
Lecture #28: Dynamic Method Selection and OOP

• “Interesting” language feature introduced by Simula 67, Smalltalk,
C++, Java: the virtual function (to use C++ terminology).

• Problem:

– Arrange classes in a hierarchy of types.

– Instance of subtype “is an” instance of its supertype(s).

– In particular, inherits their methods, but can override them.

– A dynamic effect: Cannot in general tell from program text what
body of code executed by a given call.

• Implementation difficulty (as usual) depends on details of a lan-
guage’s semantics.

• Some things still static:

– Names of functions, numbers of arguments are (usually) known

– Compiler can handle overloading by inventing new names for func-
tions. E.g., C++ encodes a function f(int x) in class Q as ZN1Q1fEi,
and f(int x, int y) as ZN1Q1fEii.

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 1



I. Fully Dynamic Approach

• Regular Python has a completely dynamic approach to the problem:

class A:

x = 2; def f (self): return 42

a = A (); b = A ()

print a.x, a.f() # Prints 2 42

a.x = lambda (self, z): self.w * z

a.f = 13; a.w = 5

print a.x(3), a.f, a.w # Prints 15 13 5

print b.x(3), b.f, b.w # Error

print A.x # Prints 2

A.x = lambda (self): 19

A.f = 2

A.v = 1

c = A ()

print c.x (), c.f, c.v # Prints 19, 2, 1

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 2



Characteristics of Dynamic Approach

• Each class instance is independent. Contents of class definition
merely used for initialization.

• New attributes can be added freely to instances or to class.

• In other variants of this approach, there are no classes at all, only
instances.

• Get new instances by cloning an existing object.

• Then can add new attributes.

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 3



Implementing the Dynamic Approach

• Simple strategy: just put a dictionary in every instance, and in class.

• Create an instance by making fresh copy of class’s dictionary.

• All checking at runtime.

• All objects (or pointers) carry around dynamic type

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 4



Pros and Cons of Dynamic Approach

• Extremely flexible

• Conceptually simple

• Implementation easy

• Space overhead: every instance has pointers to all methods

• Time overhead: lookup on each call

• No static checking

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 5



II. Straight Single Inheritance, Dynamic Typing

• Each class has fixed set of methods and instance variables

• Methods have fixed definition in each class.

• Classes can inherit from single superclass.

• Otherwise, types of parameters, variables, etc., still dynamic

• Basically technique in Smalltalk, Objective C.

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 6



Implementing the Smalltalk-like Approach

• Instances need not carry around copies of function pointers.

• Instead, each class has a data structure mapping method names to
functions, and instance-variable names to offsets from the start of
the object.

class A:

def f (...): body1

def g (...): body2

x = 3

class B(A):

def f (...): body3

def h (...): body4

y = 2

a = A ()

b = B ()

super

f: body1

g: body2

x@4: 3

A:

super

f: body3

h: body4

y@8: 2

B:

class:

3

class:

3

2

a:

b:

“y is stored at offset 8 from start of instance”

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 7



Pros and Cons of Smalltalk Approach

• Only need to store change things—instance variables—in instances.

• Data structure can be a bit faster at accessing than fully dynamic
method

• But still, not much static checking possible, and

• Some lookup of method names required.

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 8



Single Inheritance with Static Types

• Consider Java without interfaces. Type can inherit from at most
one immediate superclass.

• For an access, x.w, insist that compiler knows a supertype of x’s
dynamic type that defines w.

• Insist that all possible overridings of a method have compatible pa-
rameter lists and return values.

• Use a technique similar to previous one, but put entries for all meth-
ods (whether or not overridden) in each class data structure.

• Such class data structures are called “virtual tables” or “vtables” in
C++ parlance.

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 9



Implementation of Simple Static Single Inheritance

class A {

void f () { body1 }

void g () { body2 }

int x = 3

}

class B extends A {

void f () { body3 }

void h () { body4 }

int y = 2

}

---------

a = new A ()

b = new B ()

f: body1

g: body2

A:

f: body3

g: body2

h: body4

B:

vtbl:

3

vtbl:

3

2

a:

b:

• No need to store offsets of x and y; compiler knows where they are.

• Also, compiler knows where to find ‘f’, ‘g’, ‘h’ virtual tables.

• Important: offsets of variables in instances and of method pointers
in virtual tables are known constants, the same for all subtypes.

• So compiler knows how to call methods of b even if static type is A!

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 10



Interfaces

• Java allows interface inheritance of any number of interface types
(introduces no new bodies).

• This complicates life: consider

class A { class B { interface C {

int x; int y; f ();

public f () { ... } g () { ... } }

} h () { ... }

public f () { ... }

}

/*----------------------------------------------------*/

class A2 extends A class B2 extends B

implements C implements C

{...} { ... }

/*----------------------------------------------------*/

void f (C y) { y.f () } // How can this work?

• We can compile A and B without knowledge of C, A2, B2.

• How can we make the virtual table of A2 and B2 compatible with
each other so that f is at same known offset regardless of whether
dynamic type of C is A2 or B2? (Above isn’t hardest example!)

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 11



Interface Implementation I: Brute Force

• One approach is to have the system assign a different offset glob-
ally to each different function signature

– (Functions f(int x) and f() have different function signatures)

• So in previous example, the virtual tables can be:

A: B: C:
0: unused 0: pntr to B.g 0: unused
4: unused 4: pntr to B.h 4: unused
8: pntr to A.f 8: pntr to B.f 8: unused

A2: B2:
0: unused 0: pntr to B.g
4: unused 4: pntr to B.h
8: pntr to A.f 8: pntr to B.f

• No slowing of method calls.

• But, Total size of tables gets big (some optimization possible).

• And, must take into account all classes before laying out tables.

– Complicates dynamic linking.

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 12



Interface Implementation II: Make Interface Values
Different

• Another approach is to represent values of static type C (an inter-
face type) differently.

• Converting value x2 of type B2 to C then causes C to point to a
two-word quantity:

– Pointer to x2

– Pointer to a cut-down virtual table containing just the f entry
from B2 (at offset 0).

• Means that converting to interface requires work and allocates stor-
age.

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 13



Interface Implementation II, Illustrated

class A {

void f () { body1 }

void g () { body2 }

void h () { body3 }

int x = 3;

}

interface C { void g (); }

class B extends A

implements C { }

B b = new B ()

C c = b;

f: body1

g: body2

h: body3

A:

g: body2

C table for B:

f: body1

g: body2

h: body3

B:

vtbl:

3

b:

vtbl:

c:

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 14



Improving Interface Implementation II

• How can we avoid doing allocation to create value of interface type
C?

• One method: extend the virtual table of all types to include an in-
terface vector.

• Each entry in this vector identifies an interface the type imple-
ments, plus the table (e.g. “C table for B” in last slide).

• How best to design the interface vector?

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 15



Full Multiple Interitance

• Java allows multiple inheritance only via interfaces.

• Important point: interfaces don’t have instance variables.

• Instance variables basically mess everything up for multiple inheri-
tance, assuming we want to keep constant offsets to instance vari-
ables.

class A { class B {

int x = 19; int y = 42;

void f () { ... x ... h() ... } void g () { ... y ... h() ... }

void h () {... } void h () {... }

} }

class D extends A, B {

// Where do x and y go?

void h () {... }

}

• A.f expects that this points to an A, B.g expects that it points to a
B, but D.h expects it to point to a D.

• How can these all be true??

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 16



Implementing Full Multiple Inheritance I

• Idea is to extend the contents of the virtual table with an offset
for each method.

• Offset tells how to adjust the ’this’ pointer before calling.

• For the example from last slide:

f: body of A.f

0

h: body of A.h

0

A:

g: body of B.g

0

h: body of B.h

0

B:

f: body of A.f

0

h: body of D.h

0

g: body of B.g

8

D:

g: body of B.g

0

h: body of D.h

-8

D (B part):

vtbl:0:

194:

vtbl:0:

424:

vtbl:0:

194:

vtbl:8:

4212:

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 17



Implementing Full Multiple Inheritance II

• First implementation slows things down in all cases to accommodate
unusual case.

• Would be better if only the methods inherited from B (for example)
needed extra work.

• Alternative design: use stubs to adjust the ’this’ pointer.

• Define B.g1 to add 8 to the ’this’ pointer by 8 and then call B.g; and
D.h1 to subtract 8 and then call D.h.:

f: body of A.f
h: body of A.h

A:

g: body of B.g
h: body of B.h

B:

f: body of A.f
h: body of D.h
g: body of B.g1

D:

g: body of B.g
h: body of D.h1

D (B part):

vtbl:0:

194:

vtbl:0:

424:

vtbl:0:

194:

vtbl:8:

4212:

Last modified: Wed Apr 6 00:30:52 2005 CS164: Lecture #28 18


	Lecture #28: Dynamic Method Selection and OOP
	I. Fully Dynamic Approach
	Characteristics of Dynamic Approach
	Implementing the Dynamic Approach
	Pros and Cons of Dynamic Approach
	II. Straight Single Inheritance, Dynamic Typing
	Implementing the Smalltalk-like Approach
	Pros and Cons of Smalltalk Approach
	Single Inheritance with Static Types
	Implementation of Simple Static Single Inheritance
	Interfaces
	Interface Implementation I: Brute Force
	Interface Implementation II: Make Interface Values Different
	Interface Implementation II, Illustrated
	Improving Interface Implementation II
	Full Multiple Interitance
	Implementing Full Multiple Inheritance I
	Implementing Full Multiple Inheritance II

