
The Activation Record (AR)

[Notes adapted from R. Bodik]

• Code for function calls and function definitions depends on the lay-
out of the activation record

• Very simple AR suffices for this language:

– The result is always in the accumulator; no need to store the
result in the AR.

– The activation record of the caller holds actual parameters just
below callee’s AR.

∗ For f(x1,. . . ,xn), push xn,. . . ,x1 on the stack
∗ These are the only variables in this language

– AR must also save return address.

Last modified: Wed Nov 8 10:52:12 2006 CS164: Lecture #33 1

The Frame Pointer

• The stack discipline guarantees that on function exit $sp is the same
as it was on function entry.

• No need to save $sp

• But it’s handy to have a pointer to start of the current AR.

– Lives in register $fp (frame pointer)

– Useful for giving addresses of variables and parameters fixed
offsets while manipulating $sp.

Last modified: Wed Nov 8 10:52:12 2006 CS164: Lecture #33 2

Layout of Frame

• For our simple language, if h calls g, which calls f(x,y), then

– g’s AR will contain x and y,

– f’s AR will contain return address (back to g) and g’s frame pointer.

RA to h

h’s FP
SP, FP

RA to h

h’s FP
FP

y

x
SP

RA to h

h’s FP

y

x

RA to g

g’s FP
SP, FP

g’s
frame

f’s
frame

Before f(x,y) &
After f(x,y)

Before call f &
After return

During call

⇐⇒ ⇐⇒

Last modified: Wed Nov 8 10:52:12 2006 CS164: Lecture #33 3

Basic Tools for Calling

• The calling sequence is the instructions to set up a function invoca-
tion and restore state on return.

• The function prologue is the code in the function definition that
sets up the AR.

• The function epilogue is the code in the function that returns and
deletes the activation record.

• Most machines have special instructions for calls:

– On MIPS, jal LABEL, jumps to LABEL and saves address of next
instruction after the jal in $ra.

– On ia32, the return address is stored on the stack by the call
LABEL instruction

• And returns:

– On MIPS, jr REG jumps to address in REG.

– On ia32, ret pops return address from stack and goes there.

Last modified: Wed Nov 8 10:52:12 2006 CS164: Lecture #33 4

Code Generation Strategy for Call

cgen (f(e1, . . . , en)):
cgen (en) # Evaluate and push
push $acc # parameters in reverse
. . .
cgen (e1)
push $acc
jal f # Jump to f and save return
addiu $sp, $sp, 4*n # Pop parameters from stack

Last modified: Wed Nov 8 10:52:12 2006 CS164: Lecture #33 5

Code Generation for Function Prologue and Epilogue

cgen (def f(x1, . . . , xn) = e) =
push $ra # Save return address
push $fp # Save frame pointer
move $fp, $sp # Set new frame pointer
cgen (e)
lw $ra, 8($fp) # Restore return address
lw $fp, 4($fp) # Restore frame pointer
addiu $sp, $fp, 8 # Restore the stack pointer
jr $ra # And return to caller

Last modified: Wed Nov 8 10:52:12 2006 CS164: Lecture #33 6

IA32 Version of Function Prologue and Epilogue

The last slide not a typical MIPS sequence: biased to look like the ia32:

cgen (def f(x1, . . . , xn) = e) =
(Call instruction has already
pushed return address.)

pushl %ebp # Save frame pointer
movl %esp,%ebp # Set new frame pointer
cgen (e)
leave # Pop frame pointer from stack.
ret # Pop return address and return

Last modified: Wed Nov 8 10:52:12 2006 CS164: Lecture #33 7

Code Generation for Local Variables

• Local variables are stored on the stack (thus not at fixed location).

• One possibility: access relative to the stack pointer.

– Problem: stack pointer changes in strategy we’ve been using for
cgen.

• Solution: use frame pointer, which is constant over execution of
function.

• For simple language, use fact that parameter i is at location
$fp + 4(i + 2):

– cgen (xi) = lw $a0, K($fp), where K = 4(i + 2).

• If we had local variables other than parameters, they would be at
negative offsets from $fp.

Last modified: Wed Nov 8 10:52:12 2006 CS164: Lecture #33 8

Passing Static Links (I)

• When using static links, the link can be treated as a parameter.

• In the Pyth runtime, for example, a function value consists of a code
address followed by a static link.

• So, if we have a function-valued variable at, say, offset -8 from
frame pointer, can call it with

lw $t1, -8($fp) # Fetch address of code
lw $t2, -4($fp) # Fetch static link
push $t2 # And pass as first parameter
jalr $t1 # Jump to address in $t1.

Last modified: Wed Nov 8 10:52:12 2006 CS164: Lecture #33 9

Accessing Non-Local Variables

• In program on left, how does f3 access x1?

• f3 will have been passed a static link as its first parameter.

• The static link passed to f3 will be f2’s frame pointer

def f1 (x1):

def f2 (x2):

def f3 (x3):

... x1 ...

...

f3 (12)

...

f2 (9)

lw $t, 8($fp) # Fetch FP for f2
lw $t, 8($t) # Fetch FP for f1
lw $a0, 12($t) # Fetch x1

• In general, for a function at nesting level n to access a variable at
nesting level m < n, perform n − m loads of static links.

Last modified: Wed Nov 8 10:52:12 2006 CS164: Lecture #33 10

Passing Static Links (II)

• In previous example, how do we call f2 from f3? f3 from f2? f2
from f3?

def f1 (x1):

def f2 (x2):

def f3 (x3):

... f2 (9) ...

...

f3 (12)

f2 (10) # (recursively)

...

To get static link for f2(9):
lw $t 8($fp) # Fetch FP for f2
lw $t 8($t) # Fetch FP for f1
push $t # Push static link

To get static link for f3 (12):
push $fp # f2’s FP is static link

To get static link for f2(10):
lw $t 8($fp)
push $t

• Could create a function value, and call as in previous slide.

• Can do better. Functions and their nesting levels are known.

• If in a function at nesting level n, calling another at known nesting
level m ≤ n + 1, get correct static link in $t with:

– Set $t to $fp.

– Perform ‘lw $t, 8($t)’ n − m + 1 times.

Last modified: Wed Nov 8 10:52:12 2006 CS164: Lecture #33 11

	The Activation Record (AR)
	The Frame Pointer
	Layout of Frame
	Basic Tools for Calling
	Code Generation Strategy for Call
	Code Generation for Function Prologue and Epilogue
	IA32 Version of Function Prologue and Epilogue
	Code Generation for Local Variables
	Passing Static Links (I)
	Accessing Non-Local Variables
	Passing Static Links (II)

