Lecture 37 (From notes by R. Bodik & G. Necula)

11/29/06

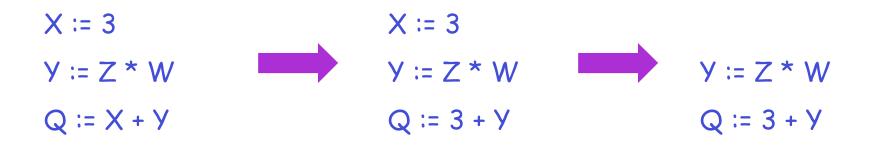
Lecture Outline

- Global flow analysis
- Global constant propagation
- Liveness analysis

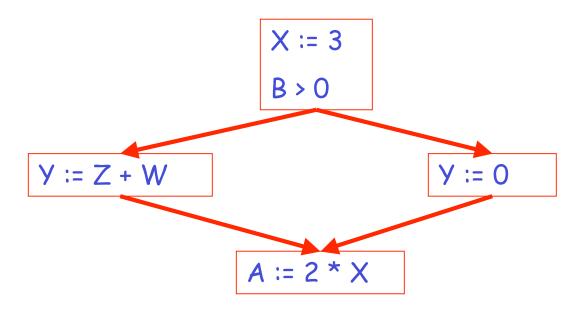
Local Optimization

Recall the simple basic-block optimizations

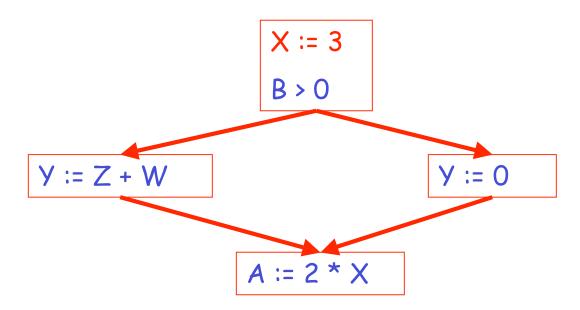
- Constant propagation
- Dead code elimination



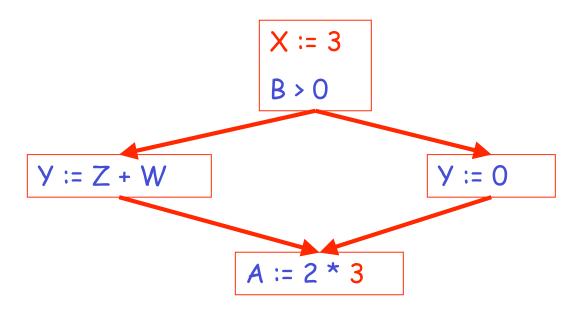
These optimizations can be extended to an entire control-flow graph



These optimizations can be extended to an entire control-flow graph

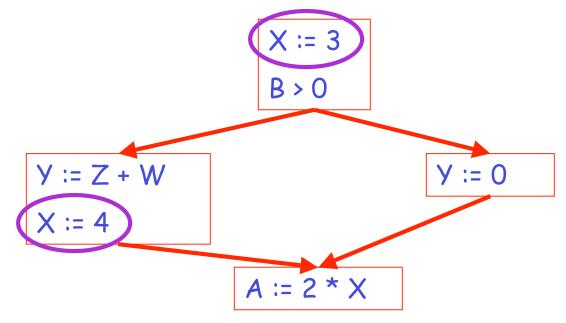


These optimizations can be extended to an entire control-flow graph



Correctness

- How do we know it is OK to globally propagate constants?
- There are situations where it is incorrect:

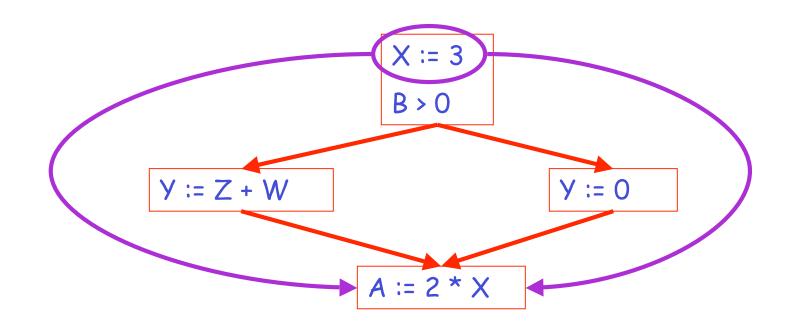


Correctness (Cont.)

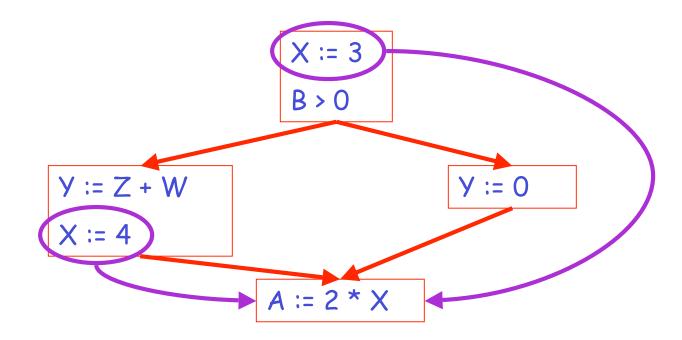
To replace a use of x by a constant k we must know that:

On every path to the use of x, the last assignment to x is x := k **

Example 1 Revisited



Example 2 Revisited



Discussion

- The correctness condition is not trivial to check
- "All paths" includes paths around loops and through branches of conditionals
- Checking the condition requires global analysis
 - An analysis of the entire control-flow graph for one method body

Global Analysis

Global optimization tasks share several traits:

- The optimization depends on knowing a property P at a particular point in program execution
- Proving P at any point requires knowledge of the entire method body
- Property P is typically undecidable !

Undecidability of Program Properties

- Rice's theorem: Most interesting dynamic properties of a program are undecidable:
 - Does the program halt on all (some) inputs?
 - This is called the halting problem
 - Is the result of a function F always positive?
 - Assume we can answer this question precisely
 - Take function H and find out if it halts by testing function $F(x) \{ H(x); return 1; \}$ whether it has positive result
- Syntactic properties are decidable !
 - E.g., How many occurrences of "×" are there?
- Theorem does not apply in absence of loops

Conservative Program Analyses

- So, we cannot tell for sure that "x" is always 3
 Then, how can we apply constant propagation?
- It is OK to be conservative. If the optimization requires P to be true, then want to know either
 - P is definitely true
 - Don't know if P is true or false
- It is always correct to say "don't know"
 - We try to say don't know as rarely as possible
- All program analyses are conservative

Global Analysis (Cont.)

- Global dataflow analysis is a standard technique for solving problems with these characteristics
- Global constant propagation is one example of an optimization that requires global dataflow analysis

Global Constant Propagation

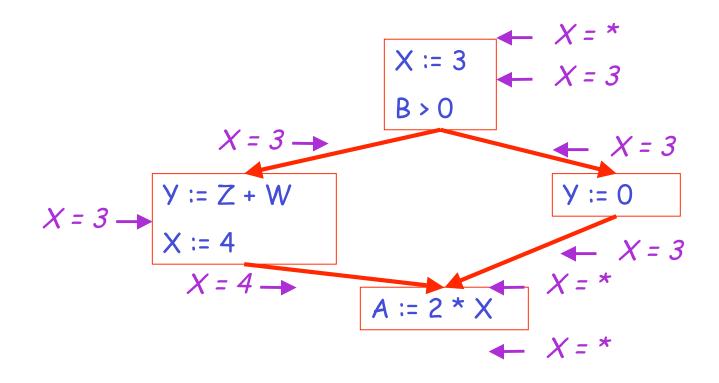
- Global constant propagation can be performed at any point where ** holds
- Consider the case of computing ** for a single variable X at all program points

Global Constant Propagation (Cont.)

 To make the problem precise, we associate one of the following values with X at every program point

value	interpretation
#	This statement is not reachable
С	X = constant c
*	Don't know if X is a constant

Example



Using the Information

- Given global constant information, it is easy to perform the optimization
 - Simply inspect the x = _ associated with a statement using x
 - If x is constant at that point replace that use of x by the constant
- But how do we compute the properties x = _

The Idea

The analysis of a complicated program can be expressed as a combination of simple rules relating the change in information between adjacent statements

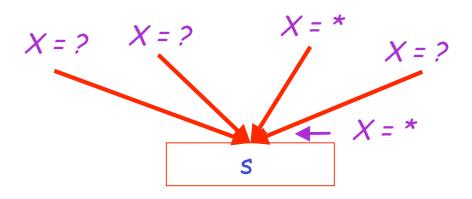
Explanation

- The idea is to "push" or "transfer" information from one statement to the next
- For each statement s, we compute information about the value of x immediately before and after s

$$C_{in}(x,s)$$
 = value of x before s
 $C_{out}(x,s)$ = value of x after s
(we care about values #, *, k)

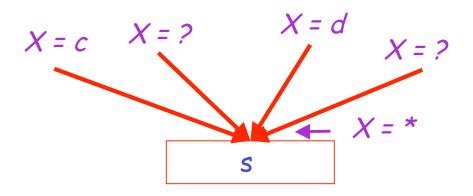
Transfer Functions

- Define a transfer function that transfers information from one statement to another
- In the following rules, let statement s have immediate predecessor statements p_1, \dots, p_n



if $C_{out}(x, p_i) = *$ for some i, then $C_{in}(x, s) = *$

11/29/06

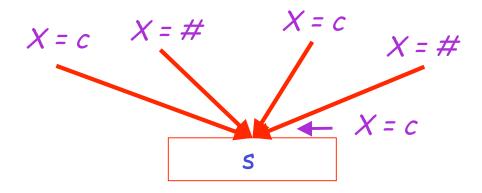


If $C_{out}(x, p_i) = c$ and $C_{out}(x, p_j) = d$ and $d \neq c$ then $C_{in}(x, s) = *$

11/29/06

Prof. Hilfinger CS164 Lecture 37

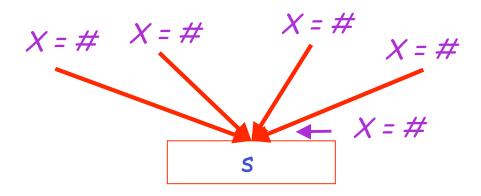
24



if
$$C_{out}(x, p_i) = c$$
 or # for all i,
then $C_{in}(x, s) = c$

Prof. Hilfinger CS164 Lecture 37

25



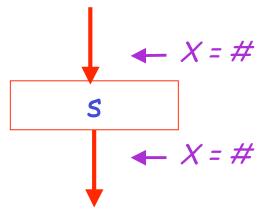
if
$$C_{out}(x, p_i) = #$$
 for all i,
then $C_{in}(x, s) = #$

Prof. Hilfinger CS164 Lecture 37

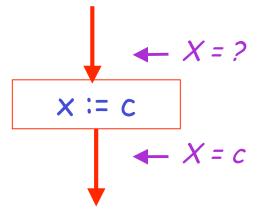
26

The Other Half

- Rules 1-4 relate the *out* of one statement to the *in* of the successor statement
 - they propagate information *forward* across CFG edges
- Now we need rules relating the *in* of a statement to the *out* of the same statement
 - to propagate information across statements

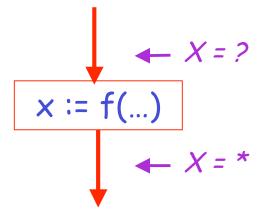


$$C_{out}(x, s) = #$$
 if $C_{in}(x, s) = #$

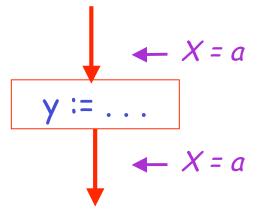


$C_{out}(x, x \coloneqq c) = c$ if c is a constant

11/29/06



$$C_{out}(x, x := f(...)) = *$$



$$C_{out}(x, y := ...) = C_{in}(x, y := ...)$$
 if $x \neq y$

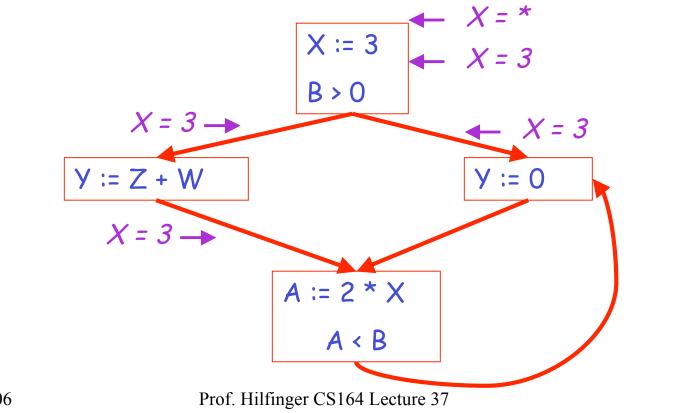
11/29/06

An Algorithm

- 1. For every entry s to the program, set $C_{in}(x, s) = *$
- 2. Set $C_{in}(x, s) = C_{out}(x, s) = #$ everywhere else
- 3. Repeat until all points satisfy 1-8: Pick s not satisfying 1-8 and update using the appropriate rule

The Value

To understand why we need #, look at a loop



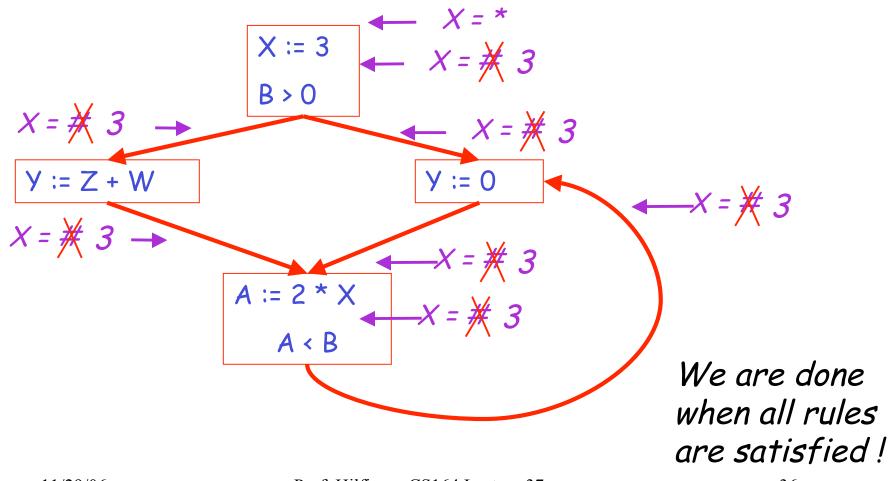
Discussion

- Consider the statement Y := 0
- To compute whether X is constant at this point, we need to know whether X is constant at the two predecessors
 - X := 3 - A := 2 * X
- But info for A := 2 * X depends on its predecessors, including Y := 0!

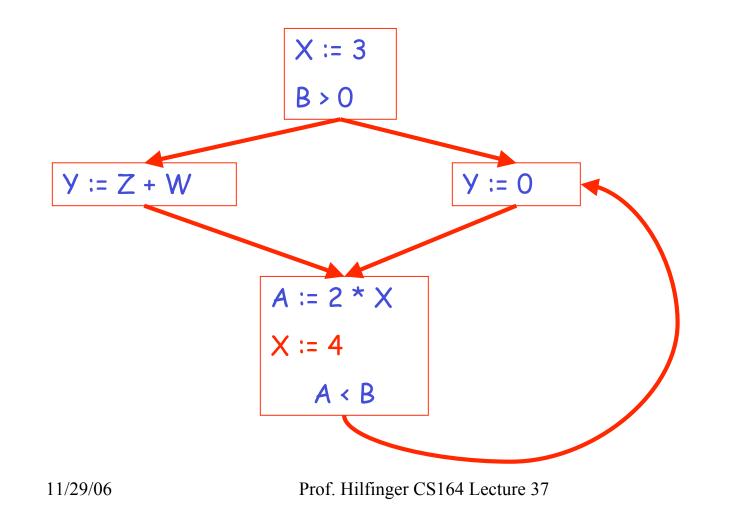
The Value # (Cont.)

- Because of cycles, all points must have values at all times
- Intuitively, assigning some initial value allows the analysis to break cycles
- The initial value # means "So far as we know, control never reaches this point"

Example

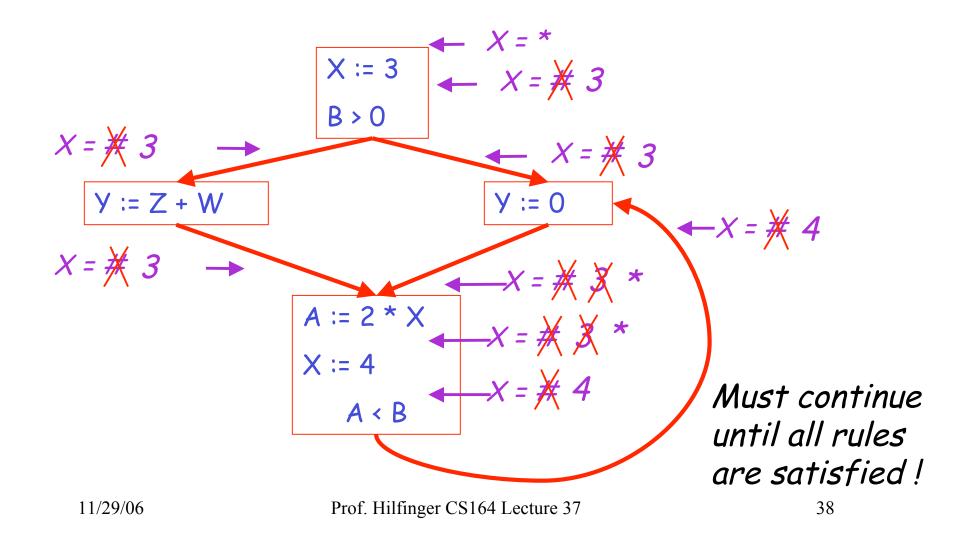


Another Example



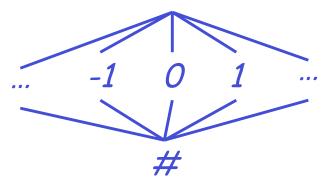
37

Another Example



Orderings

- We can simplify the presentation of the analysis by ordering the values
 # < c < *
- Drawing a picture with "smaller" values drawn lower, we get *



11/29/06

Orderings (Cont.)

- * is the largest value, # is the least
 - All constants are in between and incomparable
- Let *lub* be the least-upper bound in this ordering
- Rules 1-4 can be written using lub:
 C_{in}(x, s) = lub { C_{out}(x, p) | p is a predecessor of s }

Termination

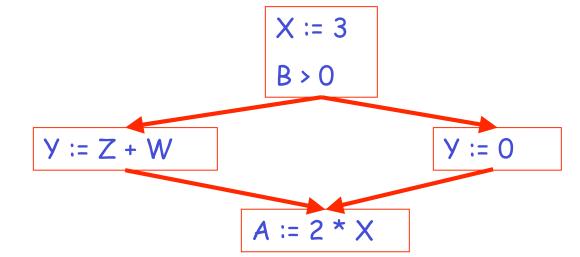
- Simply saying "repeat until nothing changes" doesn't guarantee that eventually nothing changes
- The use of lub explains why the algorithm terminates
 - Values start as # and only *increase*
 - # can change to a constant, and a constant to *
 - Thus, C_(x, s) can change at most twice

Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps = Number of C_(....) values computed * 2 = Number of program statements * 4 Liveness Analysis

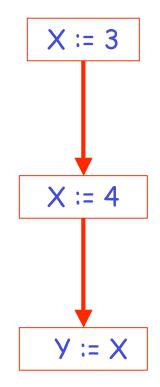
Once constants have been globally propagated, we would like to eliminate dead code



After constant propagation, X := 3 is dead (assuming this is the entire CFG)

Live and Dead

- The first value of x is dead (never used)
- The second value of x is live (may be used)



Liveness

A variable x is *live at statement s* if

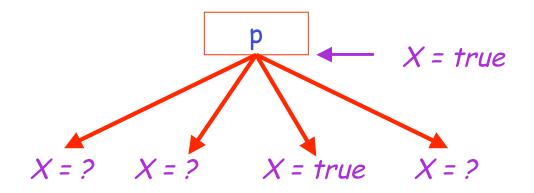
- There exists a statement s' that uses x
- There is a path from s to s'
- That path has no intervening assignment to x

Global Dead Code Elimination

- A statement x := ... is dead code if x is dead after the assignment
- Dead statements can be deleted from the program
- But we need liveness information first . . .

Computing Liveness

- We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation
- Liveness is simpler than constant propagation, since it is a boolean property (true or false)

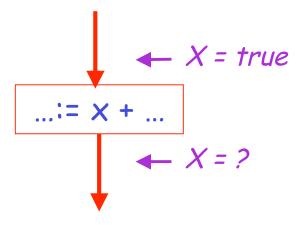


$L_{out}(x, p) = v \{ L_{in}(x, s) \mid s \text{ a successor of } p \}$

11/29/06

Prof. Hilfinger CS164 Lecture 37

48

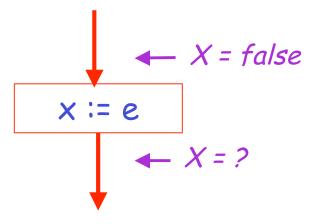


$L_{in}(x, s) = true$ if s refers to x on the rhs

11/29/06

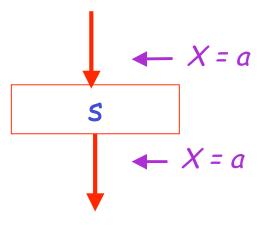
Prof. Hilfinger CS164 Lecture 37

49



L_{in}(x, x := e) = false if e does not refer to x

11/29/06



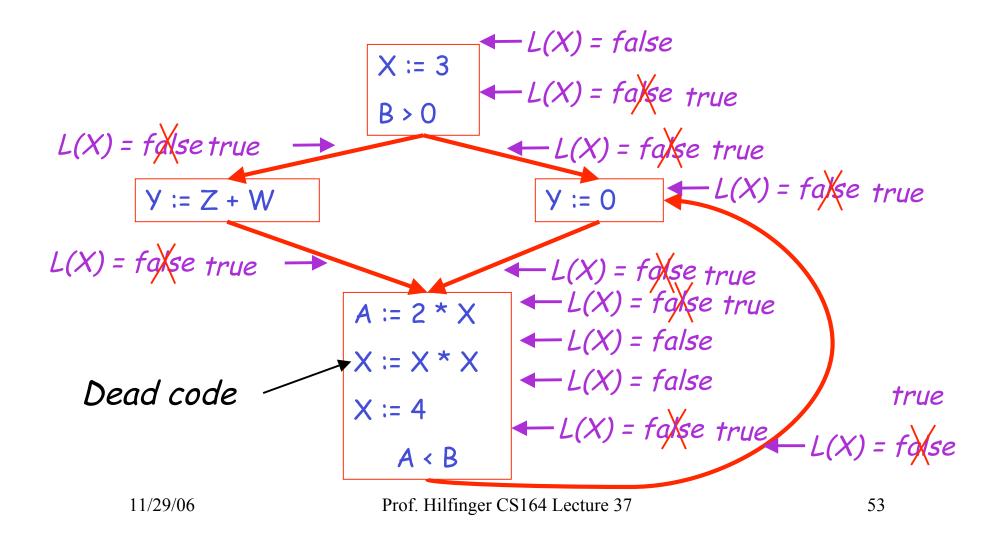
$L_{in}(x, s) = L_{out}(x, s)$ if s does not refer to x

11/29/06

Algorithm

- 1. Let all L_(...) = false initially
- 2. Repeat until all statements s satisfy rules 1-4 Pick s where one of 1-4 does not hold and update using the appropriate rule

Another Example



Termination

- A value can change from false to true, but not the other way around
- Each value can change only once, so termination is guaranteed
- Once the analysis is computed, it is simple to eliminate dead code

Forward vs. Backward Analysis

We've seen two kinds of analysis:

Constant propagation is a *forwards* analysis: information is pushed from inputs to outputs

Liveness is a *backwards* analysis: information is pushed from outputs back towards inputs

Analysis

- There are many other global flow analyses
- Most can be classified as either forward or backward
- Most also follow the methodology of local rules relating information between adjacent program points