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Intermediate Code. Local Optimizations

Lecture 35
(Adapted from notes by R. Bodik and G. Necula)
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Lecture Outline

• Intermediate code

• Local optimizations

• Next time: global optimizations
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Code Generation Summary

• We have discussed
– Runtime organization
– Simple stack machine code generation
– Improvements to stack machine code generation

• Our compiler goes directly from AST to
assembly language
– And does not perform optimizations

• Most real compilers use intermediate
languages
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Why Intermediate Languages ?

• When to perform optimizations
– On AST

• Pro: Machine independent
• Cons: Too high level

– On assembly language
• Pro: Exposes optimization opportunities
• Cons: Machine dependent
• Cons: Must reimplement optimizations when retargetting

– On an intermediate language
• Pro: Machine independent
• Pro: Exposes optimization opportunities
• Cons: One more language to worry about
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Intermediate Languages

• Each compiler uses its own intermediate
language
– IL design is still an active area of research

• Intermediate language = high-level assembly
language
– Uses register names, but has an unlimited number
– Uses control structures like assembly language
– Uses opcodes but some are higher level

• E.g., push translates to several assembly instructions
• Most opcodes correspond directly to assembly opcodes
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Three-Address Intermediate Code

• Each instruction is of the form
                         x := y op z

– y and z can be only registers or constants
– Just like assembly

• Common form of intermediate code
• The AST expression x + y * z is translated as

                     t1 := y * z
                     t2 := x + t1
– Each subexpression has a “home” in a temporary
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Generating Intermediate Code

• Similar to assembly code generation
• Major difference

– Use any number of IL registers to hold
intermediate results
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Generating Intermediate Code (Cont.)

• Igen(e, t) function generates code to compute
the value of e in register t

• Example:
igen(e1 + e2, t) =
      igen(e1, t1)             (t1 is a fresh register)
      igen(e2, t2)            (t2 is a fresh register)
      t := t1 + t2

• Unlimited number of registers
                ⇒ simple code generation
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Intermediate Code. Notes

• Intermediate code is discussed in Ch. 8
– Required reading

• You should be able to manipulate intermediate
code
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An Intermediate Language

P → S P | ε
S → id := id op id
     | id := op id
     | id := id
     | push id
     | id := pop
     | if id relop id goto L
     | L:
     | jump L

• id’s are register names
• Constants can replace id’s
• Typical operators: +, -, *
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Definition. Basic Blocks

• A basic block is a maximal sequence of
instructions with:
– no labels (except at the first instruction), and
– no jumps (except in the last instruction)

• Idea:
– Cannot jump in a basic block (except at beginning)
– Cannot jump out of a basic block (except at end)
– Each instruction in a basic block is executed after

all the preceding instructions have been executed
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Basic Block Example

• Consider the basic block
1. L:
2.    t := 2 * x
3.    w := t + x
4.    if w > 0 goto L’

• No way for (3) to be executed without (2)
having been executed right before
– We can change (3) to w := 3 * x
– Can we eliminate (2) as well?
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Definition. Control-Flow Graphs

• A control-flow graph is a directed graph with
– Basic blocks as nodes
– An edge from block A to block B if the execution

can flow from the last instruction in A to the first
instruction in B

– E.g., the last instruction in A is jump LB

– E.g., the execution can fall-through from block A to
block B

• Frequently abbreviated as CFG
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Control-Flow Graphs. Example.

• The body of a method (or
procedure) can be
represented as a control-
flow graph

• There is one initial node
• All “return” nodes are

terminal

x := 1
i := 1

L:
  x := x * x
  i := i + 1
  if i < 10 goto L
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Optimization Overview

• Optimization seeks to improve a program’s
utilization of some resource
– Execution time (most often)
– Code size
– Network messages sent
– Battery power used, etc.

• Optimization should not alter what the
program computes
– The answer must still be the same
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A Classification of Optimizations

• For languages like C and Cool there are three
granularities of optimizations
1. Local optimizations

• Apply to a basic block in isolation
2. Global optimizations

• Apply to a control-flow graph (method body) in isolation
3. Inter-procedural optimizations

• Apply across method boundaries

• Most compilers do (1), many do (2) and very
few do (3)
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Cost of Optimizations

• In practice, a conscious decision is made not
to implement the fanciest optimization known

• Why?
– Some optimizations are hard to implement
– Some optimizations are costly in terms of

compilation time
– The fancy optimizations are both hard and costly

• The goal: maximum improvement with minimum
of cost
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Local Optimizations

• The simplest form of optimizations
• No need to analyze the whole procedure body

– Just the basic block in question

• Example: algebraic simplification
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Algebraic Simplification

• Some statements can be deleted
x := x + 0
x := x * 1

• Some statements can be simplified
       x := x * 0          ⇒   x := 0
       y := y ** 2        ⇒   y := y * y
       x := x * 8          ⇒   x := x << 3
       x := x * 15         ⇒  t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!)
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Constant Folding

• Operations on constants can be computed at
compile time

• In general, if there is a statement
                     x := y op z
– And y and z are constants
– Then y op z can be computed at compile time

• Example: x := 2 + 2  ⇒ x := 4
• Example: if 2 < 0 jump L can be deleted
• When might constant folding be dangerous?
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Flow of Control Optimizations

• Eliminating unreachable code:
– Code that is unreachable in the control-flow graph
– Basic blocks that are not the target of any jump or

“fall through” from a conditional
– Such basic blocks can be eliminated

• Why would such basic blocks occur?
• Removing unreachable code makes the program

smaller
– And sometimes also faster

• Due to memory cache effects (increased spatial locality)
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Single Assignment Form

• Some optimizations are simplified if each
assignment is to a temporary that has not
appeared already in the basic block

• Intermediate code can be rewritten to be in
single assignment form
x := a + y                        x := a + y
a := x               ⇒           a1 := x
x := a * x                        x1 := a1 * x
b := x + a                        b := x1 + a1
             (x1 and a1 are fresh temporaries)
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Common Subexpression Elimination

• Assume
– Basic block is in single assignment form

• All assignments with same rhs compute the
same value

• Example:
x := y + z                              x := y + z
…                             ⇒         …
w := y + z                             w := x

• Why is single assignment important here?
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Copy Propagation

• If w := x appears in a block, all subsequent uses of w
can be replaced with uses of x

• Example:
      b := z + y                           b := z + y
      a := b                   ⇒          a := b
      x := 2 * a                           x := 2 * b

• This does not make the program smaller or faster but
might enable other optimizations
– Constant folding
– Dead code elimination

• Again, single assignment is important here.
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Copy Propagation and Constant Folding

• Example:
a := 5                                a := 5
x := 2 * a         ⇒              x := 10
y := x + 6                           y := 16
t := x * y                           t := x << 4
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Dead Code Elimination

If
w := rhs appears in a basic block
w does not appear anywhere else in the program

Then
the statement w := rhs is dead and can be eliminated
– Dead = does not contribute to the program’s result

Example:  (a is not used anywhere else)
x := z + y             b := z + y                  b := z + y
a := x          ⇒     a := b              ⇒       x := 2 * b
x := 2 * a            x := 2 * b
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Applying Local Optimizations

• Each local optimization does very little by
itself

• Typically optimizations interact
– Performing one optimizations enables other opt.

• Typical optimizing compilers repeatedly
perform optimizations until no improvement is
possible
– The optimizer can also be stopped at any time to

limit the compilation time
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An Example

• Initial code:
                a := x ** 2
                b := 3
                c := x
                d := c * c
                e := b * 2
                f := a + d
                g := e * f
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An Example

• Algebraic optimization:
                a := x ** 2
                b := 3
                c := x
                d := c * c
                e := b * 2
                f := a + d
                g := e * f
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An Example

• Algebraic optimization:
                a := x * x
                b := 3
                c := x
                d := c * c
                e := b + b
                f := a + d
                g := e * f
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An Example

• Copy propagation:
                a := x * x
                b := 3
                c := x
                d := c * c
                e := b + b
                f := a + d
                g := e * f
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An Example

• Copy propagation:
                a := x * x
                b := 3
                c := x
                d := x * x
                e := 3 + 3
                f := a + d
                g := e * f
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An Example

• Constant folding:
                a := x * x
                b := 3
                c := x
                d := x * x
                e := 3 + 3
                f := a + d
                g := e * f
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An Example

• Constant folding:
                a := x * x
                b := 3
                c := x
                d := x * x
                e := 6
                f := a + d
                g := e * f



11/29/06 Prof. Hilfinger  CS 164  Lecture 35 35

An Example

• Common subexpression elimination:
                a := x * x
                b := 3
                c := x
                d := x * x
                e := 6
                f := a + d
                g := e * f
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An Example

• Common subexpression elimination:
                a := x * x
                b := 3
                c := x
                d := a
                e := 6
                f := a + d
                g := e * f
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An Example

• Copy propagation:
                a := x * x
                b := 3
                c := x
                d := a
                e := 6
                f := a + d
                g := e * f
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An Example

• Copy propagation:
                a := x * x
                b := 3
                c := x
                d := a
                e := 6
                f := a + a
                g := 6 * f
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An Example

• Dead code elimination:
                a := x * x
                b := 3
                c := x
                d := a
                e := 6
                f := a + a
                g := 6 * f
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An Example

• Dead code elimination:
                a := x * x

                f := a + a
                g := 6 * f

• This is the final form
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Peephole Optimizations on Assembly Code

• The optimizations presented before work on
intermediate code
– They are target independent
– But they can be applied on assembly language also

• Peephole optimization is an effective
technique for improving assembly code
– The “peephole” is a short sequence of (usually

contiguous) instructions
– The optimizer replaces the sequence with another

equivalent (but faster) one
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Peephole Optimizations (Cont.)

• Write peephole optimizations as replacement
rules
                     i1, …, in → j1, …, jm

where the rhs is the improved version of the lhs
• Example:

       move $a $b, move $b $a → move $a $b
– Works if move $b $a is not the target of a jump

• Another example
addiu $a $a i, addiu $a $a j → addiu $a $a i+j
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Peephole Optimizations (Cont.)

• Many (but not all) of the basic block
optimizations can be cast as peephole
optimizations
– Example: addiu $a $b 0  → move $a $b
– Example: move $a $a       →
– These two together eliminate addiu $a $a 0

• Just like for local optimizations, peephole
optimizations need to be applied repeatedly to
get maximum effect
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Local Optimizations. Notes.

• Intermediate code is helpful for many
optimizations

• Many simple optimizations can still be applied
on assembly language

• “Program optimization” is grossly misnamed
– Code produced by “optimizers” is not optimal in any

reasonable sense
– “Program improvement” is a more appropriate term

• Next: global optimizations


