
9/11/2006 Prof. Hilfinger CS164 Lecture 7 1

Version Control

Lecture 7

9/11/2006 Prof. Hilfinger CS164 Lecture 7 2

Administrivia

• In order to do the homework and turn in the
project, you must have registered your team.
Do so today!

• Homework #2 handed out today on-line. Due
next Monday.

• Programming contest 30 September (Sat).

9/11/2006 Prof. Hilfinger CS164 Lecture 7 3

The Problem

• Software projects can be large and complex.
• May involve many people, geographically

distributed
• May require maintenance of several related

versions
– MacOS vs. Windows vs. GNU Linux
– Stable release vs. beta release of next version
– Commericial vs. non-commercial

• May require prototyping potential features
while still maintaining existing ones.

9/11/2006 Prof. Hilfinger CS164 Lecture 7 4

Version-Control Systems

• Version-control systems attempt to address
these and related problems.

• Allow maintenance and archiving of multiple
versions of a piece of software:
– Saving complete copies of source code
– Comparing versions
– Merging changes in several versions
– Tracking changes

9/11/2006 Prof. Hilfinger CS164 Lecture 7 5

Subversion

• Subversion is an open-source version-control
system.

• Successor to CVS
• Provides a simple model: numbered snapshots

of directory structures
• Handles local or remote repositories

9/11/2006 Prof. Hilfinger CS164 Lecture 7 6

Subversion’s Model

add Y

add X

add Z

X Y

Z

User 1

User 2

Repository

9/11/2006 Prof. Hilfinger CS164 Lecture 7 7

Subversion’s Model

X Y

Z
X Y

Z

commit

User 1

User 2

Repository

1

X Y

Z

checkout

9/11/2006 Prof. Hilfinger CS164 Lecture 7 8

Subversion’s Model

X

Z
X Y

Z

User 1

User 2

Repository

1

X Y

Z

Delete Y

Q
Add Q

9/11/2006 Prof. Hilfinger CS164 Lecture 7 9

Subversion’s Model

X

Z
X Y

Z

User 1

User 2

Repository

1

X Y

Z

Q

2
X

Z Q

commit

9/11/2006 Prof. Hilfinger CS164 Lecture 7 10

Subversion’s Model

X

Z
X Y

Z

User 1

User 2

Repository

1
Q

2
X

Z Q
X

Z Q

update

9/11/2006 Prof. Hilfinger CS164 Lecture 7 11

Subversion’s Model

X

Z
X Y

Z

User 1

User 2

Repository

1
Q

2
X

Z Q
X

Z Q
X

Z Q
3

commit

9/11/2006 Prof. Hilfinger CS164 Lecture 7 12

Subversion’s Model

X

Z
X Y

Z

User 1

User 2

Repository

1
Q

2
X

Z Q
X

Z Q
X

Z Q
3

update

merged text

9/11/2006 Prof. Hilfinger CS164 Lecture 7 13

Terminology

• Repository: Set of versions
• Revision: A snapshot of a particular directory

of files
• Revision number: A sequence number denoting

a particular revision
• Working copy: A directory or file initially

copied from a revision + administrative data

9/11/2006 Prof. Hilfinger CS164 Lecture 7 14

A Useful Property

• In the previous example, Subversion does not
really keep 3 complete copies of the files.

• Instead, it maintains differences between
versions: if you change little, your revision
takes up little space.

• Copying an entire file or directory in the
repository is very cheap
– “Directory foo in revision 110 is the same as

directory bar in revision 109”

9/11/2006 Prof. Hilfinger CS164 Lecture 7 15

Some Basic Commands

• We’ll be using “ssh tunnels” to access our
Subversion repositories.

• We created an ssh key pair for you when you
first logged in.

• In the following, we consider login cs164-xx
and team Ursa; we’ll use nova as a convenient
host.

9/11/2006 Prof. Hilfinger CS164 Lecture 7 16

Creating a working copy of a repository

• To get the latest revision:
 svn checkout svn+ssh:cs61b-tb@nova/Ursa
• Or just one directory:
 svn checkout svn+ssh:cs61b-tb@nova/Ursa/project

• A particular revision:
 svn checkout -r100 svn+ssh:cs61b-tb@nova/Ursa
• Symbolic revisions:
 svn checkout -rHEAD svn+ssh:cs61b-tb@nova/Ursa

9/11/2006 Prof. Hilfinger CS164 Lecture 7 17

Add, Delete, Rename Files, Directories

• When you add or remove a file or directory in
a working copy, must inform Subversion of the
fact:
– svn add NEW-FILE
– svn delete OLD-FILE-OR-DIR
– svn move OLD-PLACE NEW-PLACE

• These forms don’t change the repository.
• Must commit changes

9/11/2006 Prof. Hilfinger CS164 Lecture 7 18

Committing Changes

• The command
 svn commit -m “Log message”
 in a working directory will create a new

revision in the repository
• New revision differs from previous in the

contents of the current directory, which may
only be part of the whole tree.

• Message should be informative. Can arrange
to use your favority editor to compose it

9/11/2006 Prof. Hilfinger CS164 Lecture 7 19

Updating

• To get versions of files from most recent
revision, do this in directory you want updated

 svn update
• This will report files Subversion changes,

adds, deletes, or merges
• Merged files are those modified both by you

and (independently) in the repository since you
updated/checked out.

9/11/2006 Prof. Hilfinger CS164 Lecture 7 20

Merges and Conflicts

• Reports of changes look like this:
 U foo1 foo1 is updated
 A foo2 foo2 is new
 D foo3 foo3 was deleted
 R foo4 foo4 was deleted, then re-add
 G foo5 foo5 had mods from you and in
 repository that did not overlap
 C foo6 Conflicts: overlapping changes

9/11/2006 Prof. Hilfinger CS164 Lecture 7 21

Notating Conflicts

• When you have a conflict, you’ll find that the
resulting file contains both overlapping
changes:

 <<<<<<<<< .mine
 My change
 ========
 Repository change
 >>>>>>>>>>> .r 99 (gives revision #)

9/11/2006 Prof. Hilfinger CS164 Lecture 7 22

Resolving Conflicts

• You can either choose to go with the
repository version of conflicted file, or yours,
or do a custom edit.

• Subversion keeps around your version and the
repository version in foo6.mine, foo6.99

• Personally, I usually just edit the file.
• When conflicts are resolved, use
 svn resolved foo6
 to indicate resolution; then commit.

9/11/2006 Prof. Hilfinger CS164 Lecture 7 23

Branches and Tags

• Suppose Bob wants to make some changes to his
project, checking in intermediate steps, but without
interfering with partner Mary.

• Good practice is to create a branch, a copy of the
project files independent of the trunk.

• Copy command does it:
 cd TeamMaryAndBob/project
 svn copy trunk branches/Bobs-branch
 svn commit -m “Create Bob’s branch”
 cd branches/Bobs-branch
 and go to work.

9/11/2006 Prof. Hilfinger CS164 Lecture 7 24

Branches and Tags

• The use of the branches directory is
convention; could put it anywhere.

• Again, this copy is cheap in the repository.
• Bob’s changes in branches/Bobs-branch are

completely independent of the trunk.
• Rather elegant idea: no new mechanism!

9/11/2006 Prof. Hilfinger CS164 Lecture 7 25

Tags

• A tag is the same as a branch, except that (by
convention) we don’t usually modify it once it
is created.

• Conventional to put it in the tags subdirectory,
as in the instructions for turning in your
project.

• Tags are usually intended as names of
particular snapshots of the trunk or some
branch (e.g., a release).

9/11/2006 Prof. Hilfinger CS164 Lecture 7 26

Comparing Revisions

• One great feature: ability to compare versions,
branches.

• Simple case: what local changes have I made to this
working directory?

 svn diff
• How does this working directory compare to revision

9?
 svn diff -r 9
• How do revisions 9 and 10 of directory differ?
 svn diff -r 9:10

9/11/2006 Prof. Hilfinger CS164 Lecture 7 27

More Comparisons

• I’m in branches/Bobs-branch. How does it
compare to revision 100 of the trunk?

 svn diff --old ../../trunk@100 --new .

9/11/2006 Prof. Hilfinger CS164 Lecture 7 28

Merging

• To merge changes between two revisions, R1
and R2, of a file or directory into a working
copy means to get the changes that occurred
between R1 and R2 and make the same changes
to the the working copy.

• To merge changes into current working copy:
 svn merge SOURCE1@REV1 SOURCE2@REV2
 where SOURCE1 and SOURCE2 are URLs (svn+ssh:…

) or working directories and REV1, REV2 are revision
numbers.

9/11/2006 Prof. Hilfinger CS164 Lecture 7 29

More Merging

• For short, when sources the same:
 svn -r REV1:REV2 SOURCE
• To merge in changes that happened between

two tagged revisions:
 svn tags/v1@HEAD tags/v2@HEAD\
 branches/Bobs-branch
• Here we assume we are in project directory

9/11/2006 Prof. Hilfinger CS164 Lecture 7 30

After Merging

• After merging, as for update, must resolve
any conflicts.

• Then we commit the merged version.

