Code Generation

Lecture 30
(based on slides by R. Bodik)

11/14/06 Prof. Hilfinger CS164 Lecture 30

Lecture Outline

» Stack machines

+ The MIPS assembly language
*+ The x86 assembly language

* A simple source language

+ Stack-machine implementation of the simple
language

11/14/06 Prof. Hilfinger CS164 Lecture 30 2

Stack Machines

» A simple evaluation model
* No variables or registers

- A stack of values for intermediate results

11/14/06 Prof. Hilfinger CS164 Lecture 30

Example of a Stack Machine Program

+ Consider two instructions
- push i - place the integer i on top of the stack
- add - pop two elements, add them and put
the result back on the stack

* A program to compute 7 + 5:
push 7
push 5
add

11/14/06 Prof. Hilfinger CS164 Lecture 30 4

Stack Machine. Example

)
@

e

12

stack

push 7 push 5 add

Each instruction:
- Takes its operands from the top of the stack
- Removes those operands from the stack
- Computes the required operation on them
- Pushes the result on the stack

11/14/06 Prof. Hilfinger CS164 Lecture 30

Why Use a Stack Machine ?

» Each operation takes operands from the same
place and puts results in the same place

» This means a uniform compilation scheme

* And therefore a simpler compiler

11/14/06 Prof. Hilfinger CS164 Lecture 30 6

Why Use a Stack Machine ?

Location of the operands is implicit
- Always on the top of the stack

No need to specify operands explicitly
No need to specify the location of the result

Instruction "add" as opposed to “add ry, r.,"
= Smaller encoding of instructions
= More compact programs

This is one reason why Java Bytecodes use a stack
evaluation model

11/14/06 Prof. Hilfinger CS164 Lecture 30 7

Optimizing the Stack Machine

+ The add instruction does 3 memory operations
- Two reads and one write to the stack
- The top of the stack is frequently accessed

» Tdea: keep the top of the stack in a register (called
accumulator)

- Register accesses are faster

* The "add" instruction is now
acc < acc + top_of_stack
- Only one memory operation!

11/14/06 Prof. Hilfinger CS164 Lecture 30 8

Stack Machine with Accumulator

Invariants

The result of computing an expression is always in the
accumulator

For an operation op(e,,...,e,) push the accumulator on
the stack after computing each of e,....e, ;

- The result of e, is in the accumulator before op

- After the operation pop n-1 values

After computing an expression the stack is as before

11/14/06 Prof. Hilfinger CS164 Lecture 30 9

Stack Machine with Accumulator. Example

- Compute 7 + 5 using an accumulator

acc 7 5 \@/4 12
A

stack

acc < 7 acc < b AaCC <— acc +

push acc top_of_stack

o
11/14/06 Prof. Hilfinger CS164 LecturE30p 10

A Bigger Example: 3 + (7 + 5)

Code Acc

acc < 3 3
push acc 3
acc < 7/ 7
push acc 7
acc < 3 5
acc <— acc + top_of_stack 12
pop 12
acc < acc + top_of_stack 15
pop 15

11/14/06 Prof. Hilfinger CS164 Lecture 30

Stack

<init>

3, <init>
3, <init>
7/, 3,<init>
7/, 3, <init>
7/, 3,<init>
3, <init>
3, <init>
<init>

11

Notes

+ It is very important that the stack is
preserved across the evaluation of a
subexpression
- Stack before the evaluation of 7 + 5 is 3, «init>
- Stack after the evaluation of 7 + 5 is 3, <init>
- The first operand is on top of the stack

11/14/06 Prof. Hilfinger CS164 Lecture 30 12

From Stack Machines to MIPS

» The compiler generates code for a stack
machine with accumulator

+ We want to run the resulting code on an x86
or MIPS processor (or simulator)

+ We implement stack machine instructions
using MIPS instructions and registers

11/14/06 Prof. Hilfinger CS164 Lecture 30 13

MIPS assembly vs. x86 assembly

* InProject 4, you will generate x86 code
- because we have no MIPS machines around
- and using a MIPS simulator is less exciting

* In this lecture, we will use MIPS assembly
- it's somewhat more readable than x86 assembly
- e.g. in x86, both store and load are called movl

- translation from MIPS to x86 trivial
- see the translation table in a few slides

11/14/06 Prof. Hilfinger CS164 Lecture 30 14

Simulating a Stack Machine...

The accumulator is kept in MIPS register $a0
- in x86, it's in %eax

The stack is kept in memory

The stack grows towards lower addresses

- standard convention on both MIPS and x86

The address of the next location on the stack is kept
in MIPS register $sp

- The top of the stack is at address $sp + 4

- in x86, it's Jesp

11/14/06 Prof. Hilfinger CS164 Lecture 30 15

MIPS Assembly

MIPS architecture

- Prototypical Reduced Instruction Set Computer
(RISC) architecture

- Arithmetic operations use registers for operands
and results

- Must use load and store instructions to use
operands and results in memory

- 32 general purpose registers (32 bits each)
+ We will use $sp, $a0 and $11 (a temporary register)

11/14/06 Prof. Hilfinger CS164 Lecture 30 16

A Sample of MIPS Instructions

- lw reg, offset(reg,)

* Load 32-bit word from address reg, + offset into reg,
- add reg;, reg,, reg,

* reg; < reg, + reg;
- sw reg,, offset(reg,)

- Store 32-bit word in reg, at address reg, + of fset
- addiu regy, reg,, imm

* reg; < reg, +imm

- "u" means overflow is not checked
- lireg, imm

* reg < imm

11/14/06 Prof. Hilfinger CS164 Lecture 30

17

x86 Assembly

x86 architecture

Complex Instruction Set Computer (CISC) architecture

Arithmetic operations can use both registers and memory for
operands and results

So, you don't have to use separate load and store instructions
to operate on values in memory

CISC gives us more freedom in selecting instructions (hence,
more powerful optimizations)

but we'll use a simple RISC subset of x86
- so translation from MIPS to x86 will be easy

11/14/06 Prof. Hilfinger CS164 Lecture 30 18

x86 assembly

- x86 has two-operand instructions:
- ex.. ADD dest, src dest := dest + src
- in MIPS: dest := srcl + src2

» An annoying fact to remember ®
- different x86 assembly versions exists
- one important difference: order of operands

- the manuals assume
- ADD dest, src

- the gcc assembler we'll use uses opposite order
- ADD src, dest

11/14/06 Prof. Hilfinger CS164 Lecture 30

19

Sample x86 instructions (gcc order of operands)

- movl offset(reg,), reg,

* Load 32-bit word from address reg, + offset into reg,
- add reg,, reg,

* reg; < reg; + reg,
- movl reg, of fset(reg,)

- Store 32-bit word in reg, at address reg, + of fset
- add imm, reg,

* reg, <= reg, + imm

- use this for MIPS' addiu
- movl imm, reg

* reg < imm

11/14/06 Prof. Hilfinger CS164 Lecture 30

20

MIPS to x86 translation

MIPS

x86

lw reg;, offset(reg,)

movl offset(reg,), reg,

add reg,, reg;, reg,

add reg,, reg;

sw reg;, offset(reg,)

movl reg,, offset(reg,)

addiu reg,, reg;, imm

add imm, reg,

li reg, imm

movl imm, reg

11/14/06 Prof. Hilfinger CS164 Lecture 30 21

x86 vs. MIPS registers

MIPS x86

$a0 Yoeax
$sp Toesp
$fp Jebp
$1 Yoebx

11/14/06 Prof. Hilfinger CS164 Lecture 30

22

MIPS Assembly. Example.

- The stack-machine code for 7 + 5 in MIPS:

acc < 7 li $a0, 7

push acc sw $a0, 0($sp)
addiu $sp, $sp, -4

acc < 5 li $a0, 5

acc < acc + top_of_stack lw $t1, 4($sp)
add $a0, $a0, $11

pop addiu $sp, $sp, 4

* We now generalize this to a simple language...

11/14/06 Prof. Hilfinger CS164 Lecture 30 23

Some Useful Macros

* We define the following abbreviation

- push $t sw $t, O($sp)
addiu $sp, $sp, -4

* pop addiu $sp, $sp, 4

+ $t < top lw $t, 4($sp)

11/14/06 Prof. Hilfinger CS164 Lecture 30

24

Useful Macros, TA32 version (6NU syntax)

* push %t

" Pop

+ Tt < top

11/14/06

pUShl Yot
(t a general register)

addl $4, %esp
or

popl %t (also moves top to %t)

movl (7oesp), %t

Prof. Hilfinger CS164 Lecture 30

25

A Small Language

* A language with integers and integer
operations

P—-D;P|D
D — def id(ARGS) = E;
ARGS — id, ARGS | id
E— int|id]|if E;=E, then E; else E,
| E;+E, | E; - E, | id(E,,....E,)

11/14/06 Prof. Hilfinger CS164 Lecture 30 26

A Small Language (Cont.)

» The first function definition f is the "main” routine
* Running the program on input i means computing f(i)
* Program for computing the Fibonacci humbers:
def fib(x) = if x =1 then O else
if x =2 then1else
fib(x - 1) + fib(x - 2)

11/14/06 Prof. Hilfinger CS164 Lecture 30 27

Code Generation Strategy

* For each expression e we generate MIPS code
that:

- Computes the value of e in $a0
- Preserves $sp and the contents of the stack

+ We define a code generation function cgen(e)
whose result is the code generated for e

11/14/06 Prof. Hilfinger CS164 Lecture 30 28

Code Generation for Constants

* The code to evaluate a constant simply copies
it into the accumulator:

cgen(i) = li $a0, i
* Note that this also preserves the stack, as

required

11/14/06 Prof. Hilfinger CS164 Lecture 30 29

Code Generation for Add

cgen(e; + e;) =
cgen(e;)
push $a0
cgen(e,)
$t1 < top
add $a0, $t1, $a0
pop
* Possible optimization: Put the result of e; directly in
register $t1?

11/14/06 Prof. Hilfinger CS164 Lecture 30 30

Code Generation for Add. Wrong!

- Optimization: Put the result of e, directly in $t1?

cgen(e, + e,) =

cgen(e;)
move $t1, $a0

cgen(e,)
add $a0, $11, $a0

+ Try to generate code for: 3 + (7 + 5)

11/14/06 Prof. Hilfinger CS164 Lecture 30

31

Code Generation Notes

* The code for +is a template with “holes” for
code for evaluating e; and e,

» Stack-machine code generation is recursive

»+ Code for e, + e, consists of code for e; and e,
glued together

* Code generation can be written as a (modified)
post-order traversal of the AST

- At least for expressions

11/14/06 Prof. Hilfinger CS164 Lecture 30 32

Code Generation for Sub and Constants

New instruction: sub reg, reg, regs;
- Implements reg; < reg, - regs;
cgen(e; - e;) =

cgen(e;)

push $a0

cgen(e,)

$t1 < top

sub $a0, $t1, $a0

pop

11/14/06 Prof. Hilfinger CS164 Lecture 30

Code Generation for Conditional

- We need flow control instructions

- New instruction: beq regy, reg,, label
- Branch to label if reg, = reg,
- x86: cmpl reg;, reg,
je label

- New instruction: b label

- Unconditional jump to label
- x86: jmp label

11/14/06 Prof. Hilfinger CS164 Lecture 30

34

Code Generation for If (Cont.)

cgen(if e; = e, theneselse e,) =
false_branch = new_label ()

true_branch = new_label () false_branch:
end _(if)= new_label () cgen(e,)
cgen(e ,

pgsh $lao b end_if
cgen(e,) true_branch:
$11 < top cgen(es)

pop end_if:

beq $a0, $t1, true_branch

11/14/06 Prof. Hilfinger CS164 Lecture 30

35

