
Lecture #25: Achieving Runtime Effects—Functions

Administrivia

• Proj3 Java files (mostly) out (need some testing stuff).

• Deadline for Project 3 will be pushed a bit due to delays (not too
much, because of ACM Programming Contest).

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 1

General Considerations

• Language design and runtime design interact. Semantics of func-
tions make good example.

• Levels of function features:

1. Plain: no recursion, no nesting, fixed-sized data with size known
by compiler.

2. Add recursion.

3. Add variable-sized unboxed data.

4. Allow nesting of functions, up-level addressing.

5. Allow function values w/ properly nested accesses only.

6. Allow general closures.

7. Allow continuations.

• Tension between these effects and structure of machines:

– Machine languages typically only make it easy to access things at
addresses like R + C, where R is an address in a register and C

is a relatively small integer constant.

– Therefore, fixed offsets good, data-dependent offsets bad.

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 2

1: No recursion, no nesting, fixed-sized data

• Total amount of data is bounded, and there is only one instantiation
of a function at a time.

• So all variables, return addresses, and return values can go in fixed
locations.

• No stack needed at all.

• Characterized FORTRAN programs in the early days.

• In fact, can dispense with call instructions altogether: expand func-
tion calls in-line. E.g.,

def f (x):

x *= 42

y = 9 + x;

g (x, y)

f (3)

=⇒ becomes =⇒

x_1 = 3

x_1 *= 42

y_1 = 9 + x_1

g (x_1, y_1)

• However, program may get bigger than you want. Typically, one in-
lines only small, frequently executed functions.

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 3

2: Add recursion

• Now, total amount of data is un-
bounded, and several instantiations of
a function can be active simultaneously.

• Calls for some kind of expandable data
structure: a stack.

• However, variable sizes still fixed, so
size of each activation record (stack
frame) is fixed.

• All local-variable addresses and the
value of dynamic link are known offsets
from stack pointer, which is typically in
a register.

...

ra

f’s
locals

arguments
to g

ra

g’s
locals

arguments
to f

ra

f’s
locals

Top of stack

Base of
1st frame

fixed distance

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 4

Calling Sequence when Frame Size is Fixed

• So dynamic links not really needed.

• Suppose f calls g calls f , as at right.

• When called, the initial code of g (its
prologue) decrements the stack pointer
by the size of g’s activation record.

• g’s exit code (its epilogue):

– increments the stack pointer by this
same size,

– pops off the return address, and

– branches to address just popped. to
it.

...

ra

f’s
locals

arguments
to g

ra

g’s
locals

arguments
to f

ra

f’s
locals

Top of stack

Base of
1st frame

fixed distance

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 5

3: Add Variable-Sized Unboxed Data

• “Unboxed” means “not on heap.”

• Boxing allows all quantities on stack to
have fixed size.

• So Java implementations have fixed-
size stack frames.

• But does cost heap allocation, so
some languages also provide for placing
variable-sized data directly on stack
(“heap allocation on the stack”)

• alloca in C, e.g.

• Now we do need dynamic link (DL).

• But can still insure fixed offsets of
data from frame base (frame pointer)
using pointers.

• To right, f calls g, which has variable-
sized unboaxed array (see right).

...

ra
DL

f’s
locals

arguments
to g

ra
DL

local
pointer

other
locals

unboxed
storage

Top of stack

Frame pointer

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 6

Other Uses of the Dynamic Link

• Often use dynamic link even when size of AR is fixed.

• Allows use of same strategy for all ARs, simplifies code generation.

• Makes it easier to write general functions that unwind the stack
(i.e., pop ARs off, thus returning).

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 7

4: Allow Nesting of Functions, Up-Level Addressing

• When functions can be nested, there
are three classes of variable:

a. Local to function.

b. Local to enclosing function.

c. Global

• Accessing (a) or (c) is easy. It’s (b)
that’s interesting.

• Consider (in Pyth or Python):

def f ():

y = 42 # Local to f

def g (n, q):

if n == 0: return q+y

else: return g (n-1, q*2)

• Here, y can be any distance away from
top of stack.

f’s
frame

g’s
frame

g’s
frame

...

g’s
frame

Top of stack

Enclosing f

How far???

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 8

Static Links

• To overcome this problem, go
back to environment diagrams!

• Each diagram had a pointer to
lexically enclosing environment

• In Pyth example from last slide,
each ‘g’ frame contains a pointer
to the ‘f’ frame where that ‘g’
was defined: the static link (SL)

• To access local variable, use
frame-base pointer (or maybe
stack pointer).

• To access global, use absolute
address.

• To access local of nesting func-
tion, follow static link once per
difference in levels of nesting.

...

ra
DL
SL

f’s frame
ra
DL
SL

g’s frame
ra
DL
SL

g’s frame
ra
DL
SL

g’s frame
Top of stack

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 9

The Global Display

• Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def f0 ():

q = 42; g1 ()

def f1 ():

def f2 (): ... g2 () ...

def g2 (): ... g2 () ... g1 () ...

def g1 (): ... f1 () ...

• Each time we enter a function at lexical level k
(i.e., nested inside k functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.

• Access variable at lexical level k through
DISPLAY[k].

• Relies heavily on scope rules and proper
function-call nesting

f0’s
frame

g1’s
frame

f0 0
g1 1

DISPLAY

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 10

The Global Display

• Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def f0 ():

q = 42; g1 ()

def f1 ():

def f2 (): ... g2 () ...

def g2 (): ... g2 () ... g1 () ...

def g1 (): ... f1 () ...

• Each time we enter a function at lexical level k
(i.e., nested inside k functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.

• Access variable at lexical level k through
DISPLAY[k].

• Relies heavily on scope rules and proper
function-call nesting

f0’s
frame

g1’s
frame

f1’s
frame

f0 0
f1 1

DISPLAY

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 10

The Global Display

• Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def f0 ():

q = 42; g1 ()

def f1 ():

def f2 (): ... g2 () ...

def g2 (): ... g2 () ... g1 () ...

def g1 (): ... f1 () ...

• Each time we enter a function at lexical level k
(i.e., nested inside k functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.

• Access variable at lexical level k through
DISPLAY[k].

• Relies heavily on scope rules and proper
function-call nesting

f0’s
frame

g1’s
frame

f1’s
frame

f1’s
frame f0 0

f1 1

DISPLAY

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 10

The Global Display

• Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def f0 ():

q = 42; g1 ()

def f1 ():

def f2 (): ... g2 () ...

def g2 (): ... g2 () ... g1 () ...

def g1 (): ... f1 () ...

• Each time we enter a function at lexical level k
(i.e., nested inside k functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.

• Access variable at lexical level k through
DISPLAY[k].

• Relies heavily on scope rules and proper
function-call nesting

f0’s
frame

g1’s
frame

f1’s
frame

f1’s
frame

f2’s
frame

f0 0
f1 1
f2 2

DISPLAY

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 10

The Global Display

• Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def f0 ():

q = 42; g1 ()

def f1 ():

def f2 (): ... g2 () ...

def g2 (): ... g2 () ... g1 () ...

def g1 (): ... f1 () ...

• Each time we enter a function at lexical level k
(i.e., nested inside k functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.

• Access variable at lexical level k through
DISPLAY[k].

• Relies heavily on scope rules and proper
function-call nesting

f0’s
frame

g1’s
frame

f1’s
frame

f1’s
frame

f2’s
frame

g2’s
frame

f0 0
f1 1
g2 2

DISPLAY

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 10

The Global Display

• Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def f0 ():

q = 42; g1 ()

def f1 ():

def f2 (): ... g2 () ...

def g2 (): ... g2 () ... g1 () ...

def g1 (): ... f1 () ...

• Each time we enter a function at lexical level k
(i.e., nested inside k functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.

• Access variable at lexical level k through
DISPLAY[k].

• Relies heavily on scope rules and proper
function-call nesting

f0’s
frame

g1’s
frame

f1’s
frame

f1’s
frame

f2’s
frame

g2’s
frame

g2’s
frame

f0 0
f1 1
g2 2

DISPLAY

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 10

The Global Display

• Historically, first solution to nested function
problem used an array indexed by call level,
rather than static links.

def f0 ():

q = 42; g1 ()

def f1 ():

def f2 (): ... g2 () ...

def g2 (): ... g2 () ... g1 () ...

def g1 (): ... f1 () ...

• Each time we enter a function at lexical level k
(i.e., nested inside k functions), save pointer to
its frame base in DISPLAY[k]; restore on exit.

• Access variable at lexical level k through
DISPLAY[k].

• Relies heavily on scope rules and proper
function-call nesting

f0’s
frame

g1’s
frame

f1’s
frame

f1’s
frame

f2’s
frame

g2’s
frame

g2’s
frame

g1’s
frame

f0 0
g1 1
g2 2

DISPLAY

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 10

5: Allow Function Values, Properly Nested Access

• In C, C++, no function nesting.

• So all non-local variables are global, and have fixed addresses.

• Thus, to represent a variable whose value is a function, need only to
store the address of the function’s code.

• But when nested functions possible, function value must contain
more.

• When function is finally called, must be told what its static link is.

• Assume first that access is properly nested: variables accessed only
during lifetime of their frame.

• So can represent function with address of code + the address of
the frame that contains that function’s definition.

• It’s environment diagrams again!!

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 11

Function Value Representation

def f0 (x):

def f1 (y):

def f2 (z):

return x + y + z

print h1 (f2)

def h1 (g): g (3)

f1 (42)

• Call f0 from the main program;
look at the stack when f2 finally
is called (see right).

• When f2’s value (as a function)
is computed, current frame is
that of f1. That is stored in the
value passed to h1.

• Easy with static links; global dis-
play technique does not fare as
well [why?]

...

ra
DL
SL

f0’s frame
ra
DL
SL

f1’s frame
ra
DL
SL

h1’s frame
ra
DL
SL

f2’s frame
Top of stack

code for f2

Value of g (i.e., f2)

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 12

6: General Closures

• What happens when the frame
that a function value points to
goes away?

• If we used the previous repre-
sentation (#5), we’d get a dan-
gling pointer in this case:

def incr (n):

delta = n

def f (x):

return delta + x

return f

p2 = incr(2)

print p2(3)

...

ra
DL
SL

incr’s
frame
with
delta

code for f

Value of incr(2)

During execution of incr(2)

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 13

6: General Closures

• What happens when the frame
that a function value points to
goes away?

• If we used the previous repre-
sentation (#5), we’d get a dan-
gling pointer in this case:

def incr (n):

delta = n

def f (x):

return delta + x

return f

p2 = incr(2)

print p2(3)

...

code for f

Value of incr(2)

After return from incr(2)
delta is gone

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 13

Representing Closures

• Could just forbid this case (as
some languages do):

– Algol 68 would not allow
pointer to f (last slide) to be
returned from incr.

– Or, one could allow it, and do
something random when f (i.e.
via delta) is called.

• Scheme and Python allow it and
do the right thing.

• But must in general put local
variables (and a static link) in a
record on the heap, instead of
on the stack.

...

ra
DL

temp
storage
etc.

SL

delta,
& n

code for f

Value of incr(2)

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 14

Representing Closures

• Could just forbid this case (as
some languages do):

– Algol 68 would not allow
pointer to f (last slide) to be
returned from incr.

– Or, one could allow it, and do
something random when f (i.e.
via delta) is called.

• Scheme and Python allow it and
do the right thing.

• But must in general put local
variables (and a static link) in a
record on the heap, instead of
on the stack.

• Now frame can disappear harm-
lessly.

...

SL

delta,
& n

code for f

Value of incr(2)

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 14

7: Continuations

• Suppose function return were not the end?

def f (cont): return cont

x = 1

def g (n):

global x, c

if n == 0:

print "a", x, n,

c = call_with_continuation (f)

print "b", x, n,

else: g(n-1); print "c", x, n,

g(2); x += 1; print; c()

Prints:

a 1 0 b 1 0 c 1 1 c 1 2

b 2 0 c 2 1 c 2 2

b 3 0 c 3 1 c 3 2

...

• The continuation, c, passed to f is “the function that does whatever
is supposed to happen after I return from f.”

• Can be used to implement exceptions, threads, co-routines.

• Implementation? Nothing much for it but to put all activation frames
on the heap.

• Distributed cost.

• However, we can do better on special cases like exceptions.

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 15

Summary

Problem Solution

1. Plain: no recursion, no nest-
ing, fixed-sized data with size
known by compiler, first-class
function values.

Use inline expansion or use
static variables to hold return
addresses, locals, etc.

2. #1 + recursion Need stack.
3. #2 + Add variable-sized un-

boxed data
Need to keep both stack
pointer and frame pointer.

4. #3 – first-class function values
+ Nested functions, up-level ad-
dressing

Add static link or global display.

5. #4 + Function values w/ prop-
erly nested accesses: functions
passed as parameters only.

Static link, function values con-
tain their link. (Global display
doesn’t work so well)

6. #5 + General closures: first-
class functions returned from
functions or stored in variables

Store local variables and static
link on heap.

7. #6 + Continuations Put everything on the heap.

Last modified: Mon Nov 27 15:02:10 2006 CS164: Lecture #25 16

	Lecture #25: Achieving Runtime Effects---Functions
	General Considerations
	1: No recursion, no nesting, fixed-sized data
	2: Add recursion
	Calling Sequence when Frame Size is Fixed
	3: Add Variable-Sized Unboxed Data
	Other Uses of the Dynamic Link
	4: Allow Nesting of Functions, Up-Level Addressing
	Static Links
	The Global Display
	5: Allow Function Values, Properly Nested Access
	Function Value Representation
	6: General Closures
	Representing Closures
	7: Continuations
	Summary

