
The Activation Record (AR)

[Notes adapted from R. Bodik]

• Code for function calls and function definitions depends on the lay-
out of the activation record

• Very simple AR suffices for this language:

– The result is always in the accumulator; no need to store the
result in the AR.

– The activation record of the caller holds actual parameters just
below callee’s AR.

∗ For f(x1,. . . ,xn), push xn,. . . ,x1 on the stack
∗ These are the only variables in this language

– AR must also save return address.
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The Frame Pointer

• The stack discipline guarantees that on function exit $sp is the same
as it was on function entry.

• No need to save $sp

• But it’s handy to have a pointer to start of the current AR.

– Lives in register $fp (frame pointer)

– Useful for giving addresses of variables and parameters fixed
offsets while manipulating $sp.
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Layout of Frame

• For our simple language, if h calls g, which calls f(x,y), then

– g’s AR will contain x and y,

– f’s AR will contain return address (back to g) and g’s frame pointer.
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Basic Tools for Calling

• The calling sequence is the instructions to set up a function invoca-
tion and restore state on return.

• The function prologue is the code in the function definition that
sets up the AR.

• The function epilogue is the code in the function that returns and
deletes the activation record.

• Most machines have special instructions for calls:

– On MIPS, jal LABEL, jumps to LABEL and saves address of next
instruction after the jal in $ra.

– On ia32, the return address is stored on the stack by the call
LABEL instruction

• And returns:

– On MIPS, jr REG jumps to address in REG.

– On ia32, ret pops return address from stack and goes there.

Last modified: Wed Nov 8 10:52:12 2006 CS164: Lecture #33 4



Code Generation Strategy for Call

cgen (f(e1, . . . , en)):
cgen (en) # Evaluate and push
push $acc # parameters in reverse
. . .
cgen (e1)
push $acc
jal f # Jump to f and save return
addiu $sp, $sp, 4*n # Pop parameters from stack
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Code Generation for Function Prologue and Epilogue

cgen (def f(x1, . . . , xn) = e) =
push $ra # Save return address
push $fp # Save frame pointer
move $fp, $sp # Set new frame pointer
cgen (e)
lw $ra, 8($fp) # Restore return address
lw $fp, 4($fp) # Restore frame pointer
addiu $sp, $fp, 8 # Restore the stack pointer
jr $ra # And return to caller
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IA32 Version of Function Prologue and Epilogue

The last slide not a typical MIPS sequence: biased to look like the ia32:

cgen (def f(x1, . . . , xn) = e) =
# (Call instruction has already
# pushed return address.)

pushl %ebp # Save frame pointer
movl %esp,%ebp # Set new frame pointer
cgen (e)
leave # Pop frame pointer from stack.
ret # Pop return address and return
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Code Generation for Local Variables

• Local variables are stored on the stack (thus not at fixed location).

• One possibility: access relative to the stack pointer.

– Problem: stack pointer changes in strategy we’ve been using for
cgen.

• Solution: use frame pointer, which is constant over execution of
function.

• For simple language, use fact that parameter i is at location
$fp + 4(i + 2):

– cgen (xi) = lw $a0, K($fp), where K = 4(i + 2).

• If we had local variables other than parameters, they would be at
negative offsets from $fp.
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Passing Static Links (I)

• When using static links, the link can be treated as a parameter.

• In the Pyth runtime, for example, a function value consists of a code
address followed by a static link.

• So, if we have a function-valued variable at, say, offset -8 from
frame pointer, can call it with

lw $t1, -8($fp) # Fetch address of code
lw $t2, -4($fp) # Fetch static link
push $t2 # And pass as first parameter
jalr $t1 # Jump to address in $t1.
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Accessing Non-Local Variables

• In program on left, how does f3 access x1?

• f3 will have been passed a static link as its first parameter.

• The static link passed to f3 will be f2’s frame pointer

def f1 (x1):

def f2 (x2):

def f3 (x3):

... x1 ...

...

f3 (12)

...

f2 (9)

lw $t, 8($fp) # Fetch FP for f2
lw $t, 8($t) # Fetch FP for f1
lw $a0, 12($t) # Fetch x1

• In general, for a function at nesting level n to access a variable at
nesting level m < n, perform n − m loads of static links.
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Passing Static Links (II)

• In previous example, how do we call f2 from f3? f3 from f2? f2
from f3?

def f1 (x1):

def f2 (x2):

def f3 (x3):

... f2 (9) ...

...

f3 (12)

f2 (10) # (recursively)

...

To get static link for f2(9):
lw $t 8($fp) # Fetch FP for f2
lw $t 8($t) # Fetch FP for f1
push $t # Push static link

To get static link for f3 (12):
push $fp # f2’s FP is static link

To get static link for f2(10):
lw $t 8($fp)
push $t

• Could create a function value, and call as in previous slide.

• Can do better. Functions and their nesting levels are known.

• If in a function at nesting level n, calling another at known nesting
level m ≤ n + 1, get correct static link in $t with:

– Set $t to $fp.

– Perform ‘lw $t, 8($t)’ n − m + 1 times.
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