
10/23/06 Prof. Hilfinger CS 164 Fall 2006 1

Run-time organization
Lecture 23

10/23/06 Prof. Hilfinger CS 164 Fall 2006 2

Status

• We have covered the front-end phases
– Lexical analysis
– Parsing
– Semantic analysis

• Next are the back-end phases
– Optimization
– Code generation

• We’ll do code generation first . . .

10/23/06 Prof. Hilfinger CS 164 Fall 2006 3

Run-time environments

• Before discussing code generation, we need to understand
what we are trying to generate
– The term virtual machine refers to the compiler’s target
– Can be just a bare hardware architecture (small embedded

systems)
– Can be an interpreter, as for Java, or an interpreter that does

additional compilation, as in modern Java JITs
– For now, we’ll stick to hardware + conventions for using it (“API”)

+ some runtime-support library

• There are a number of standard techniques/conventions
for structuring executable code that are widely used

10/23/06 Prof. Hilfinger CS 164 Fall 2006 4

Outline

• Management of run-time resources

• Correspondence between static (compile-time)
and dynamic (run-time) structures

• Storage organization

10/23/06 Prof. Hilfinger CS 164 Fall 2006 5

Run-time Resources

• Execution of a program is initially under the
control of the operating system

• When a program is invoked:
– The OS allocates space for the program
– The code is loaded into part of the space
– The OS jumps to the entry point (i.e., “main”)

10/23/06 Prof. Hilfinger CS 164 Fall 2006 6

Memory Layout

Low Address

High Address

Memory

Code

Other Space

10/23/06 Prof. Hilfinger CS 164 Fall 2006 7

Notes

• By tradition, pictures of machine organization have:
– Low address at the top
– High address at the bottom
– Lines delimiting areas for different kinds of data

• These pictures are simplifications
– E.g., not all memory need be contiguous

10/23/06 Prof. Hilfinger CS 164 Fall 2006 8

What is Other Space?

• Holds all data for the program
• Other Space = Data Space

• Compiler is responsible for:
– Generating code
– Orchestrating use of the data area

10/23/06 Prof. Hilfinger CS 164 Fall 2006 9

Code Generation Goals

• Two goals:
– Correctness
– Speed

• Most complications in code generation come from
trying to be fast as well as correct

10/23/06 Prof. Hilfinger CS 164 Fall 2006 10

Assumptions about Execution

1. Execution is sequential; control moves from one
point in a program to another in a well-defined
order

2. When a procedure is called, control eventually
returns to the point immediately after the call

Do these assumptions always hold?

10/23/06 Prof. Hilfinger CS 164 Fall 2006 11

Activations

• An invocation of procedure P is an activation of P

• The lifetime of an activation of P is
– All the steps to execute P
– Including all the steps in procedures P calls

10/23/06 Prof. Hilfinger CS 164 Fall 2006 12

Lifetimes of Variables

• The lifetime of a variable x is the portion of
execution in which x is defined

• Lifetime is a dynamic (run-time) concept
• … As opposed to scope, which is a static concept

10/23/06 Prof. Hilfinger CS 164 Fall 2006 13

Activation Trees

• Assumption (2) requires that when P calls Q, then
Q returns before P does

• Lifetimes of procedure activations are properly
nested

• Activation lifetimes can be depicted as a tree

10/23/06 Prof. Hilfinger CS 164 Fall 2006 14

Example (from Java)

class Main {
int g() { return 1; }
int f() {return g(); }
void main() { g(); f(); }

}

Main

fg

g

10/23/06 Prof. Hilfinger CS 164 Fall 2006 15

Example 2

class Main {
int g() { return 1; }
int f(int x) {

if (x == 0) { return g(); }
else { return f(x - 1); }

}
void main() { f(2); }

}
What is the activation tree for this example?

10/23/06 Prof. Hilfinger CS 164 Fall 2006 16

Example 2

class Main {
int g() { return 1; }
int f(int x) {

if (x == 0) { return g(); }
else { return f(x - 1); }

}
void main() { f(2); }

}

Main

 f

 f

 f

g

10/23/06 Prof. Hilfinger CS 164 Fall 2006 17

Notes

• The activation tree depends on run-time behavior

• The activation tree may be different for every
program input

• Since activations are properly nested, a stack can
track currently active procedures

10/23/06 Prof. Hilfinger CS 164 Fall 2006 18

Example

class Main {
int g() { return 1; }
int f() { return g(); }
void main() { g(); f(); }

}

Main Stack

Main

10/23/06 Prof. Hilfinger CS 164 Fall 2006 19

Example

Main

g

Stack

Main

g

class Main {
int g() { return 1; }
int f() { return g(); }
void main() { g(); f(); }

}

10/23/06 Prof. Hilfinger CS 164 Fall 2006 20

Example

Main

g f

Stack

Main

f

class Main {
int g() { return 1; }
int f() { return g(); }
void main() { g(); f(); }

}

10/23/06 Prof. Hilfinger CS 164 Fall 2006 21

Example

Main

fg

g

Stack

Main

f

g

class Main {
int g() { return 1; }
int f() { return g(); }
void main() { g(); f(); }

}

10/23/06 Prof. Hilfinger CS 164 Fall 2006 22

Revised Memory Layout

Low Address

High Address

Memory

Code

Stack

10/23/06 Prof. Hilfinger CS 164 Fall 2006 23

Activation Records

• The information needed to manage one procedure
activation is called an activation record (AR) or
frame

• If procedure F calls G, then G’s activation record
contains a mix of info about F and G.

10/23/06 Prof. Hilfinger CS 164 Fall 2006 24

What is in G’s AR when F calls G?

• F is “suspended” until G completes, at which point
F resumes. G’s AR contains information needed
to resume execution of F.

• G’s AR may also contain:
– G’s return value (needed by F)
– Actual parameters to G (supplied by F)
– Space for G’s local variables

10/23/06 Prof. Hilfinger CS 164 Fall 2006 25

The Contents of a Typical AR for G

• Space for G’s return value
• Actual parameters
• Pointer to the previous activation record

– The dynamic link points to AR of caller of G
• Machine status prior to calling G

– Contents of registers & program counter
– Local variables

• Other temporary values

10/23/06 Prof. Hilfinger CS 164 Fall 2006 26

Example 2, Revisited

class Main {
int g() { return 1; }
int f(int x) {

if (x == 0) { return g(); }
else { return f(x - 1); (**) }

}
void main() { f(3); (*) }

}

 AR for f: return address
dynamic link
argument
result

10/23/06 Prof. Hilfinger CS 164 Fall 2006 27

Stack After Two Calls to f

Main

(**)

2

(result)f

(*)

3

(result)f

10/23/06 Prof. Hilfinger CS 164 Fall 2006 28

Notes

• Main has no argument or local variables and its result is
never used; its AR is uninteresting

• (*) and (**) are return addresses of the invocations of
f
– The return address is where execution resumes after a procedure

call finishes

• This is only one of many possible AR designs
– Would also work for C, Pascal, FORTRAN, etc.

10/23/06 Prof. Hilfinger CS 164 Fall 2006 29

The Main Point

The compiler must determine, at compile-time, the
layout of activation records and generate code

that correctly accesses locations in the
activation record

Thus, the AR layout and the code generator must
be designed together!

10/23/06 Prof. Hilfinger CS 164 Fall 2006 30

Example

The picture shows the state
after the call to 2nd
invocation of f returns

Main

(**)

2

1f

(*)

3

(result)f

10/23/06 Prof. Hilfinger CS 164 Fall 2006 31

Discussion

• The advantage of placing the return value 1st in a
frame is that the caller can find it at a fixed
offset from its own frame

• There is nothing magic about this organization
– Can rearrange order of frame elements
– Can divide caller/callee responsibilities differently
– An organization is better if it improves execution

speed or simplifies code generation

10/23/06 Prof. Hilfinger CS 164 Fall 2006 32

Discussion (Cont.)

• Real compilers hold as much of the frame as
possible in registers
– Especially the method result and arguments

10/23/06 Prof. Hilfinger CS 164 Fall 2006 33

Globals

• All references to a global variable point to the same
object
– Don’t generally store a global in an activation record

• Globals are assigned a fixed address once
– Variables with fixed address are “statically allocated”

• Depending on the language, there may be other statically
allocated values

10/23/06 Prof. Hilfinger CS 164 Fall 2006 34

Memory Layout with Static Data

Low Address

High Address

Memory

Code

Stack

Static Data

10/23/06 Prof. Hilfinger CS 164 Fall 2006 35

Heap Storage

• A value that outlives the procedure that creates
it cannot be kept in the AR:
 Bar foo() { return new Bar }
The Bar value must survive deallocation of foo’s AR

• Language implementations with dynamically
allocated data use a heap to store dynamic data
– (confusingly, not the same as the heap used for

priority queues!)

10/23/06 Prof. Hilfinger CS 164 Fall 2006 36

Notes

• The code area contains object code
– For most languages, fixed size and read only

• The static area contains data (not code) with fixed
addresses (e.g., global data)
– Fixed size, may be readable or writable

• The stack contains an AR for each currently active
procedure
– Each AR usually fixed size, contains locals

• Heap contains all other data
– In C, heap is managed by malloc and free

10/23/06 Prof. Hilfinger CS 164 Fall 2006 37

Notes (Cont.)

• Both the heap and the stack grow

• Must take care that they don’t grow into each
other

• Solution: start heap and stack at opposite ends
of memory and let the grow towards each other

10/23/06 Prof. Hilfinger CS 164 Fall 2006 38

Memory Layout with Heap

Low Address

High Address

Memory

Code

Heap

Static Data

Stack

10/23/06 Prof. Hilfinger CS 164 Fall 2006 39

Memory Layout with Heap (Alternative)

Low Address

High Address

Memory

Code

Stack

Static Data

Heap

10/23/06 Prof. Hilfinger CS 164 Fall 2006 40

Data Layout

• Low-level details of machine architecture are
important in laying out data for correct code and
maximum performance

• Chief among these concerns is alignment

10/23/06 Prof. Hilfinger CS 164 Fall 2006 41

Alignment

• Many installed machines are (still) 32 bit
– 8 bits in a byte
– 4 bytes in a word
– Machines are either byte or word addressable

• Data is word aligned if it begins at a word boundary
• Most machines have some alignment restrictions

– Or performance penalties for poor alignment
• New machines use 64-bit or 32/64-bit hardware and

APIs.

10/23/06 Prof. Hilfinger CS 164 Fall 2006 42

Alignment (Cont.)

• Example: A string
“Hello”

Takes 5 characters (without a terminating \0)

• To word align next datum, add 3 “padding” characters to
the string

• The padding is not part of the string, it’s just unused
memory

