Code Generation

Lecture 30
(based on slides by R. Bodik)

11/14/06 Prof. Hilfinger CS164 Lecture 30

Lecture Outline

+ Stack machines

+ The MIPS assembly language
+ The x86 assembly language

+ A simple source language

+ Stack-machine implementation of the simple
language

11/14/06 Prof. Hilfinger CS164 Lecture 30 2

Stack Machines

+ A simple evaluation model
* No variables or registers

+ A stack of values for intermediate results

11/14/06 Prof. Hilfinger CS164 Lecture 30

Example of a Stack Machine Program

+ Consider two instructions
- pushi - place the integer i on top of the stack
- add - pop two elements, add them and put
the result back on the stack
*+ A program to compute 7 + 5:
push 7
push 5
add

11/14/06 Prof. Hilfinger CS164 Lecture 30 4

Stack Machine. Example

Why Use a Stack Machine ?

sTack‘ ‘

push 7 push 5 add

Each instruction:
- Takes its operands from the top of the stack
- Removes those operands from the stack
- Computes the required operation on them
- Pushes the result on the stack

11/14/06 Prof. Hilfinger CS164 Lecture 30 5

+ Each operation takes operands from the same
place and puts results in the same place

+ This means a uniform compilation scheme

+ And therefore a simpler compiler

11/14/06 Prof. Hilfinger CS164 Lecture 30 6

Why Use a Stack Machine ?

+ Location of the operands is implicit
- Always on the top of the stack
* No need to specify operands explicitly
* No need to specify the location of the result
+ Instruction "add" as opposed to “add ry, r,"
= Smaller encoding of instructions
= More compact programs
This is one reason why Java Bytecodes use a stack
evaluation model

11/14/06 Prof. Hilfinger CS164 Lecture 30 7

Optimizing the Stack Machine

+ The add instruction does 3 memory operations
- Two reads and one write to the stack
- The top of the stack is frequently accessed
+ Idea: keep the top of the stack in a register (called
accumulator)
- Register accesses are faster
+ The "add" instruction is now
acc < acc + top_of_stack
- Only one memory operation!

11/14/06 Prof. Hilfinger CS164 Lecture 30 8

Stack Machine with Accumulator

Invariants

+ The result of computing an expression is always in the

accumulator

+ For an operation op(e;,....e,) push the accumulator on
the stack after computing each of e,....e,;

- The result of e, is in the accumulator before op

- After the operation pop n-1 values

After computing an expression the stack is as before

11/14/06 Prof. Hilfinger CS164 Lecture 30 9

Stack Machine with Accumulator. Example

+ Compute 7 + 5 using an accumulator

w [T g
7 7 |7
sTack‘ |:|

acc <7 acc< 5 acc<acc+
push acc top_of_stack

0
11/14/06 Prof. Hilfinger CS164 LculurE}OP 10

A Bigger Example: 3 + (7 + 5)

Code Acc Stack

acc < 3 3 <init>
push acc 3 3, <init>
acc <7 7 3, <init>
push acc 7 7. 3, <init>
acc < 5 5 7, 3, <init>
acc < acc + top_of_stack 12 7,3, <init>
pop 12 3, <init>
acc < acc + top_of_stack 15 3, <init>
pop 15 <init>

11/14/06 Prof. Hilfinger CS164 Lecture 30 11

Notes

+ It is very important that the stack is
preserved across the evaluation of a
subexpression

- Stack before the evaluation of 7 + 5 is 3, <init>
- Stack after the evaluation of 7 + 5 is 3, <init>
- The first operand is on top of the stack

11/14/06 Prof. Hilfinger CS164 Lecture 30 12

From Stack Machines to MIPS

+ The compiler generates code for a stack
machine with accumulator

+ We want to run the resulting code on an x86
or MIPS processor (or simulator)

+ We implement stack machine instructions
using MIPS instructions and registers

11/14/06 Prof. Hilfinger CS164 Lecture 30 13

MIPS assembly vs. x86 assembly

+ InProject 4, you will generate x86 code
- because we have no MIPS machines around
- and using a MIPS simulator is less exciting
* In this lecture, we will use MIPS assembly
- it's somewhat more readable than x86 assembly
- e.g. in x86, both store and load are called movl
+ franslation from MIPS to x86 trivial
- see the translation table in a few slides

11/14/06 Prof. Hilfinger CS164 Lecture 30 14

Simulating a Stack Machine...

- The accumulator is kept in MIPS register $a0
- inx86, it's in %eax

+ The stack is kept in memory

+ The stack grows towards lower addresses
- standard convention on both MIPS and x86

+ The address of the next location on the stack is kept
in MIPS register $sp
- The top of the stack is at address $sp + 4
- inx86, it's %esp

11/14/06 Prof. Hilfinger CS164 Lecture 30 15

MIPS Assembly

MIPS architecture

- Prototypical Reduced Instruction Set Computer
(RISC) architecture

- Arithmetic operations use registers for operands
and results

- Must use load and store instructions to use
operands and results in memory

- 32 general purpose registers (32 bits each)
« We will use $sp, $a0 and $t1 (a temporary register)

11/14/06 Prof. Hilfinger CS164 Lecture 30 16

A Sample of MIPS Instructions

- lw reg; offset(reg,)
+ Load 32-bit word from address reg, + offset into reg;
- add regy, reg,, reg;
* reg; < reg, + regs
- swreg,, offset(reg,)
+ Store 32-bit word in reg; at address reg, + of fset
addiu reg;, reg,, imm
* reg; < reg, +imm
+ "u" means overflow is not checked
- lireg, imm
* reg < imm

11/14/06 Prof. Hilfinger CS164 Lecture 30 17

x86 Assembly

x86 architecture
- Complex Instruction Set Computer (CISC) architecture

- Arithmetic operations can use both registers and memory for
operands and results

- 5o, you don't have to use separate load and store instructions
to operate on values in memory

- CISC gives us more freedom in selecting instructions (hence,
more powerful optimizations)

- but we'll use a simple RISC subset of x86

+ so translation from MIPS to x86 will be easy

11/14/06 Prof. Hilfinger CS164 Lecture 30 18

x86 assembly

+ x86 has two-operand instructions:
- ex.: ADD dest, src dest := dest + src
- in MIPS: dest := srcl + src2
+ An annoying fact to remember ®
- different x86 assembly versions exists
- one important difference: order of operands
- the manuals assume
+ ADD dest, src
- the gcc assembler we'll use uses opposite order
+ ADD src, dest

11/14/06 Prof. Hilfinger CS164 Lecture 30

Sample x86 instructions (gcc order of operands)

- movl offset(reg,), reg,

+ Load 32-bit word from address reg, + offset into reg;
- add reg,, reg;

© reg; < reg; +reg;
- movl reg; offset(reg,)

+ Store 32-bit word in reg; at address reg, + of fset
- add imm, reg;

* reg; < reg; +imm

+ use this for MIPS' addiu
- movl imm, reg

* reg < imm

11/14/06 Prof. Hilfinger CS164 Lecture 30 20

MIPS to x86 translation

x86 vs. MIPS registers

MIPS x86
Iw reg;, of fset(reg,) movl offset(reg,), reg;
add regy, regy, reg, add reg,, reg;
sw reg;, offset(reg,) movl reg;, offset(reg,)
addiu regy, regy, imm add imm, reg;
li reg, imm movl imm, reg

1114106 Prof. Hifinger CS164 Lecture 30 2

MIPS x86
$a0 %eax
$sp %oesp
$fp Joebp
$t %ebx
11406 Prof. Hilfinger CS164 Lecture 30 2

MIPS Assembly. Example.

+ The stack-machine code for 7 + 5 in MIPS:

acc <7 li $a0, 7

push acc sw $a0, 0($sp)
addiu $sp, $sp, -4

acc < 5 li $a0, 5

acc < acc + top_of_stack Iw $11, 4($sp)

add $a0, $a0, $t1
pop addiu $sp, $sp, 4

+ We now generalize this to a simple language...

11/14/06 Prof. Hilfinger CS164 Lecture 30 23

Some Useful Macros

+ We define the following abbreviation

- push $t sw $t, 0($sp)
addiu $sp, $sp, -4

* pop addiu $sp, $sp, 4

+ $t < top Iw $t, 4($sp)

11/14/06 Prof. Hilfinger CS164 Lecture 30 24

Useful Macros, IA32 version (6NU syntax)

+ push %t pushl %t
(t a general register)

- pop addl $4, %esp
or

popl %t (also moves top to %t)

+ %t < top movl (%esp), %t

11/14/06 Prof. Hilfinger CS164 Lecture 30 25

A Small Language

+ A language with integers and integer
operations

P—-D:P|D
D — def id(ARGS)
ARGS — id, ARGS | id
E— int | id | if E; = E, then E; else E,

| E; +E, | E; - E, | id(Ey,...E,)

E:

11/14/06 Prof. Hilfinger CS164 Lecture 30 26

A Small Language (Cont.)

+ The first function definition f is the "main” routine
* Running the program on input i means computing f(i)
+ Program for computing the Fibonacci numbers:
def fib(x) = if x = 1then 0 else
if x =2 then 1 else
fib(x - 1) + fib(x - 2)

11/14/06 Prof. Hilfinger CS164 Lecture 30 27

Code Generation Strategy

+ For each expression e we generate MIPS code
that:
- Computes the value of e in $a0
- Preserves $sp and the contents of the stack

+ We define a code generation function cgen(e)
whose result is the code generated for e

11/14/06 Prof. Hilfinger CS164 Lecture 30 28

Code Generation for Constants

*+ The code to evaluate a constant simply copies
it into the accumulator:

cgen(i) = li $a0, i
+ Note that this also preserves the stack, as

required

11/14/06 Prof. Hilfinger CS164 Lecture 30 29

Code Generation for Add

cgen(e; + &) =
cgen(er)
push $a0
cgen(ey)
$11 < top
add $a0, $t1, $a0
pop
+ Possible optimization: Put the result of ¢; directly in
register $11?

11/14/06 Prof. Hilfinger CS164 Lecture 30 30

Code Generation for Add. Wrong!

- Optimization: Put the result of e, directly in $t1?

cgen(e; + ;) =
cgen(e,)
move $t1, $a0
cgene,)
add $a0, $t1, $a0

*+ Try fo generate code for: 3 + (7 + 5)

11/14/06 Prof. Hilfinger CS164 Lecture 30 31

Code Generation Notes

* The code for + is a femplate with “holes” for
code for evaluating e, and e,

+ Stack-machine code generation is recursive

+ Code for e, + e, consists of code for e; and e,
glued together

+ Code generation can be written as a (modified)
post-order traversal of the AST
- At least for expressions

11/14/06 Prof. Hilfinger CS164 Lecture 30 32

Code Generation for Sub and Constants

+ New instruction: sub reg; reg, regs
- Implements reg; < reg, - regs
cgen(e; - e;) =
cgen(e;)
push $a0
cgen(e,)
$11 < top
sub $a0, $11, $a0
pop

11/14/06 Prof. Hilfinger CS164 Lecture 30 33

Code Generation for Conditional

+ We need flow control instructions

+ New instruction: beq reg;, reg,, label
- Branch to label if reg; = reg,
- x86: cmpl reg,, reg,
Jje label

+ New instruction: b label

- Unconditional jump to label
- x86: jmp label

11/14/06 Prof. Hilfinger CS164 Lecture 30 34

Code Generation for If (Cont.)

cgen(if e; = e, then e else ey) =
false_branch = new_label ()

true_branch = new_label () false_branch:
end_if = new_label () cgen(es)
cgen(e,) .

push $a0 b end_if
cgen(e,) true_branch:
$t1 < top cgen(es)

pop end_if:
beq $a0, $t1, true_branch

11/14/06 Prof. Hilfinger CS164 Lecture 30 35

