Lecture #23: Conversion and Type Inference

Administrivia.

- Due date for Project #2 moved to midnight tonight.
- Midterm mean 20, median 21 (my expectation: 17.5).

Last modified: Fri Oct 20 10:46:40 2006

CS164: Lecture #23 1

Conversion vs. Subtyping

• In Java, this is legal:

```
Object x = "Hello";
```

- Can explain by saying that static type of string literal is a subtype of Object.
- That is, any String is an Object.
- \bullet However, Java calls the assignment to x a widening reference conversion.

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 2

Integer Conversions

• One can also write:

```
int x = 'c';
float y = x;
```

The relationship between **char** and **int**, or **int** and **float** not generally called subtyping.

- Instead, these are *conversions* (or *coercions*), implying there might be some change in value or representation.
- In fact, in case of int to float, can lose information (example?)

Conversions: Implicit vs. Explicit

- With exception of int to float and long to double, Java uses general rule:
 - Widening conversions do not require explicit casts. Narrowing conversions do.
- A widening conversion converts a "smaller" type to a "larger" (i.e., one whose values are a superset).
- A narrowing conversion goes in the opposite direction.

Conversion Examples

Thus,

 \bullet Possibility of implicit coercion can complicate type-matching rules (see C++).

Last modified: Fri Oct 20 10:46:40 2006

CS164: Lecture #23 5

Type Inference

• In simple case:

compiler deduces that add has type int list \rightarrow int.

- Uses facts that (a) 0 is an int, (b) [] and a::L are lists (:: is cons),
 (c) + yields int.
- More interesting case:

(_ means "don't care" or "wildcard"). In this case, compiler deduces that count has type α list \to int.

 \bullet Here, α is a type parameter (we say that count is polymorphic).

Typing In the Language ML

• Examples from the language ML:

```
fun map f [] = []
  | map f (a :: y) = (f a) :: (map f y)
fun reduce f init [] = init
  | reduce f init (a :: y) = reduce (f init a) y
fun count [] = 0
  | count (_ :: y) = 1 + count y
fun addt [] = 0
  addt ((a,_,c) :: y) = (a+c) :: addt y
```

- Despite lack of explicit types here, this language is statically typed!
- Compiler will reject the calls map 3 [1, 2] and reduce (op +) [] [3, 4, 5].
- Does this by deducing types from their uses.

Last modified: Fri Oct 20 10:46:40 2006

CS164: Lecture #23 6

Doing Type Inference

• Given a definition such as

- First give each named entity here an unbound type parameter as its type: $add: \alpha$, $a:\beta$, $L:\gamma$.
- Now use the type rules of the language to give types to everything and to *relate* the types:

```
-0: int, []: \delta list.
```

- Since add is function and applies to int, must be that $\alpha=\iota\to\ \kappa$, and $\iota=\delta$ list
- etc.
- Gives us a large set of type equations, which can be solved to give types.
- Solving involves pattern matching, known formally as type unification.

Type Expressions

- For this lecture, a type expression can be
 - A primitive type (int, bool);
 - A type variable (today we'll use ML notation: 'a, 'b, 'c1, etc.);
 - The type constructor T list, where T is a type expression;
 - A function type $D \to C$, where D and C are type expressions.
- Will formulate our problems as systems of *type equations* between pairs of type expressions.
- Need to find the substitution

Last modified: Fri Oct 20 10:46:40 2006

CS164: Lecture #23 9

Most General Solutions

- Rather trickier:
 - 'a list= 'b list list
- Clearly, there are lots of solutions to this: e.g,
 - 'a = int list; 'b = int
 'a = (int → int) list; 'b = int → int
 etc
- But prefer a most general solution that will be compatible with any possible solution.
- Any substitution for 'a must be some kind of list, and 'b must be the type of element in 'a, but otherwise, no constraints
- Leads to solution
 - 'a = 'b list

where 'b remains a free type variable.

ullet In general, our solutions look like a bunch of equations ' ${\bf a}_i=T_i$, where the T_i are type expressions and none of the ' ${\bf a}_i$ appear in any of the T's.

Solving Simple Type Equations

```
• Simple example: solve
```

- **Easy**: 'a = int.
- How about this:

```
- 'a list = 'b list list: 'b list = int list
```

- Also easy: 'a = int list; 'b = int.
- On the other hand:

- 'a list = 'b
$$\rightarrow$$
 'b

is unsolvable: lists are not functions.

• Also, if we require *finite* solutions, then

is unsolvable.

Last modified: Fri Oct 20 10:46:40 2006

CS164: Lecture #23 10

Finding Most-General Solution by Unification

- To unify two type expressions is to find substitutions for all type variables that make the expressions identical.
- The set of substitutions is called a unifier.
- Represent substitutions by giving each type variable, τ , a binding to some type expression.
- Initially, each variable is unbound.

Unification Algorithm

• For any type expression, define

$$\operatorname{binding}(T) = \begin{cases} \operatorname{binding}(T'), \text{ if } T \text{ is a type variable bound to } T' \\ T, & \text{otherwise} \end{cases}$$

Now proceed recursively:

```
unify (T1,T2):
   T1 = binding(T1); T2 = binding(T2);
if T1 = T2: return true;
if T1 is a type variable and does not appear in T2:
   bind T1 to T2; return true
if T2 is a type variable and does not appear in T1:
   bind T2 to T1; return true
if T1 and T2 are S1 list and S2 list: return unify (S1,S2)
if T1 and T2 are D1→ C1 and D2→ C2:
   return unify(D1,D2) and unify(C1,C2)
else: return false
```

Last modified: Fri Oct 20 10:46:40 2006

CS164: Lecture #23 13

Last modified: Fri Oct 20 10:46:40 2006

CS164: Lecture #23 14

Type Rules for a Small Language

 \bullet Each of the 'a, 'a $_i$ mentioned is a "fresh" type variable, introduced for each application of the rule.

$$\frac{\mathsf{x1: 'a_1, \dots, xn: 'a_n, f: 'a_1 \rightarrow \dots \rightarrow 'a_n \rightarrow 'a_0 \vdash E: 'a_0}}{\mathsf{def f x1... xn} = \mathsf{E} : \mathsf{void}}$$

$$f: 'a_1 \rightarrow \dots \rightarrow 'a_n \rightarrow 'a_0$$

Example of Unification

Try to solve

```
- 'b list= 'a list; 'a→ 'b = 'c;
 'c → bool= (bool→ bool) → bool
```

• We unify both sides of each equation (in any order), keeping the bindings from one unification to the next.

```
'a: bool Unify 'b list, 'a list: Unify 'b, 'a

'b: 'a Unify 'a\rightarrow 'b, 'c

bool Unify 'c \rightarrow bool, (bool \rightarrow bool) \rightarrow bool

Unify 'c, bool \rightarrow bool:

'c: 'a \rightarrow 'b Unify 'a \rightarrow 'b, bool \rightarrow bool:

bool \rightarrow bool Unify 'a, bool

Unify 'b, bool:

Unify bool, bool
```

3. 10. 10 2000

Alternative Definition

Construct	Type	Conditions
Integer literal	int	
[]	'a list	
$hd\left(L\right)$	'a	L: 'a list
tl (<i>L</i>)	'a list	L: 'a list
E_1 + E_2	int	E_1 : int, E_2 : int
$E_1 :: E_2$	'a list	E_1 : 'a, E_2 : 'a list
$E_1 = E_2$	bool	E_1 : 'a, E_2 : 'a
E_1 != E_2	bool	E_1 : 'a, E_2 : 'a
if E_1 then E_2 else E_3	'a	E_1 : bool, E_2 : 'a, E_3 : 'a
$E_1 E_2$	'b	E_1 : 'a $ ightarrow$ 'b, E_2 : 'a
def f x1xn = E		$x1: 'a_1, \ldots, xn: 'a_n E: 'a_0,$
		$ f\colon 'a_1 \to \ldots \to 'a_n \to 'a_0.$

Using the Type Rules

- Apply these rules to a program to get a bunch of Conditions.
- Whenever two Conditions ascribe a type to the same expression, equate those types.
- Solve the resulting equations.

Last modified: Fri Oct 20 10:46:40 2006

CS164: Lecture #23 17

Aside: Currying

Writing

```
def sqr x = x*x;
```

means essentially that sqr is defined to have the value $\lambda \ x. \ x*x.$

• To get more than one argument, write

```
def f x y = x + y;
```

and f will have the value $\lambda \times \lambda y \times x+y$

- It's type will be int \rightarrow int \rightarrow int (Note: \rightarrow is right associative).
- So, f 2 3 = (f 2) 3 = $(\lambda y. 2 + y)$ (3) = 5
- Zounds! It's the CS61A substitution model!
- This trick of turning multi-argument functions into one-argument functions is called *currying* (after Haskell Curry).

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 18

Example

```
\label{eq:deff} \begin{array}{ll} \text{def f x L = if L = [] then [] else} \\ & \text{if x != hd(L) then f x (tl L)} \\ & \text{else x :: f x (tl L) fi} \\ & \text{fi} \end{array}
```

- Let's initially use 'f, 'x, 'L, etc. as the fresh type variables.
- Using the rules then generates equations like this:

Last modified: Fri Oct 20 10:46:40 2006 CS164: Lecture #23 19