
Prof. Hilfinger CS164 Lecture 5 1

The Pyth Language

Lecture 5

Prof. Hilfinger CS164 Lecture 5 2

Administrivia

• Project #1 now available on-line
• Please make sure you have registered your

team (and also have electronically registered
with us as well)

Prof. Hilfinger CS164 Lecture 5 3

Historical Background

• Pyth comes from Python, a popular “scripting
language”

• Python comes from ABC, a simple and powerful
language for teaching & prototyping

Prof. Hilfinger CS164 Lecture 5 4

 Features of Pyth

• Type-safe language, with both dynamic and
static typing

• Object-oriented features based on exemplars
• Convenient built-in types for sequences,

strings, and mappings (dictionaries)
• Clean, indentation-based statement grouping

Prof. Hilfinger CS164 Lecture 5 5

Program structure

• Program is a sequence of statements
• Each statement is either

– One or more simple statements on a line, separated
by ;’s, ending in newline

– A compound statement
– A type declaration (new in Pyth) + newline
– An import statement + newline

Prof. Hilfinger CS164 Lecture 5 6

Simple Statements I: Pass

• Pass does nothing:
 def f (n):
 pass # Must be statement here

Prof. Hilfinger CS164 Lecture 5 7

Simple Statements II: Print

• To print values separated by spaces:
 print “x,y =“, 3, 4

 => x,y = 3 4
• To print values without newline at end:
 print “x,y =“, # Extra comma does it
 print 3; print 4
 => x,y = 3
 4

Prof. Hilfinger CS164 Lecture 5 8

Printing to a file

 print >> sys.stderr, “You made an error”

• Prints to file sys.stderr (the standard error
output)

• Otherwise like ordinary print.

Prof. Hilfinger CS164 Lecture 5 9

Simple Statements III: Assignment

• Simple cases like C++ or Java:
 x = 3; A[i] = 2; q.r = y + 2; z += 1

• But we also have:
 a, b = 1, 10 # a=1; b = 10
 (a,b) = 1, 10 # Same thing

 x, a[0], y = a3ElementList
 a, (b, c), d = [1, (2,3), 4]

Prof. Hilfinger CS164 Lecture 5 10

Compound Statements I: if

• Simplest form looks familiar (fewer ()’s):
 if 0 > x > 20: print “too big”; x = 20

 elif x > 10: print “OK”
 else: print “too small”
• But only list of simple statements possible

after “:” with this form

Prof. Hilfinger CS164 Lecture 5 11

Indentation and suites

• For more complicated “thens” or “elses”, use
indentation:
 if x > 0:

 y = f(x)
 if y > 0:
 print “y is”, y
 else: # Matches first if
 print “x is negative”

Prof. Hilfinger CS164 Lecture 5 12

Indentation and suites II

• Instead of { … }, Pyth (like Python) uses indentation.
• General form:
 Line with indentation N:
 Statement with indentation N’>N
 More lines indented > N
 Line with indentation N
• Each more-indented line adds a left bracket
• Each less-indented line adds a right bracket for each

unbalanced more-indented lines

Prof. Hilfinger CS164 Lecture 5 13

Indentation and suites III

• Tabs indent to multiple of 8 spaces
• Inconsistent indenting is an error:
 if x < 0:
 print x
 print y # Error

Prof. Hilfinger CS164 Lecture 5 14

Compound Statements II: While

• While is almost as in Java, modulo parentheses
and suites:

 while n > 0:
 s += A[n]
 n -= 1;
• break and continue as in Java (but no label)

Prof. Hilfinger CS164 Lecture 5 15

While with else

• A new twist: end-of-loop code
• Executes only if test terminates loop:
 while i < N:
 if P(A[i]): break
 i += 1
 else:
 print “Error: didn’t find it.”

Prof. Hilfinger CS164 Lecture 5 16

Compound Statements III: For

• For loop is like Java 5’s “for (String S: L)”
• Works for any type with __getindex__

operation, including built-in sequences:
 someList = [2, 3, 5, 7, 11, 13, 17];
 for p in someList:
 if x % p == 0: break
 else: print “Maybe”, x, “is prime?”

Prof. Hilfinger CS164 Lecture 5 17

Fancier for statements

• The for statement performs assignment
statements to control variables, so…

 pairs = ((“boy”, “girl”), (“fish”, “bike”))
 for left, right in pairs:
 print left, “is to”, right, “as”
 => boy is to girl as
 fish is to bike as

Prof. Hilfinger CS164 Lecture 5 18

Importing

• In Pyth (not Python), importing is just textual
inclusion:

 import foo
• Looks for file named “foo.py” in any directory

in “search path” (see project 1).
• Importing same name twice has no effect the

second time
• Only allowed at outer level of program.

Prof. Hilfinger CS164 Lecture 5 19

Definitions I: Constants

• The declaration
 def name = expression
 evaluates expression and makes name a

constant with that value.
• (This is not like Python)

Prof. Hilfinger CS164 Lecture 5 20

Definitions II: Constant functions

• To create a new function (or method) value:
 def gcd (x, y):

 if x == y: return x
 elif x > y: return gcd (x % y, y)

 else: return gcd (y, x)
• Functions always return value, but it is the

value None by default.

Prof. Hilfinger CS164 Lecture 5 21

Foreign functions

• To define a Pyth function with a C function:
 def newdir (name): import “mkdir”
• We’ll make extensive use of this to implement

all the built-in methods of Pyth.

Prof. Hilfinger CS164 Lecture 5 22

Local variables and scope I

• Local variable is defined by assigning to it:
 outer = 2 # outer defined everywhere
 def f (q): # q defined in body of f
 x = 2 # x defined in body of f
 def g ():
 x = 6 # NEW x, local to g
 print x, y # will print 6 3
 y = 3; g ()
 print outer, x # will print 2 2

Prof. Hilfinger CS164 Lecture 5 23

Local variables and scope II: Global

• Can assign to outer-level variables in function
by declaring them global:

 errs = 0 # process can change this
 def process (x):
 global errs
 if x < 0: errs += 1; return
 …

Prof. Hilfinger CS164 Lecture 5 24

Types and type declarations

• Pyth has a lattice of types:

All

Int List … Object

user-defined types

Void

arrows show subtypes

Function
types

Prof. Hilfinger CS164 Lecture 5 25

Types

• Types all have names:
– Any
– Int, Float, Bool, String, Tuple, Xrange, List, Dict,

File, Object
– Types introduced by user with “class…”
– Function types: (Int, Int) -> Any
– Void (the type of None)

Prof. Hilfinger CS164 Lecture 5 26

Dynamic and Static Types

• Every value has a type; types checked at
runtime (at latest) for legal operations

• Every variable has a static type, constraining
types of values it may contain (like Java, C,
C++, etc.)

• The type of variable’s value is its dynamic type
(always a subtype of static type).

• All of this is just like Java

Prof. Hilfinger CS164 Lecture 5 27

Declaring Types

• By default, static type of variable, parameter,
named constant is Any.

• def’ed functions by default have type
 (Any,…,Any) -> Any
• Can declare static type of any of these with:
 x : Int
 func : (Int, Int) -> Bool
• Last one also gives parameters types

Prof. Hilfinger CS164 Lecture 5 28

Pre-Defined Types I: Simple Stuff

• Ints, Floats are as in Java
• Constant None is like null in Java
• Bool is like boolean in Java (constants True,

False)
• String pretty much as in Java

– But no “char” type: one-character strings double as
characters

Prof. Hilfinger CS164 Lecture 5 29

Pre-Defined Types II: Sequences

• Strings, Tuples, Lists, and Xranges are all
sequence types.

• That is, one can write x[i] to get ith character;
negative indices count from right. x[-1] is last
item.

• + is concatenation
• Can slice sequences:

– x[1: 3] contains x[1], x[2]
– x[2:] contains everything from 2 on.

Prof. Hilfinger CS164 Lecture 5 30

Tuples

• Tuples are immutable: can’t modify elements
• Created with expression lists (in ()’s if

needed):
– (2, “a string”, True, None, (1,2))
– () # Empty
– (2,) # One element

Prof. Hilfinger CS164 Lecture 5 31

Lists

• Lists are mutable sequences.
• Create with list display:
 [] # Empty
 [1, 2, “a string”]
• Change with assignments:

L = [] ; L += [1]; L += [3] # Now L=[1,3]
L[1] = 5; L[0: 1] = [] # L now [5]
L[1:] = [9, 11, 13] # L now [5, 9, 11, 13]

Prof. Hilfinger CS164 Lecture 5 32

Xranges

• Xranges are immutable sequences of Ints.
• Useful in for loops:
 for i in xrange (0, N):
 k += i

Prof. Hilfinger CS164 Lecture 5 33

Dicts

• A Dict is a mutable mapping (like Java Map).
• Convenient syntax:

 defns = { ‘apple’ : ‘fruit’, ‘car’ : ‘machine’ }
 defns[‘cow’] = ‘animal’
 if ‘cow’ in defns: print defns[‘cow’]
 for key in defns:
 print key, ‘->’, defns[key]

Prof. Hilfinger CS164 Lecture 5 34

User-defined Classes

• Pyth supports only single inheritance, no
interfaces.

• To declare a class:
 class Thing (ParentType):
 instanceVar = 3

 def instanceMethod (self, dir): …
 class def staticMethod (): …
 def __init__(self,x): … #Constructor

Prof. Hilfinger CS164 Lecture 5 35

Using A Class

• Syntax for creating a Thing:
 Thing (3)
 creates a Thing and calls constructor

(__init__) with new Thing and 3.
• Access to instance variables, methods, and

class methods as in Java:
 x.instanceVar, x.instanceMethod(‘n’),
 Thing.staticMethod(), x.staticMethod()

Prof. Hilfinger CS164 Lecture 5 36

Instance Methods I

• The “this” parameter is explicit in Pyth (and
called “self” by convention):

 class Cls (Object):
 var = 0
 def Meth (self, x): self.var += x
• Usual method-calling syntax works by special

dispensation:
 x.Meth (3) ==> (x.Meth) (x, 3)

Prof. Hilfinger CS164 Lecture 5 37

Instance Methods II: Alternate Syntax

• If a name f is not otherwise defined, then
 f(x,…)
 is transformed into
 (x.f) (x, …)
• This strange convention is peculiar to Pyth and

due entirely to your instructor’s irritation with
object-oriented syntax.

Prof. Hilfinger CS164 Lecture 5 38

Initialization and Exemplars I

• The class definition
 class Child (Parent):
 var = 3
 def f(self, x): …
 creates a special exemplar instance of Child.
• Can refer to var in exemplar as Child.var

Prof. Hilfinger CS164 Lecture 5 39

Initialization and Exemplars II

• When you create a new Child, its value of var
is initialized from Child.var

• As a result,
 x1 = Child ()
 Child.var = 42
 x2 = Child ()
 print x1.var, x2.var
 prints 3 42.

Prof. Hilfinger CS164 Lecture 5 40

Operators

• Most Pyth expression operators are actually
just shorthand for function calls.

• For example:
 x + y is same as __add__(x,y)
 x[i] is same as __getitem__(x,i)
• As a result, you can define these operators on

your own classes.

