Administrivia

e HW #5 online. Hand in with Subversion.

e Project #4 description online; files follow Real Soon.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 1

Storage Management

e Java has no means to free dynamic storage.

e However, when no expression in any thread can possibly be influ-
enced by or change an object, it might as well not exist:

IntList wasteful ()

{
IntList ¢ = new IntList (3, new IntList (4, null));

return c.tail;
// variable c now deallocated, so no way
// to get to first cell of list

}

e At this point, Java runtime, like Scheme's, recycles the object ¢
pointed to: garbage collection.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 2

Garbage Collection: Reference Counting

e Idea: Keep count of number of pointers to each object.

Y = X.tail;
Vi vi[]
Y
Xc| 1] F—={1] | FIEN X B HaF1EN
Y Y
[1]A] ——=1]B] FIEAN LA F—=1[B] —=1[C]\
X =Y
y y
Y Y
X O - 3 -1 X - 2 > 1
Y
1A 118 1[¢ 0[A ~[1]B S11CN] ete.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 3

Garbage Collection: Mark and Sweep

Roots

A B* C D* E* F G*
42\ D F A\ 7161|D C B

e Start at roots (named variables, static and on stack)

e Perform graph traversal to find and mark all reachable storage.

e Sweep over memory, adding all unmarked storage to free list.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 4

Garbage Collection: Mark and Sweep

Roots

A B* C D* E* F G*
42\ D F A\ 7161|D C B

e Start at roots (named variables, static and on stack)

e Perform graph traversal to find and mark all reachable storage.

e Sweep over memory, adding all unmarked storage to free list.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 4

Garbage Collection: Mark and Sweep

Roots

A B* C D* E* F G*
42 D F|A 716|D C B

e Start at roots (named variables, static and on stack)
e Perform graph traversal to find and mark all reachable storage.

e Sweep over memory, adding all unmarked storage to free list.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 4

Garbage Collection: Mark and Sweep

Roots

A B* C D* E* F G*
42 D F|A 716|D C B

e Start at roots (named variables, static and on stack)
e Perform graph traversal to find and mark all reachable storage.

e Sweep over memory, adding all unmarked storage to free list.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 4

Garbage Collection: Mark and Sweep

Roots

A B* C D* E* F G*
42 D F|A 716|D C B

e Start at roots (named variables, static and on stack)
e Perform graph traversal to find and mark all reachable storage.

e Sweep over memory, adding all unmarked storage to free list.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 4

Garbage Collection: Mark and Sweep

Roots

A B* C D* E* F G*
42 D F|A 716|D C B

e Start at roots (named variables, static and on stack)
e Perform graph traversal to find and mark all reachable storage.

e Sweep over memory, adding all unmarked storage to free list.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 4

Garbage Collection: Mark and Sweep

Roots

A B* C D* E* F G*
42 D F|A 716|D C B

e Start at roots (named variables, static and on stack)
e Perform graph traversal to find and mark all reachable storage.

e Sweep over memory, adding all unmarked storage to free list.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 4

Garbage Collection: Mark and Sweep

Roots

=~
\D 2T

B* D* E* 6*
D < 7160 B

e Start at roots (named variables, static and on stack)
e Perform graph traversal to find and mark all reachable storage.

e Sweep over memory, adding all unmarked storage to free list.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 4

Copying Garbage Collection

e Copy (and move) only reachable (useful) storage from ‘from' space
to 'to’ space.

e The 'from' and 'to’ areas are called semispaces. Need twice the vir-
tual memory you actually use.

e As you copy, mark 'from’ storage as moved, and leave behind a for-
warding pointer that tells how to translate other references to the
old storage.

e At end of algorithm, 'from' and 'to' swap roles, and the old ‘from’
area is freed en masse.

e Copied storage is compacted (gaps squeezed out) with possible ad-
vantages for memory access.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 5

Copying Garbage Collection, Illustrated

Roots
A B C D E F G
B from:| 42 | D | 6 F A 7 G D C B
5
E
to:
Roots

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 6

Copying Garbage Collection, Illustrated

B’ from:

to:

Last modified: Mon Nov 13 14:40:48 2006

A B D E G
42 6| F | A 716 C B
’/l ' "//
D D
= b6 :
= — 42
i / \F
i | 7 | | —
E 3B’
(]

CS164: Lecture #33 6

Copying Garbage Collection, Illustrated

Roots
A B C D E F G
B’ from:| 42 G F A 7 G = C B
5 , ,
E B/ E D/
to: D' G D 7 G
Roots
5 E C A
5 | 42
3
(

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 6

Copying Garbage Collection, Illustrated

Roots

A B C D E F G
B’ from:| 42 G F A 7 G = C | - B
E B/ E D/ 6
to: D' | & D 7 G B
Roots
5 E C A
| 42

e e e

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 6

Copying Garbage Collection, Illustrated

Roots

A B C D E F G
B’ from:| 42 G F A 7 G = C | - B
E B / E e D ’// G L
to: D' | & D' 7 G B
Roots
5 E C A
| 42

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 6

Copying Garbage Collection, Illustrated

Roots

A B C D E F G
B’ from:| 42 G F A 7 G = C | - B
E B / E e D ’,f G -
to: D' | & D' 7 G B
Roots
5 E C A
| 42

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 6

Copying Garbage Collection, Illustrated

Roots

A B C D E F G
B’ from:| 42 G F A 7 G = Cc | .- B
E B, E D, 6 -
to: D| 6 | D 7 | G B
Roots

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 6

Copying Garbage Collection, Illustrated

Roots

A B C D E F G
B’ from:| 42 G F A 7 G = Cc | .- B
E B, E D, G -
to: D| 6 | D 7 | G B’
Roots

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 6

Copying Garbage Collection, Illustrated

Roots

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 6

Roots and Other Pointers

e Above methods require that we know locations of roots and of pointer
fields in objects.

e Positions of some roots change during execution.
e Compiler keeps tables mapping PC to where roots are.

e Runtime type information (virtual tables) keep information of where
pointer fields are.

e Implementation must guarantee that fields are initialized.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 7

Conservative Garbage Collection

e With C, you have none of the needed information.

e But easy to know the addresses of allocated storage, and sizes of
allocated objects (allocator keeps them around).

e So, guess that any word that looks like an address of allocated stor-
age is a valid address.

e Do mark-and-sweep on this assumption (look at whole stack and static
storage for roots).

e Marks some garbage, but can be surprisingly effective.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 8

Generational Garbage Collection

e Heap storage tends to “die young."

e So divide memory into young and old storage, and do copying only on
young storage.

e Must add old storage that points to young storage to roots.
e When young storage survives a GC (or two), move it to old storage.
e Every now and then, stop the world and do a full garbage collection.

e This technique significantly speeds up GC.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 9

Region-Based Allocation

e Garbage collection (all forms) does incur overheads, which can be
unpredictable,

e While manual freeing is prone to error and inconvenient.
e One compromise is region-based allocation.
e Idea:

- Create a data structure known as a region (or zone, or arena, or
various other names).
- Provides two operations: allocate object, and free all objects.
e Thus, to perform calculation that creates lots of temporary heap
objects,
- Create region (a local variable).
- Allocate all the temporary storage in this region.
- Delete whole region at end.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 10

Region Implementation

e Simple implementation: allocate storage in big blocks, and allocate
objects sequentially in the blocks.

e Freeing all blocks frees all the objects quickly.

aRegion: [-

Region Implementation

e Simple implementation: allocate storage in big blocks, and allocate
objects sequentially in the blocks.

e Freeing all blocks frees all the objects quickly.

aRegion: [

x = aRegion.alloc (40);

Region Implementation

e Simple implementation: allocate storage in big blocks, and allocate
objects sequentially in the blocks.

e Freeing all blocks frees all the objects quickly.

aRegion: [

x = aRegion.alloc (40);
y = aRegion.alloc (100);

Region Implementation

e Simple implementation: allocate storage in big blocks, and allocate
objects sequentially in the blocks.

e Freeing all blocks frees all the objects quickly.

aRegion: [

x = aRegion.alloc (40);
y = aRegion.alloc (100);
z = aRegion.alloc (120);

Region Implementation

e Simple implementation: allocate storage in big blocks, and allocate
objects sequentially in the blocks.

e Freeing all blocks frees all the objects quickly.

aRegion: [
x = aRegion.alloc (40);
y = aRegion.alloc (100);
z = aRegion.alloc (120);
v = aRegion.alloc (100);

Region Implementation

e Simple implementation: allocate storage in big blocks, and allocate
objects sequentially in the blocks.

e Freeing all blocks frees all the objects quickly.

aRegion: [
x = aRegion.alloc (40);
y = aRegion.alloc (100);
z = aRegion.alloc (120);
v = aRegion.alloc (100);
w = aRegion.alloc (50);

Region Implementation

e Simple implementation: allocate storage in big blocks, and allocate
objects sequentially in the blocks.

e Freeing all blocks frees all the objects quickly.

aRegion: []
x = aRegion.alloc (40);
y = aRegion.alloc (100);
z = aRegion.alloc (120);
v = aRegion.alloc (100);
w = aRegion.alloc (50);

aRegion.freeAll ();

Region Implementation

e Simple implementation: allocate storage in big blocks, and allocate
objects sequentially in the blocks.

e Freeing all blocks frees all the objects quickly.

= aRegion.alloc (40);

= aRegion.alloc (100);
aRegion.alloc (120);
= aRegion.alloc (100);
= aRegion.alloc (50);

aRegion.freeAll ();

= < N< ™
I

e Potential problem: using x, vy, z, ...after freeAll.

Last modified: Mon Nov 13 14:40:48 2006 CS164: Lecture #33 11

	Administrivia
	Storage Management
	Garbage Collection: Reference Counting
	Garbage Collection: Mark and Sweep
	Copying Garbage Collection
	Copying Garbage Collection, Illustrated
	Roots and Other Pointers
	Conservative Garbage Collection
	Generational Garbage Collection
	Region-Based Allocation
	Region Implementation

