Language Security

Lecture 40
(from notes by 6. Necula)
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Lecture Outline

» Beyond compilers

- Looking at other issues in programming language
design and tools

- C
- Arrays
- Exploiting buffer overruns
- Detecting buffer overruns
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Platitudes

» Language design has influence on
- Efficiency

- Safety

- Security
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C Design Principles

- Small language
* Maximum efficiency
+ Safety less important

» Designed for the world as it was in 1972
- Weak machines
- Superhuman programmers (or so they thought)
- Trusted networks
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Arrays in C

char buffer[100];

Declares and allocates an array of 100 chars
0 1 2 99

e ]00 *sizeof(char) — =———
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C Array Operations

char buf1[100], buf2[100];

Whrite:
buf1[0] = 'a’;

Read:
return buf2[0];
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What's Wrong with this Picture?

Int 1,

for(i = O; bufl[i]!= "\O’; i++) {
buf2[i] = bufl[i];

}

buf2[i] = "\O’;
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Indexing Out of Bounds

The following are all well-typed C and may
generate no run-time errors

char buffer[100];

buffer[-1] = 'a’;
buffer[100] = 'a’;
buffer[100000] = 'a’;
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Why?

 Why does C allow out-of-bounds array
references?

- Proving at compile-time that all array references
are in bounds is impossible in most languages

- Checking at run-time that all array references are
in bounds is "expensive”
* But it is even more expensive to skip the checks
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Code Generation for Arrays

- The C code:

bufl[i]=1; /* bufl has type int[]*/

» The assembly code:

Regular C

r1 = &bufl;
r2 = load i;
r3=r2* 4,

r4=rl+r3
store r4, 1

C with bounds checks
rl1 = &bufl;

r2 = load i;

r3=r2* 4,

if r3 < 0 then error;
rb = load limit of bufl;
if r3 >= r5 then error;
r4 =rl+r3

store r4, 1
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array limits
is non-trivial
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C vs. Java

- C array reference typical case
- Offset calculation
- Memory operation (load or store)

- Java array reference typical case
- Offset calculation
- Memory operation (load or store)
- Array bounds check
- Type compatibility check (for some arrays)
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Buffer Overruns

* A buffer overrun writes past the end of an
array

* Buffer usually refers to a C array of char
- But can be any array

*+ So who's afraid of a buffer overrun?
- Can cause a core dump
- Can damage data structures
- What else?
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Stack Smashing

Buffer overruns can alter the control flow of
your program!

char buffer[100]; /* stack allocated array */

0o 1 2 99 return address

~t——  ]00 *sizeof(char) ==
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An Overrun Vulnerability

void foo(char in[]) {
char buffer[100];
inti=0;
for(i = 0; in[i] 1= "\O'; i++)
{ buffer[i]l=in[i]; }
buffer[i] = '\O’;
}
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An Interesting Idea

char in[104]={"",..," ", magic 4 chars }
foo(in);, (**)

foo entry
0o 1 2 99 return address
‘ (x—* )
st 00 *sizeof(char) =
foo exit
0o 1 2 99 return address

magic 4 chars
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Discussion

* So we can make foo jump wherever we like.
* How is this possible?

» Unanticipated interaction of two features:
- Unchecked array operations

- Stack-allocated arrays and return addresses

* Knowledge of frame layout allows prediction of where
array and return address are stored

- Note the "magic cast” from char's to an address
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The Rest of the Story

» Say that foo is part of a hetwork server and
the in originates in a received message

- Some remote user can make foo jump anywhere |

* But where is a "useful” place to jump?

- Idea: Jump to some code that gives you control of
the host system (e.g. code that spawns a shell)

* But where to put such code?

- Idea: Put the code in the same buffer and jump
therel
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The Plan

+ We'll make the code jump to the following
code:

+ In C: exec("/bin/sh");
* In assembly (pretend):

mov $a0, 15 ; load the syscall code for “"exec”
mov $al, &Ldata ; load the command
syscall ; make the system call

Ldata: byte /)b i''n'}/"/s' /A0 ; null-terminated
* In machine code: 0x20, 0x42, 0x00, ...
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The Plan

char in[104] = { 104 magic chars }
foo(in);

foo exit
0o 1 2 99 return address
Ox20, Ox42, Ox00, ...

* The last 4 bytes in "in" must equal the start of buffer
» I'ts position might depend on many factors |

Prof. Hilfinger CS 164 Lecture 40 19



Guess the Location of the Injected Code

+ Trial & error: gives you a ballpark

» Then pad the injected code with NOP
- E.g. add $0, $1, 0x2020

- stores result in $0 which is hardwired to O anyway

* Encoded as 0x20202020
foo exit o
o 1 2 99  return address
| 0x20, .., 0x20, 0x20, 0x42, Ox00, .
N ~ 4
The bad code

* Works even with an approximate address of buffer |
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More Problems

We do not know exactly where the return address is

- Depends on how the compiler chose to allocate variables in
the stack frame

Solution: pad the buffer at the end with many copies
of the "magic return address X"

foo exit o
0 1 2 99
0x20, ..., Ox20, 0x20, Ox42, Ox00, ..., X, X, X, X, ..} X, ' X, ..
h e ” retfurn
The bad code address
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Even More Problems

»+ The most common way to copy the bad code in a
stack buffer is using string functions: strcpy,
strcat, efc.

» This means that buf cannot contain 0x00 bytes
- Why?
» Solution:

- Rewrite the code carefully
- Instead of “addiu $4,$0,0x0015 (code 0x20400015)
- Use "addiu $4,$0,0x1126; subiu $4, $4, Ox1111"
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The State of C Programming

+ Buffer overruns are common
- Programmers must do their own bounds checking
- Easy to forget or be off-by-one or more
- Program still appears to work correctly

- In C w.r.t. to buffer overruns

- Easy to do the wrong thing
- Hard to do the right thing
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The State of Hacking

- Buffer overruns are the attack of choice

- 40-50% of new vulnerabilities are buffer overrun
exploits

- Many recent attacks of this flavor: Code Red,
Nimda, MS-SQL server

» Highly automated toolkits available to exploit
known buffer overruns

- Search for "buffer overruns” yields > 25,000 hits
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The Sad Reality

- Even well-known buffer overruns are still
widely exploited

- Hard to get people to upgrade millions of vulnerable
machines

- We assume that there are many more unknown
buffer overrun vulnerabilities

- At least unknown to the good guys
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Static Analysis to Detect Buffer Overruns

+ Detecting buffer overruns before distributing
code would be better

* Idea: Build a tool similar to a type checker to
detect buffer overruns

+ Joint work by Alex Aiken, David Wagner, Jeff
Foster, at Berkeley
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Focus on Strings

* Most important buffer overrun exploits are
through string buffers

- Reading an untrusted string from the network,
keyboard, etc.

» Focus the tool only on arrays of characters
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Idea 1: Strings as an Abstract Data Type

» A problem: Pointer operations & array
dereferences are very difficult to analyze
statically

- Where does *a point?
- What does buf[j] refer to?

* Idea: Model effect of string library functions
directly
- Hard code effect of strcpy, strcat, etc.
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Idea 2: The Abstraction

* Model buffers as pairs of integer ranges
- Alloc  min allocated size of the buffer in bytes
- Length max number of bytes actually in use

+ Use integer ranges [x,y] = { x, x+1, .., y-1,y}
- Alloc & length cannot be computed exactly
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The Strategy

» For each program expression, write
constraints capturing the alloc and len of its
string subexpressions

» Solve the constraints for the entire program

* Check for each string variable s
len(s) = alloc(s)
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The Constraints

char s[n];
strcpy(dst,src)

p = strdup(s)

p[n] = "\0’

n < alloc(s)
len(src) = len(dst)

len(s) < len(p) &
len(s) < alloc(p)

n+1 < len(p)
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Constraint Solving

» Solving the constraints is akin to solving
dataflow equations (e.g., constant propagation)
» Build a graph
- Nodes are len(s), alloc(s)
- Edges are constraints len(s) < len(t)

* Propagate information forward through the
graph
- Special handling of loops in the graph
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Using Solutions

Once you've solved constraints to extract as much
information as possible, look to see if

len(s) = alloc(s)
is necessarily true. If not, may have a problem.

For example, if b is parameter about which we know
nothing, then in

char s[100];
strcpy (s, b);
assertion len(s) < alloc(s) will not simplify to True.
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Results

- Found new buffer overruns in sendmail

* Found new exploitable overruns in Linux
nettools package

* Both widely used, previously hand-audited
packages
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Limitations

» Tool produces many false positives
- 1 out of 10 warnings is a real bug

» Tool has false negatives
- Unsound---may miss some overruns

» But still productive to use
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Summary

* Programming language knowledge useful
beyond compilers

+ Useful for programmers
- Understand what you are doing!

» Useful for tools other than compilers
- Big research direction
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