphabet still $\{0,1\}$

- The operation of the automaton is not completely defined by the input
- On input "11" the automaton could be in either state

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
- One transition per input per state
- No e-moves
- Nondeterministic Finite Automata (NFA)
- Can have multiple transitions for one input in a given state
- Can have ε-moves
- Finite automata have finite memory
- Need only to encode the current state

Epsilon Moves

- Another kind of transition: ε-moves

- Machine can move from state A to state B without reading input

Execution of Finite Automata

- A DFA can take only one path through the state graph
- Completely determined by input
- NFAs can choose
- Whether to make ε-moves
- Which of multiple transitions for a single input to take

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)
- DFAs are easier to implement
- There are no choices to consider

NFA vs. DFA (2)

- For a given language the NFA can be simpler than the DFA

NFA

DFA

- DFA can be exponentially larger than NFA

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
- Notation: NFA for rexp A
- For ε

- For input a

Regular Expressions to NFA (3)

- For A^{*}

Regular Expressions to Finite Automata

- High-level sketch

Regular Expressions to NFA (2)

- For $A B$

- For $A \mid B$

Prof. Hilfinger CS 164 Lecture 2

Example of RegExp \rightarrow NFA conversion

- Consider the regular expression (1|0)*1
- The NFA is

NFA to DFA. The Trick

- Simulate the NFA
- Each state of resulting DFA
= a non-empty subset of states of the NFA
- Start state
$=$ the set of NFA states reachable through ε-moves from NFA start state
- Add a transition $S \rightarrow{ }^{a} S^{\prime}$ to DFA iff
- S^{\prime} is the set of NFA states reachable from the states in S after seeing the input a
- considering ε-moves as well

NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many non-empty subsets are there?
- $2^{N}-1$ = finitely many, but exponentially many

Table Implementation of a DFA

	0	1
S	T	U
T	T	U
U	T	U

Prof. Hilfinger CS 164 Lecture 2

Implementation (Cont.)

- NFA \rightarrow DFA conversion is at the heart of tools such as flex or jflex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations

Perl's "Regular Expressions"

- Some kind of pattern-matching feature now common in programming languages.
- Perl's is widely copied (cf. Java, Python).
- Not regular expressions, despite name.
- E.g., pattern / $\mathrm{A}\left(\backslash \mathrm{S}^{+}\right.$) is a $\$ 1 /$ matches "A spade is a spade" and "A deal is a deal", but not "A spade is a shovel"
- But no regular expression recognizes this language! - Capturing substrings with (...) itself is an extension

Implementing Perl Patterns (Sketch)

- Can use NFAs, with some modification
- Implement an NFA as one would a DFA + use backtracking search to deal with states with nondeterministic choices.
- Add extra states (with ε transitions) for parentheses.
- "(" state records place in input as side effect.
- ")" state saves string started at matching "("
- $\$ n$ matches input with stored value.
- Backtracking much slower than DFA implementation.

