
Lecture #27: More Special Effects—Exceptions

• Exception-handling in programming languages is a very limited form
of continuation.

• Execution continues after a function call that is still active when
exception raised.

• Java provides mechanism to return a value with the exception, but
this adds no new complexity.

Last modified: Sun Oct 29 23:35:49 2006 CS164: Lecture #27 1



Approach I: Do Nothing

• Some say keep it simple; don’t bother with exceptions.

• Use return code convention:

– Example: C library functions often return either 0 for OK or non-
zero for various degrees of badness.

• Problems:

Last modified: Sun Oct 29 23:35:49 2006 CS164: Lecture #27 2



Approach I: Do Nothing

• Some say keep it simple; don’t bother with exceptions.

• Use return code convention:

– Example: C library functions often return either 0 for OK or non-
zero for various degrees of badness.

• Problems:

– Forgetting to check.

– Code clutter.

– Clumsiness: makes value-returning functions less useful.

– Slight cost in always checking return codes.

Last modified: Sun Oct 29 23:35:49 2006 CS164: Lecture #27 2



Approach II: Non-Standard Return

• First idea is to modify calls so that they look like this:

call _f

jmp OK

code to handle exception

OK:

code for normal return

• To throw exception:

– Put type of exception in some standard register or memory loca-
tion.

– Return to instruction after normal return.

• Awkward for the ia32 (above). Easier on machines that allow return-
ing to a register+constant offset address [why?].

• Exception-handling code decides whether it can handle the excep-
tion, and does another exception return if not.

• Problem: Requires small distributed overhead for every function
call.

Last modified: Sun Oct 29 23:35:49 2006 CS164: Lecture #27 3



Approach III: Stack manipulation

• C does not have an exception mechanism built into its syntax, but
uses library routines:

jmp_buf catch_point;

void Caller () {

if (setjmp (catch_point) == 0) {

normal case, which eventually
gets down to Callee

} else {

handle exception

}

}

void Callee () {

...

// Throw exception:

longjmp (catch_point, 42);

...

}

...

Caller’s
frame

...
other
frames

...

Callee’s
frame

Caller’s
FP, SP,
addr of

setjmp call
& others

catch point:

Last modified: Sun Oct 29 23:35:49 2006 CS164: Lecture #27 4



Approach III: Stack manipulation

• C does not have an exception mechanism built into its syntax, but
uses library routines:

jmp_buf catch_point;

void Caller () {

if (setjmp (catch_point) == 0) {

normal case, which eventually
gets down to Callee

} else {

handle exception

}

}

void Callee () {

...

// Throw exception:

longjmp (catch_point, 42);

...

}

...

Caller’s
frame

Caller’s
FP, SP,
addr of

setjmp call
& others

catch point:

When longjmp called, re-
store stack as indicated by
catch point and return to
the end of the setjmp call.

Last modified: Sun Oct 29 23:35:49 2006 CS164: Lecture #27 4



Approach III: Discussion

• On exception, call to setjmp appears to return twice, with two dif-
ferent values.

• Does not require help from compiler,

• But implementation is architecture-specific.

• Overhead imposed on every setjmp call.

• If used to implement try and catch, therefore, would impose cost
on every try.

• Subtle problems involving variables that are stored in registers:

– The jmp buf typically has to store such registers, but

– That means the value of some local variables may revert unpre-
dictably upon a longjmp.

Last modified: Sun Oct 29 23:35:49 2006 CS164: Lecture #27 5



Approach IV: PC tables

• Sun’s Java implementation uses a different approach.

• Compiler generates a table mapping instruction addresses (program
counter (PC) values) to exception handlers for each function.

• If needed, compiler also leaves behind information necessary to re-
turn from a function (“unwind the stack”) when exception thrown.

• To throw exception E:

while (current PC doesn’t map to handler for E)
unwind stack to last caller

• Under this approach, a try-catch incurs no cost unless there is an
exception, but

• Throwing and handling the exception more expensive than other ap-
proaches, and

• Tables add space.

Last modified: Sun Oct 29 23:35:49 2006 CS164: Lecture #27 6


	Lecture #27: More Special Effects---Exceptions
	Approach I: Do Nothing
	Approach II: Non-Standard Return
	Approach III: Stack manipulation
	Approach III: Discussion
	Approach IV: PC tables

