Lecture #23: Conversion and Type Inference

Administrivia.
e Due date for Project #2 moved to midnight tonight.
e Midterm mean 20, median 21 (my expectation: 17.5).

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 1

Conversion vs. Subtyping

e In Java, this is legal:

Object x = "Hello";

e Can explain by saying that static type of string literal is a subtype
of Object.

e That is, any String is an Object.

e However, Java calls the assignment to x a widening reference con-
version.

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 2

Integer Conversions

e One can also write:

int x = ’c¢’;
float y = x;

The relationship between char and int, or int and float not generally
called subtyping.

e Instead, these are conversions (or coercions), implying there might
be some change in value or representation.

e In fact, in case of int to float, can lose information (example?)

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 3

Conversions: Implicit vs. Explicit

e With exception of int to float and long to double, Java uses general
rule:

- Widening conversions do not require explicit casts. Narrowing
conversions do.

e A widening conversion converts a “smaller” type to a “larger” (i.e.,
one whose values are a superset).

e A narrowing conversion goes in the opposite direction.

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 4

Conversion Examples

e Thus,

Object x

String y = ...

int a = 42;

short b = 17;

X =y; a=b; 0K}

y =%x; b=a; ERRORS}

x = (Object) y; 0K}

a (int) b; 0K}

y = (String) x; OK, but may cause exception}
b (short) a; OK, but may lose information}

e Possibility of implicit coercion can complicate type-matching rules
(see C++).

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 5

Typing In the Language ML

e Examples from the language ML:

fun map £ [] = []

| map £ (a :: y) = (f a) :: (map £ y)
fun reduce f init [] = init

| reduce f init (a :: y) = reduce (f init a) y
fun count [] =0

| count (. :: y) =1+ count y
fun addt [] =0

addt ((a,_,c) :: y) = (atc) :: addt y

e Despite lack of explicit types here, this language is statically typed!

e Compiler will reject the calls map 3 [1, 2] and reduce (op +) []
(3, 4, 5].

e Does this by deducing types from their uses.

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 6

Type Inference

e Insimple case:

fun add [] =0
| add (a :: L) =a + add L

compiler deduces that add has type int list — int.

e Uses facts that (a) O is an int, (b) [] and a: :L are lists (: : is cons),
(c) + yields int.

e More interesting case:

fun count [] =0
| count (. :: y) =1+ count y

(_ means “don't care” or “wildcard"). In this case, compiler deduces
that count has type @ list — int.

e Here, o is a type parameter (we say that count is polymorphic).

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 7

Doing Type Inference

e Given a definition such as

fun add [] =0
| add (a :: L) =a+ add L

e First give each named entity here an unbound type parameter as its
type: add : o, a: 3, L : 7.

e Now use the type rules of the language to give types to everything
and to relate the types:
-0:int, [I: ¢ list.
- Since add is function and applies to int, must be that o = ¢ — &,
and . = § list
-efc.

e Gives us a large set of type equations, which can be solved fo give
types.

e Solving involves pattern matching, known formally as type unifica-
tion.

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 8

Type Expressions

e For this lecture, a type expression can be
- A primitive type (int, bool);
- A type variable (today we'll use ML notation: ‘a,'b, 'c, etc.);
- The type constructor T list, where T is a type expression;
- A function type D — C, where D and C' are type expressions.

e Will formulate our problems as systems of type equations between
pairs of type expressions.

e Need to find the substitution

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 9

Solving Simple Type Equations

e Simple example: solve
-’alist = int list
e Easy: ’a = int.
e How about this:
-’alist =’blist list; ’blist = int list
e Also easy: ’a = int list; ’b = int.
e On the other hand:
-’alist="b— b
is unsolvable: lists are not functions.
e Also, if we require finite solutions, then
-’a="blist;’b="alist

is unsolvable.

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 10

Most General Solutions

e Rather trickier:
-’a list=’b list list
o Clearly, there are lots of solutions to this: e.g,
-’a=1int list; ’b=1int
’a = (int — int) list; ’b=int — int
etc.

e But prefer a most general solution that will be compatible with any
possible solution.

e Any substitution for >a must be some kind of list, and *b must be
the type of element in ’a, but otherwise, no constraints

e Leads to solution
-’a="blist
where b remains a free type variable.

e In general, our solutions look like a bunch of equations ’a; = T;,
where the T; are type expressions and none of the ’a; appear in any
of the T's.

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 11

Finding Most-General Solution by Unification

e To unify two type expressions is to find substitutions for all type
variables that make the expressions identical.

e The set of substitutions is called a unifier.

e Represent substitutions by giving each type variable, ’7, a binding
to some type expression.

e Initially, each variable is unbound.

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 12

Unification Algorithm

e For any type expression, define

. | binding(7"), if T"is a type variable bound o 7"
binding(T") = T, otherwise

e Now proceed recursively:

unify (T1,T2):

T1 = binding(T1); T2 = binding(T2);

if T1 = T2: return true;

if T1 is a type variable and does not appear in T2:
bind T1 to T2; return true

if T2 is a type variable and does not appear in T1:
bind T2 to T1l; return true

if T1 and T2 are S1 list and S2 list: return unify (S1,S2)

if T1 and T2 are D1— C1 and D2— C2:

return unify(D1,D2) and unify(C1,C2)
else: return false

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 13

Example of Unification

e Try to solve

-’b list=’a list; ’a— ’b="c;
’¢ — bool= (bool— bool) — bool

e We unify both sides of each equation (in any order), keeping the
bindings from one unification to the next.

’a: bool Unify ’b 1list, ’a 1list:
Unify ’b, ’a
’b: ’a Unify ’a— ’b, ’c

bool Unify ’c — bool, (bool — bool) — bool

Unify ’c, bool — bool:
’a — b Unify ’a — ’b, bool — bool:
bool — bool Unify ’a, bool
Unify ’b, bool:
Unify bool, bool
Unify bool, bool

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 14

Type Rules for a Small Language

e Each of the ’a, ’a; mentioned is a “"fresh” type variable, introduced
for each application of the rule.

L :'alist

(i an integer literal)
i:int [1: 'alist

hd(L) : 'a
tI(L) : 'a list

Elilﬂ EQ:IO

E1 tint EQ tint E1 . 'G, EQ :'alist
E1 + E2 tint E1::E2 v a list

E1 :I E2 : bool
E1 I= EQ : bool

E,: bool,E;:'a, E5:'a Ei:'‘a—'b,E:'a

if E1 then EQ else E3 t'a E1 EQ b

xl:'a;,... xn:'a,, f:'a;— ...— 'a,— 'ag F E: 'qp
def f x1...xn = E : void

fi'a;— ...—'a,— 'qg

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 15

Alternative Definition

Construct Type Conditions
Integer literal int
[’a list
hd (L) ‘a L: 'alist
t1 (L) ‘alist | L:'alist
E+Ey int Eqint, Esyint
EinEy ‘a list By 'a, Ey: 'a list
E, = E, bool Ei'a, By 'a
E\=E, bool Eii'a, By 'a
if E| then E5 else E5|'a Ei: bool, E5: 'a, E5: 'a
B Ey ‘b Ey: '‘a— 'b, FEs: ‘a
def f x1 ...xn = E x1:'ay, ..., xn: 'a, E'ay,
fi'ay —...—"a, — 'a.

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 16

Using the Type Rules

e Apply these rules to a program to get a bunch of Conditions.

e Whenever two Conditions ascribe a type to the same expression,
equate those types.

e Solve the resulting equations.

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 17

Aside: Currying
e Writing
def sqr x = x*x;

means essentially that sqr is defined to have the value A\ x. x*x.

e To get more than one argument, write
def f xy=x+1y;

and £ will have the value A x. X y. =x+y
e It's type will be int — int — int (Note: — is right associative).
©S0,f23=(f2) 3=0y. 2+y) (8 =5
e Zounds! It's the CS61A substitution model!

e This trick of turning multi-argument functions into one-argument
functions is called currying (after Haskell Curry).

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 18

Example

def f x L = if L = [] then [] else
if x != hd(L) then f x (t1 L)
else x :: f x (t1 L) fi
fi

e Let's initially use ’£, ’x, ’L, etc. as the fresh type variables.

e Using the rules then generates equations like this:

f = — ’al — ‘a2 def rule
'L list = rule, [] rule
'L = list hd rule,

= a4

= a0
’L = ’ab list
’al = ’ab list

Last modified: Fri Oct 20 10:46:40 2006

I= rule

call rule

tl rule

tl rule, call rule

CS164: Lecture #23 19

	Lecture #23: Conversion and Type Inference
	Conversion vs. Subtyping
	Integer Conversions
	Conversions: Implicit vs. Explicit
	Conversion Examples
	Typing In the Language ML
	Type Inference
	Doing Type Inference
	Type Expressions
	Solving Simple Type Equations
	Most General Solutions
	Finding Most-General Solution by Unification
	Unification Algorithm
	Example of Unification
	Type Rules for a Small Language
	Alternative Definition
	Using the Type Rules
	Aside: Currying
	Example

