Lecture #25: Achieving Runtime Effects—Functions General Considerations

Administrivia e Language design and runtime design interact. Semantics of func-

e Proj3 Java files (mostly) out (need some testing stuff). tions make good example.

e Levels of function features:

e Deadline for Project 3 will be pushed a bit due to delays (not too
much, because of ACM Programming Contest). 1. Plain: no recursion, no nesting, fixed-sized data with size known

by compiler.

2. Add recursion.

3. Add variable-sized unboxed data.

4. Allow nesting of functions, up-level addressing.

5. Allow function values w/ properly nested accesses only.

6.

7.

Allow general closures.
Allow continuations.
e Tension between these effects and structure of machines:

- Machine languages typically only make it easy to access things at
addresses like R + C, where R is an address in a register and C
is a relatively small integer constant.

- Therefore, fixed offsets good, data-dependent offsets bad.

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 1 Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 2

1: No recursion, no nesting, fixed-sized data 2: Add recursion

e Total amount of data is bounded, and there is only one instantiation Top of stack
of a function at a time. . f's
o Now, total amount of data is un- locals fixed distance

e So all variables, return addresses, and return values can go in fixed bounded, and several instantiations of a Base of
locations. a function can be active simultaneously. arguments 1st frame

¢ No stack needed at all. e Calls for some kind of expandable data to f

e Characterized FORTRAN programs in the early days. structure: a sfack. gs

e However, variable sizes still fixed, so locals
size of each activation record (stack ra

frame) is fixed. arguments

def f (x): . to g
X %= 40 e All local-variable addresses and the

¥ =9+ x; b value of dynamic link are known offsets f's
g (x, y) — becomes = from stack pointer, which is typically in locals
a register. ra

e In fact, can dispense with call instructions altogether: expand func-
tion calls in-line. E.g.,

f (3)

e However, program may get bigger than you want. Typically, one in-
lines only small, frequently executed functions.

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 3 Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 4




Calling Sequence when Frame Size is Fixed

e So dynamic links not really needed.
e Suppose f calls g calls f, as at right.

e When called, the initial code of g (its
prologue) decrements the stack pointer
by the size of ¢'s activation record.

e ¢'s exit code (its epilogue):

- increments the stack pointer by this
same size,
- pops of f the return address, and

- branches to address just popped. to
it.

Last modified: Mon Nov 27 15:02:10 2006

f's

locals

ra

{ Top of stack

fixed distance
Base of

arguments
to f

gs
locals

ra

arguments
tog

f's

locals

ra

1st frame

CS164: Lecture #25 5

3: Add Variable-Sized Unboxed Data

e "Unboxed" means “not on heap.”

¢ Boxing allows all quantities on stack to
have fixed size.

e So Java implementations have fixed-
size stack frames.

e But does cost heap allocation, so
some languages also provide for placing
variable-sized data directly on stack
("heap allocation on the stack")

e allocainC,e.qg.
e Now we do need dynamic link (DL).

e But can still insure fixed offsets of
data from frame base (frame pointer)
using pointers.

e To right, f calls g, which has variable-
sized unboaxed array (see right).

Last modified: Mon Nov 27 15:02:10 2006

unboxed
storage

{ Top of stack

other
locals

local
pointer

DL

ra

arguments
tog

f's

locals

DL

ra

Frame pointer

CS164: Lecture #25 6

Other Uses of the Dynamic Link

e Often use dynamic link even when size of AR is fixed.

e Allows use of same strategy for all ARs, simplifies code generation.

e Makes it easier to write general functions that unwind the stack

(i.e., pop ARs off, thus returning).

Last modified: Mon Nov 27 15:02:10 2006

CS164: Lecture #25 7

4: Allow Nesting of Functions, Up-Level Addressing

e When functions can be nested, there
are three classes of variable:
a. Local to function.
b. Local to enclosing function.
c. Global

e Accessing (a) or (c) is easy. It's (b)
that's interesting.

e Consider (in Pyth or Python):

def £ (:
y = 42 # Local to f
def g (n, q):
if n == 0: return g+y
else: return g (n-1, g*2)

e Here, y can be any distance away from
top of stack.

Last modified: Mon Nov 27 15:02:10 2006

{ Top of stack

How far???

Enclosing f

CS164: Lecture #25 8




Static Links The Global Display

e To overcome this problem, go

gl's
back to environment diagrams!

e Historically, first solution to nested function
frame

problem used an array indexed by call level,

Top of stack

e Each diagram had a pointer to
lexically enclosing environment

e In Pyth example from last slide,
each 'g’ frame contains a pointer
to the 'f' frame where that 'g’
was defined: the static link (SL)

e To access local variable, use
frame-base pointer (or maybe
stack pointer).

e To access global, use absolute
address.

gs frame
SL

DL

ra

gs frame
SL

DL

ra

~Tgs frame
SL

DL

ra

“TTs frame
SL

DL

ra

rather than static links.

def fO O:
q=42; g1 O
def f1 O:
def £2 O: ... g2 O
def g2 O: ... g2 O
def g1 O: ... f1 O

e Each time we enter a function at lexical level k
(i.e., nested inside & functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.

. gl O

g2's
frame

g2's
frame

f2's
frame

fl's
frame

fl's
frame

e Access variable at lexical level % through gl's

e To access local of nesting func-
tion, follow static link once per
difference in levels of nesting.

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 9

DISPLAY[k].

e Relies heavily on scope rules and proper

function-call nesting

Last modified: Mon Nov 27 15:02:10 2006

frame

fO's

DISPLAY
frame

CS164: Lecture #25 10

5: Allow Function Values, Properly Nested Access

e In C, C++, no function nesting.
e So all non-local variables are global, and have fixed addresses.

e Thus, to represent a variable whose value is a function, need only to
store the address of the function's code.

e But when nested functions possible, function value must contain
more.

e When function is finally called, must be told what its static link is.

e Assume first that access is properly nested: variables accessed only
during lifetime of their frame.

e So can represent function with address of code + the address of
the frame that contains that function's definition.

e It's environment diagrams again!!

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 11

Function Value Representation

def f0 (x):
def f1 (y):
def £2 (2):
return x + y + z
print hl (£2)
def hl (g): g (3)
f1 (42)

e Call £0 from the main program;
look at the stack when £2 finally
is called (see right).

e When £2's value (as a function)
is computed, current frame is
that of £1. That is stored in the
value passed to hi.

e Easy with static links; global dis-
play technique does not fare as
well [why?]

Last modified: Mon Nov 27 15:02:10 2006

T2's frame
SL

{ Top of stack

DL

ra

hl's frame
SL

Value of g (i.e., f2)

DL

ra

~TTTs frame
SL

DL

ra

“1f0's Trame
SL

code For f2

DL

ra

;“
‘

CS164: Lecture #25 12




6: General Closures

Value of incr(2)
e What happens when the frame
that a function value points to
goes away?

o If we used the previous repre-

sentation (#5), we'd get a dan-

gling pointer in this case: INcr's
frame

code for f

def incr (n):

delta = n with
def £ (x): delta

return delta + x DL
return f ra <

p2 = incr(2)
print p2(3) DAfriag eetout faroof (@)

delta is gone

Last modified: Mon Nov 27 15:02:10 2006 CS5164: Lecture #25 13

Representing Closures

e Could just forbid this case (as
some languages do):

- Algol 68 would not allow
pointer to f (last slide) o be
returned from incr.

- Or, one could allow it, and do
something random when f (i.e.
via delta) is called.

e Scheme and Python allow it and
do the right thing.

e But must in general put local
variables (and a static link) in a
record on the heap, instead of
on the stack.

e Now frame can disappear harm-
lessly.

Last modified: Mon Nov 27 15:02:10 2006

temp
storage
efc.

DL
ra Value of incr(2)

code for f

CS164: Lecture #25 14

7: Continuations

e Suppose function return were not the end?

def f (cont): return cont
x =1
def g (n):

global x, c

Prints:
: a10b10ci1lci?2
if n == 0: b20c21c22

print "a", x, n, b30c31c32
¢ = call_with_continuation (f)

print "b", x, n,
else: g(n-1); print "c", x, n,
g(2); x += 1; print; c()

e The continuation, c, passed to f is “the function that does whatever
is supposed to happen after I return from f."

e Can be used to implement exceptions, threads, co-routines.

e Implementation? Nothing much for it but to put all activation frames
on the heap.

e Distributed cost.

e However, we can do better on special cases like exceptions.

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 15

Summary

Problem

Solution

. Plain: no recursion, no nest-
ing, fixed-sized data with size
known by compiler, first-class
function values.

Use inline expansion or use
static variables to hold return
addresses, locals, etc.

. #1+ recursion

Need stack.

. #2 + Add variable-sized un-
boxed data

Need to keep both stack
pointer and frame pointer.

. #3 - first-class function values
+ Nested functions, up-level ad-
dressing

Add static link or global display.

. #4 + Function values w/ prop-
erly nested accesses: functions
passed as parameters only.

Static link, function values con-
tain their link. (Global display
doesn't work so well)

. #5 + General closures: first-
class functions returned from
functions or stored in variables

Store local variables and static
link on heap.

. #6 + Continuations

Last modified: Mon Nov 27 15:02:10 2006

Put everything on the heap.

CS164: Lecture #25 16




	Lecture #25: Achieving Runtime Effects---Functions
	General Considerations
	1: No recursion, no nesting, fixed-sized data
	2: Add recursion
	Calling Sequence when Frame Size is Fixed
	3: Add Variable-Sized Unboxed Data
	Other Uses of the Dynamic Link
	4: Allow Nesting of Functions, Up-Level Addressing
	Static Links
	The Global Display
	5: Allow Function Values, Properly Nested Access
	Function Value Representation
	6: General Closures
	Representing Closures
	7: Continuations
	Summary

