
11/29/06 Prof. Hilfinger CS 164 Lecture 35 1

Intermediate Code. Local Optimizations

Lecture 35
(Adapted from notes by R. Bodik and G. Necula)

11/29/06 Prof. Hilfinger CS 164 Lecture 35 2

Lecture Outline

• Intermediate code

• Local optimizations

• Next time: global optimizations

11/29/06 Prof. Hilfinger CS 164 Lecture 35 3

Code Generation Summary

• We have discussed
– Runtime organization
– Simple stack machine code generation
– Improvements to stack machine code generation

• Our compiler goes directly from AST to
assembly language
– And does not perform optimizations

• Most real compilers use intermediate
languages

11/29/06 Prof. Hilfinger CS 164 Lecture 35 4

Why Intermediate Languages ?

• When to perform optimizations
– On AST

• Pro: Machine independent
• Cons: Too high level

– On assembly language
• Pro: Exposes optimization opportunities
• Cons: Machine dependent
• Cons: Must reimplement optimizations when retargetting

– On an intermediate language
• Pro: Machine independent
• Pro: Exposes optimization opportunities
• Cons: One more language to worry about

11/29/06 Prof. Hilfinger CS 164 Lecture 35 5

Intermediate Languages

• Each compiler uses its own intermediate
language
– IL design is still an active area of research

• Intermediate language = high-level assembly
language
– Uses register names, but has an unlimited number
– Uses control structures like assembly language
– Uses opcodes but some are higher level

• E.g., push translates to several assembly instructions
• Most opcodes correspond directly to assembly opcodes

11/29/06 Prof. Hilfinger CS 164 Lecture 35 6

Three-Address Intermediate Code

• Each instruction is of the form
 x := y op z

– y and z can be only registers or constants
– Just like assembly

• Common form of intermediate code
• The AST expression x + y * z is translated as

 t1 := y * z
 t2 := x + t1
– Each subexpression has a “home” in a temporary

11/29/06 Prof. Hilfinger CS 164 Lecture 35 7

Generating Intermediate Code

• Similar to assembly code generation
• Major difference

– Use any number of IL registers to hold
intermediate results

11/29/06 Prof. Hilfinger CS 164 Lecture 35 8

Generating Intermediate Code (Cont.)

• Igen(e, t) function generates code to compute
the value of e in register t

• Example:
igen(e1 + e2, t) =
 igen(e1, t1) (t1 is a fresh register)
 igen(e2, t2) (t2 is a fresh register)
 t := t1 + t2

• Unlimited number of registers
 ⇒ simple code generation

11/29/06 Prof. Hilfinger CS 164 Lecture 35 9

Intermediate Code. Notes

• Intermediate code is discussed in Ch. 8
– Required reading

• You should be able to manipulate intermediate
code

11/29/06 Prof. Hilfinger CS 164 Lecture 35 10

An Intermediate Language

P → S P | ε
S → id := id op id
 | id := op id
 | id := id
 | push id
 | id := pop
 | if id relop id goto L
 | L:
 | jump L

• id’s are register names
• Constants can replace id’s
• Typical operators: +, -, *

11/29/06 Prof. Hilfinger CS 164 Lecture 35 11

Definition. Basic Blocks

• A basic block is a maximal sequence of
instructions with:
– no labels (except at the first instruction), and
– no jumps (except in the last instruction)

• Idea:
– Cannot jump in a basic block (except at beginning)
– Cannot jump out of a basic block (except at end)
– Each instruction in a basic block is executed after

all the preceding instructions have been executed

11/29/06 Prof. Hilfinger CS 164 Lecture 35 12

Basic Block Example

• Consider the basic block
1. L:
2. t := 2 * x
3. w := t + x
4. if w > 0 goto L’

• No way for (3) to be executed without (2)
having been executed right before
– We can change (3) to w := 3 * x
– Can we eliminate (2) as well?

11/29/06 Prof. Hilfinger CS 164 Lecture 35 13

Definition. Control-Flow Graphs

• A control-flow graph is a directed graph with
– Basic blocks as nodes
– An edge from block A to block B if the execution

can flow from the last instruction in A to the first
instruction in B

– E.g., the last instruction in A is jump LB

– E.g., the execution can fall-through from block A to
block B

• Frequently abbreviated as CFG

11/29/06 Prof. Hilfinger CS 164 Lecture 35 14

Control-Flow Graphs. Example.

• The body of a method (or
procedure) can be
represented as a control-
flow graph

• There is one initial node
• All “return” nodes are

terminal

x := 1
i := 1

L:
 x := x * x
 i := i + 1
 if i < 10 goto L

11/29/06 Prof. Hilfinger CS 164 Lecture 35 15

Optimization Overview

• Optimization seeks to improve a program’s
utilization of some resource
– Execution time (most often)
– Code size
– Network messages sent
– Battery power used, etc.

• Optimization should not alter what the
program computes
– The answer must still be the same

11/29/06 Prof. Hilfinger CS 164 Lecture 35 16

A Classification of Optimizations

• For languages like C and Cool there are three
granularities of optimizations
1. Local optimizations

• Apply to a basic block in isolation
2. Global optimizations

• Apply to a control-flow graph (method body) in isolation
3. Inter-procedural optimizations

• Apply across method boundaries

• Most compilers do (1), many do (2) and very
few do (3)

11/29/06 Prof. Hilfinger CS 164 Lecture 35 17

Cost of Optimizations

• In practice, a conscious decision is made not
to implement the fanciest optimization known

• Why?
– Some optimizations are hard to implement
– Some optimizations are costly in terms of

compilation time
– The fancy optimizations are both hard and costly

• The goal: maximum improvement with minimum
of cost

11/29/06 Prof. Hilfinger CS 164 Lecture 35 18

Local Optimizations

• The simplest form of optimizations
• No need to analyze the whole procedure body

– Just the basic block in question

• Example: algebraic simplification

11/29/06 Prof. Hilfinger CS 164 Lecture 35 19

Algebraic Simplification

• Some statements can be deleted
x := x + 0
x := x * 1

• Some statements can be simplified
 x := x * 0 ⇒ x := 0
 y := y ** 2 ⇒ y := y * y
 x := x * 8 ⇒ x := x << 3
 x := x * 15 ⇒ t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!)

11/29/06 Prof. Hilfinger CS 164 Lecture 35 20

Constant Folding

• Operations on constants can be computed at
compile time

• In general, if there is a statement
 x := y op z
– And y and z are constants
– Then y op z can be computed at compile time

• Example: x := 2 + 2 ⇒ x := 4
• Example: if 2 < 0 jump L can be deleted
• When might constant folding be dangerous?

11/29/06 Prof. Hilfinger CS 164 Lecture 35 21

Flow of Control Optimizations

• Eliminating unreachable code:
– Code that is unreachable in the control-flow graph
– Basic blocks that are not the target of any jump or

“fall through” from a conditional
– Such basic blocks can be eliminated

• Why would such basic blocks occur?
• Removing unreachable code makes the program

smaller
– And sometimes also faster

• Due to memory cache effects (increased spatial locality)

11/29/06 Prof. Hilfinger CS 164 Lecture 35 22

Single Assignment Form

• Some optimizations are simplified if each
assignment is to a temporary that has not
appeared already in the basic block

• Intermediate code can be rewritten to be in
single assignment form
x := a + y x := a + y
a := x ⇒ a1 := x
x := a * x x1 := a1 * x
b := x + a b := x1 + a1
 (x1 and a1 are fresh temporaries)

11/29/06 Prof. Hilfinger CS 164 Lecture 35 23

Common Subexpression Elimination

• Assume
– Basic block is in single assignment form

• All assignments with same rhs compute the
same value

• Example:
x := y + z x := y + z
… ⇒ …
w := y + z w := x

• Why is single assignment important here?

11/29/06 Prof. Hilfinger CS 164 Lecture 35 24

Copy Propagation

• If w := x appears in a block, all subsequent uses of w
can be replaced with uses of x

• Example:
 b := z + y b := z + y
 a := b ⇒ a := b
 x := 2 * a x := 2 * b

• This does not make the program smaller or faster but
might enable other optimizations
– Constant folding
– Dead code elimination

• Again, single assignment is important here.

11/29/06 Prof. Hilfinger CS 164 Lecture 35 25

Copy Propagation and Constant Folding

• Example:
a := 5 a := 5
x := 2 * a ⇒ x := 10
y := x + 6 y := 16
t := x * y t := x << 4

11/29/06 Prof. Hilfinger CS 164 Lecture 35 26

Dead Code Elimination

If
w := rhs appears in a basic block
w does not appear anywhere else in the program

Then
the statement w := rhs is dead and can be eliminated
– Dead = does not contribute to the program’s result

Example: (a is not used anywhere else)
x := z + y b := z + y b := z + y
a := x ⇒ a := b ⇒ x := 2 * b
x := 2 * a x := 2 * b

11/29/06 Prof. Hilfinger CS 164 Lecture 35 27

Applying Local Optimizations

• Each local optimization does very little by
itself

• Typically optimizations interact
– Performing one optimizations enables other opt.

• Typical optimizing compilers repeatedly
perform optimizations until no improvement is
possible
– The optimizer can also be stopped at any time to

limit the compilation time

11/29/06 Prof. Hilfinger CS 164 Lecture 35 28

An Example

• Initial code:
 a := x ** 2
 b := 3
 c := x
 d := c * c
 e := b * 2
 f := a + d
 g := e * f

11/29/06 Prof. Hilfinger CS 164 Lecture 35 29

An Example

• Algebraic optimization:
 a := x ** 2
 b := 3
 c := x
 d := c * c
 e := b * 2
 f := a + d
 g := e * f

11/29/06 Prof. Hilfinger CS 164 Lecture 35 30

An Example

• Algebraic optimization:
 a := x * x
 b := 3
 c := x
 d := c * c
 e := b + b
 f := a + d
 g := e * f

11/29/06 Prof. Hilfinger CS 164 Lecture 35 31

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := c * c
 e := b + b
 f := a + d
 g := e * f

11/29/06 Prof. Hilfinger CS 164 Lecture 35 32

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 + 3
 f := a + d
 g := e * f

11/29/06 Prof. Hilfinger CS 164 Lecture 35 33

An Example

• Constant folding:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 + 3
 f := a + d
 g := e * f

11/29/06 Prof. Hilfinger CS 164 Lecture 35 34

An Example

• Constant folding:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 6
 f := a + d
 g := e * f

11/29/06 Prof. Hilfinger CS 164 Lecture 35 35

An Example

• Common subexpression elimination:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 6
 f := a + d
 g := e * f

11/29/06 Prof. Hilfinger CS 164 Lecture 35 36

An Example

• Common subexpression elimination:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f

11/29/06 Prof. Hilfinger CS 164 Lecture 35 37

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f

11/29/06 Prof. Hilfinger CS 164 Lecture 35 38

An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f

11/29/06 Prof. Hilfinger CS 164 Lecture 35 39

An Example

• Dead code elimination:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f

11/29/06 Prof. Hilfinger CS 164 Lecture 35 40

An Example

• Dead code elimination:
 a := x * x

 f := a + a
 g := 6 * f

• This is the final form

11/29/06 Prof. Hilfinger CS 164 Lecture 35 41

Peephole Optimizations on Assembly Code

• The optimizations presented before work on
intermediate code
– They are target independent
– But they can be applied on assembly language also

• Peephole optimization is an effective
technique for improving assembly code
– The “peephole” is a short sequence of (usually

contiguous) instructions
– The optimizer replaces the sequence with another

equivalent (but faster) one

11/29/06 Prof. Hilfinger CS 164 Lecture 35 42

Peephole Optimizations (Cont.)

• Write peephole optimizations as replacement
rules
 i1, …, in → j1, …, jm

where the rhs is the improved version of the lhs
• Example:

 move $a $b, move $b $a → move $a $b
– Works if move $b $a is not the target of a jump

• Another example
addiu $a $a i, addiu $a $a j → addiu $a $a i+j

11/29/06 Prof. Hilfinger CS 164 Lecture 35 43

Peephole Optimizations (Cont.)

• Many (but not all) of the basic block
optimizations can be cast as peephole
optimizations
– Example: addiu $a $b 0 → move $a $b
– Example: move $a $a →
– These two together eliminate addiu $a $a 0

• Just like for local optimizations, peephole
optimizations need to be applied repeatedly to
get maximum effect

11/29/06 Prof. Hilfinger CS 164 Lecture 35 44

Local Optimizations. Notes.

• Intermediate code is helpful for many
optimizations

• Many simple optimizations can still be applied
on assembly language

• “Program optimization” is grossly misnamed
– Code produced by “optimizers” is not optimal in any

reasonable sense
– “Program improvement” is a more appropriate term

• Next: global optimizations

