Language Security

Lecture 40
(from notes by 6. Necula)

Prof. Hilfinger CS 164 Lecture 40



Lecture Outline

» Beyond compilers

- Looking at other issues in programming language
design and tools

- C
- Arrays
- Exploiting buffer overruns
- Detecting buffer overruns

Prof. Hilfinger CS 164 Lecture 40 2



Platitudes

» Language design has influence on
- Efficiency

- Safety

- Security

Prof. Hilfinger CS 164 Lecture 40



C Design Principles

- Small language
* Maximum efficiency
+ Safety less important

» Designed for the world as it was in 1972
- Weak machines
- Superhuman programmers (or so they thought)
- Trusted networks

Prof. Hilfinger CS 164 Lecture 40



Arrays in C

char buffer[100];

Declares and allocates an array of 100 chars
0 1 2 99

e ]00 *sizeof(char) — =———

Prof. Hilfinger CS 164 Lecture 40 5



C Array Operations

char buf1[100], buf2[100];

Whrite:
buf1[0] = 'a’;

Read:
return buf2[0];

Prof. Hilfinger CS 164 Lecture 40



What's Wrong with this Picture?

Int 1,

for(i = O; bufl[i]!= "\O’; i++) {
buf2[i] = bufl[i];

}

buf2[i] = "\O’;

Prof. Hilfinger CS 164 Lecture 40



Indexing Out of Bounds

The following are all well-typed C and may
generate no run-time errors

char buffer[100];

buffer[-1] = 'a’;
buffer[100] = 'a’;
buffer[100000] = 'a’;

Prof. Hilfinger CS 164 Lecture 40



Why?

 Why does C allow out-of-bounds array
references?

- Proving at compile-time that all array references
are in bounds is impossible in most languages

- Checking at run-time that all array references are
in bounds is "expensive”
* But it is even more expensive to skip the checks

Prof. Hilfinger CS 164 Lecture 40 9



Code Generation for Arrays

- The C code:

bufl[i]=1; /* bufl has type int[]*/

» The assembly code:

Regular C

r1 = &bufl;
r2 = load i;
r3=r2* 4,

r4=rl+r3
store r4, 1

C with bounds checks
rl1 = &bufl;

r2 = load i;

r3=r2* 4,

if r3 < 0 then error;
rb = load limit of bufl;
if r3 >= r5 then error;
r4 =rl+r3

store r4, 1

Prof. Hilfinger CS 164 Lecture 40

Costly!
Finding the

array limits
is non-trivial

10



C vs. Java

- C array reference typical case
- Offset calculation
- Memory operation (load or store)

- Java array reference typical case
- Offset calculation
- Memory operation (load or store)
- Array bounds check
- Type compatibility check (for some arrays)

Prof. Hilfinger CS 164 Lecture 40

11



Buffer Overruns

* A buffer overrun writes past the end of an
array

* Buffer usually refers to a C array of char
- But can be any array

*+ So who's afraid of a buffer overrun?
- Can cause a core dump
- Can damage data structures
- What else?

Prof. Hilfinger CS 164 Lecture 40 12



Stack Smashing

Buffer overruns can alter the control flow of
your program!

char buffer[100]; /* stack allocated array */

0o 1 2 99 return address

~t——  ]00 *sizeof(char) ==

Prof. Hilfinger CS 164 Lecture 40 13



An Overrun Vulnerability

void foo(char in[]) {
char buffer[100];
inti=0;
for(i = 0; in[i] 1= "\O'; i++)
{ buffer[i]l=in[i]; }
buffer[i] = '\O’;
}

Prof. Hilfinger CS 164 Lecture 40

14



An Interesting Idea

char in[104]={"",..," ", magic 4 chars }
foo(in);, (**)

foo entry
0o 1 2 99 return address
‘ (x—* )
st 00 *sizeof(char) =
foo exit
0o 1 2 99 return address

magic 4 chars

Prof. Hilfinger CS 164 Lecture 40 15



Discussion

* So we can make foo jump wherever we like.
* How is this possible?

» Unanticipated interaction of two features:
- Unchecked array operations

- Stack-allocated arrays and return addresses

* Knowledge of frame layout allows prediction of where
array and return address are stored

- Note the "magic cast” from char's to an address

Prof. Hilfinger CS 164 Lecture 40 16



The Rest of the Story

» Say that foo is part of a hetwork server and
the in originates in a received message

- Some remote user can make foo jump anywhere |

* But where is a "useful” place to jump?

- Idea: Jump to some code that gives you control of
the host system (e.g. code that spawns a shell)

* But where to put such code?

- Idea: Put the code in the same buffer and jump
therel

Prof. Hilfinger CS 164 Lecture 40 17



The Plan

+ We'll make the code jump to the following
code:

+ In C: exec("/bin/sh");
* In assembly (pretend):

mov $a0, 15 ; load the syscall code for “"exec”
mov $al, &Ldata ; load the command
syscall ; make the system call

Ldata: byte /)b i''n'}/"/s' /A0 ; null-terminated
* In machine code: 0x20, 0x42, 0x00, ...

Prof. Hilfinger CS 164 Lecture 40 18



The Plan

char in[104] = { 104 magic chars }
foo(in);

foo exit
0o 1 2 99 return address
Ox20, Ox42, Ox00, ...

* The last 4 bytes in "in" must equal the start of buffer
» I'ts position might depend on many factors |

Prof. Hilfinger CS 164 Lecture 40 19



Guess the Location of the Injected Code

+ Trial & error: gives you a ballpark

» Then pad the injected code with NOP
- E.g. add $0, $1, 0x2020

- stores result in $0 which is hardwired to O anyway

* Encoded as 0x20202020
foo exit o
o 1 2 99  return address
| 0x20, .., 0x20, 0x20, 0x42, Ox00, .
N ~ 4
The bad code

* Works even with an approximate address of buffer |

Prof. Hilfinger CS 164 Lecture 40 20



More Problems

We do not know exactly where the return address is

- Depends on how the compiler chose to allocate variables in
the stack frame

Solution: pad the buffer at the end with many copies
of the "magic return address X"

foo exit o
0 1 2 99
0x20, ..., Ox20, 0x20, Ox42, Ox00, ..., X, X, X, X, ..} X, ' X, ..
h e ” retfurn
The bad code address

Prof. Hilfinger CS 164 Lecture 40 21



Even More Problems

»+ The most common way to copy the bad code in a
stack buffer is using string functions: strcpy,
strcat, efc.

» This means that buf cannot contain 0x00 bytes
- Why?
» Solution:

- Rewrite the code carefully
- Instead of “addiu $4,$0,0x0015 (code 0x20400015)
- Use "addiu $4,$0,0x1126; subiu $4, $4, Ox1111"

Prof. Hilfinger CS 164 Lecture 40 22



The State of C Programming

+ Buffer overruns are common
- Programmers must do their own bounds checking
- Easy to forget or be off-by-one or more
- Program still appears to work correctly

- In C w.r.t. to buffer overruns

- Easy to do the wrong thing
- Hard to do the right thing

Prof. Hilfinger CS 164 Lecture 40 23



The State of Hacking

- Buffer overruns are the attack of choice

- 40-50% of new vulnerabilities are buffer overrun
exploits

- Many recent attacks of this flavor: Code Red,
Nimda, MS-SQL server

» Highly automated toolkits available to exploit
known buffer overruns

- Search for "buffer overruns” yields > 25,000 hits

Prof. Hilfinger CS 164 Lecture 40 24



The Sad Reality

- Even well-known buffer overruns are still
widely exploited

- Hard to get people to upgrade millions of vulnerable
machines

- We assume that there are many more unknown
buffer overrun vulnerabilities

- At least unknown to the good guys

Prof. Hilfinger CS 164 Lecture 40 25



Static Analysis to Detect Buffer Overruns

+ Detecting buffer overruns before distributing
code would be better

* Idea: Build a tool similar to a type checker to
detect buffer overruns

+ Joint work by Alex Aiken, David Wagner, Jeff
Foster, at Berkeley

Prof. Hilfinger CS 164 Lecture 40 26



Focus on Strings

* Most important buffer overrun exploits are
through string buffers

- Reading an untrusted string from the network,
keyboard, etc.

» Focus the tool only on arrays of characters

Prof. Hilfinger CS 164 Lecture 40 27



Idea 1: Strings as an Abstract Data Type

» A problem: Pointer operations & array
dereferences are very difficult to analyze
statically

- Where does *a point?
- What does buf[j] refer to?

* Idea: Model effect of string library functions
directly
- Hard code effect of strcpy, strcat, etc.

Prof. Hilfinger CS 164 Lecture 40 28



Idea 2: The Abstraction

* Model buffers as pairs of integer ranges
- Alloc  min allocated size of the buffer in bytes
- Length max number of bytes actually in use

+ Use integer ranges [x,y] = { x, x+1, .., y-1,y}
- Alloc & length cannot be computed exactly

Prof. Hilfinger CS 164 Lecture 40 29



The Strategy

» For each program expression, write
constraints capturing the alloc and len of its
string subexpressions

» Solve the constraints for the entire program

* Check for each string variable s
len(s) = alloc(s)

Prof. Hilfinger CS 164 Lecture 40 30



The Constraints

char s[n];
strcpy(dst,src)

p = strdup(s)

p[n] = "\0’

n < alloc(s)
len(src) = len(dst)

len(s) < len(p) &
len(s) < alloc(p)

n+1 < len(p)

Prof. Hilfinger CS 164 Lecture 40 31



Constraint Solving

» Solving the constraints is akin to solving
dataflow equations (e.g., constant propagation)
» Build a graph
- Nodes are len(s), alloc(s)
- Edges are constraints len(s) < len(t)

* Propagate information forward through the
graph
- Special handling of loops in the graph

Prof. Hilfinger CS 164 Lecture 40 32



Using Solutions

Once you've solved constraints to extract as much
information as possible, look to see if

len(s) = alloc(s)
is necessarily true. If not, may have a problem.

For example, if b is parameter about which we know
nothing, then in

char s[100];
strcpy (s, b);
assertion len(s) < alloc(s) will not simplify to True.

Prof. Hilfinger CS 164 Lecture 40 33



Results

- Found new buffer overruns in sendmail

* Found new exploitable overruns in Linux
nettools package

* Both widely used, previously hand-audited
packages

Prof. Hilfinger CS 164 Lecture 40

34



Limitations

» Tool produces many false positives
- 1 out of 10 warnings is a real bug

» Tool has false negatives
- Unsound---may miss some overruns

» But still productive to use

Prof. Hilfinger CS 164 Lecture 40

35



Summary

* Programming language knowledge useful
beyond compilers

+ Useful for programmers
- Understand what you are doing!

» Useful for tools other than compilers
- Big research direction

Prof. Hilfinger CS 164 Lecture 40

36



