
1

9/15/06 Prof. Hilfinger CS164 Lecture 8

Introduction to Parsing

Lecture 8
Adapted from slides by G. Necula

9/15/06 Prof. Hilfinger CS164 Lecture 8

Outline

• Limitations of regular languages

• Parser overview

• Context-free grammars (CFG’s)

• Derivations

9/15/06 Prof. Hilfinger CS164 Lecture 8

Languages and Automata

• Formal languages are very important in CS
– Especially in programming languages

• Regular languages
– The weakest formal languages widely used
– Many applications

• We will also study context-free languages

9/15/06 Prof. Hilfinger CS164 Lecture 8

Limitations of Regular Languages

• Intuition: A finite automaton that runs long
enough must repeat states

• Finite automaton can’t remember # of times it
has visited a particular state

• Finite automaton has finite memory
– Only enough to store in which state it is
– Cannot count, except up to a finite limit

• E.g., language of balanced parentheses is not
regular: { (i)i | i ≥ 0}

9/15/06 Prof. Hilfinger CS164 Lecture 8

The Structure of a Compiler

Source Tokens

Interm.
Language

Lexical
analysis

Parsing

Code
Gen.

Machine
Code

Today we
start

Optimization

9/15/06 Prof. Hilfinger CS164 Lecture 8

The Functionality of the Parser

• Input: sequence of tokens from lexer

• Output: abstract syntax tree of the program

2

9/15/06 Prof. Hilfinger CS164 Lecture 8

Example

• Pyth: if x == y: z =1
 else: z = 2

• Parser input: IF ID == ID : ID = INT ↵ ELSE : ID = INT ↵

• Parser output (abstract syntax tree):

IF-THEN-ELSE

== = =

ID ID ID ID INTINT

9/15/06 Prof. Hilfinger CS164 Lecture 8

Why A Tree?

• Each stage of the compiler has two purposes:
– Detect and filter out some class of errors
– Compute some new information or translate the

representation of the program to make things
easier for later stages

• Recursive structure of tree suits recursive
structure of language definition

• With tree, later stages can easily find “the
else clause”, e.g., rather than having to scan
through tokens to find it.

9/15/06 Prof. Hilfinger CS164 Lecture 8

Comparison with Lexical Analysis

Syntax treeSequence of
tokens

Parser

Sequence of
tokens

Sequence of
characters

Lexer

OutputInputPhase

9/15/06 Prof. Hilfinger CS164 Lecture 8

The Role of the Parser

• Not all sequences of tokens are programs . . .
• . . . Parser must distinguish between valid and

invalid sequences of tokens

• We need
– A language for describing valid sequences of tokens
– A method for distinguishing valid from invalid

sequences of tokens

9/15/06 Prof. Hilfinger CS164 Lecture 8

Programming Language Structure

• Programming languages have recursive structure
• Consider the language of arithmetic expressions

with integers, +, *, and ()
• An expression is either:

– an integer
– an expression followed by “+” followed by expression
– an expression followed by “*” followed by expression
– a ‘(‘ followed by an expression followed by ‘)’

• int , int + int , (int + int) * int are expressions

9/15/06 Prof. Hilfinger CS164 Lecture 8

Notation for Programming Languages

• An alternative notation:
 E → int
 E → E + E
 E → E * E
 E → (E)

• We can view these rules as rewrite rules
– We start with E and replace occurrences of E with

some right-hand side
• E → E * E → (E) * E → (E + E) * E → …
 → (int + int) * int

3

9/15/06 Prof. Hilfinger CS164 Lecture 8

Observation

• All arithmetic expressions can be obtained by
a sequence of replacements

• Any sequence of replacements forms a valid
arithmetic expression

• This means that we cannot obtain
 (int))
by any sequence of replacements. Why?

• This set of rules is a context-free grammar

9/15/06 Prof. Hilfinger CS164 Lecture 8

Context-Free Grammars

• A CFG consists of
– A set of non-terminals N

• By convention, written with capital letter in these notes
– A set of terminals T

• By convention, either lower case names or punctuation
– A start symbol S (a non-terminal)
– A set of productions

• Assuming E ∈ N
 E → ε , or
 E → Y1 Y2 ... Yn where Yi ∈ N ∪ T

9/15/06 Prof. Hilfinger CS164 Lecture 8

Examples of CFGs

Simple arithmetic expressions:
 E → int
 E → E + E
 E → E * E
 E → (E)
– One non-terminal: E
– Several terminals: int, +, *, (,)

• Called terminals because they are never replaced
– By convention the non-terminal for the first

production is the start one

9/15/06 Prof. Hilfinger CS164 Lecture 8

The Language of a CFG

Read productions as replacement rules:

 X → Y1 ... Yn
Means X can be replaced by Y1 ... Yn

 X → ε
Means X can be erased (replaced with empty string)

9/15/06 Prof. Hilfinger CS164 Lecture 8

Key Idea

1. Begin with a string consisting of the start
symbol “S”

2. Replace any non-terminal X in the string by a
right-hand side of some production
 X → Y1 … Yn

3. Repeat (2) until there are only terminals in
the string

4. The successive strings created in this way
are called sentential forms.

9/15/06 Prof. Hilfinger CS164 Lecture 8

The Language of a CFG (Cont.)

More formally, may write

 X1 … Xi-1 Xi Xi+1… Xn → X1 … Xi-1 Y1 … Ym Xi+1 … Xn

if there is a production

 Xi → Y1 … Ym

4

9/15/06 Prof. Hilfinger CS164 Lecture 8

The Language of a CFG (Cont.)

Write
 X1 … Xn →* Y1 … Ym

if
 X1 … Xn → … → … → Y1 … Ym

in 0 or more steps

9/15/06 Prof. Hilfinger CS164 Lecture 8

The Language of a CFG

Let G be a context-free grammar with start
symbol S. Then the language of G is:

L(G) = { a1 … an | S →* a1 … an and every ai
 is a terminal }

9/15/06 Prof. Hilfinger CS164 Lecture 8

Examples:

• S → 0 also written as S → 0 | 1
 S → 1

 Generates the language { “0”, “1” }
• What about S → 1 A
 A → 0 | 1
• What about S → 1 A
 A → 0 | 1 A
• What about S → ε | (S)

9/15/06 Prof. Hilfinger CS164 Lecture 8

Pyth Example

A fragment of Pyth:

Compound → while Expr: Block
 | if Expr: Block Elses
Elses → ε | else: Block | elif Expr: Block Elses
Block → Stmt_List | Suite

(Formal language papers use one-character non-
terminals, but we don’t have to!)

9/15/06 Prof. Hilfinger CS164 Lecture 8

Notes

The idea of a CFG is a big step. But:

• Membership in a language is “yes” or “no”
– we also need parse tree of the input

• Must handle errors gracefully

• Need an implementation of CFG’s (e.g., bison)

9/15/06 Prof. Hilfinger CS164 Lecture 8

More Notes

• Form of the grammar is important
– Many grammars generate the same language
– Tools are sensitive to the grammar

– Tools for regular languages (e.g., flex) are also
sensitive to the form of the regular expression,
but this is rarely a problem in practice

5

9/15/06 Prof. Hilfinger CS164 Lecture 8

Derivations and Parse Trees

• A derivation is a sequence of sentential forms
resulting from the application of a sequence of
productions

 S → … → …

• A derivation can be represented as a tree
– Start symbol is the tree’s root
– For a production X → Y1 … Yn add children
 Y1, …, Yn to node X

9/15/06 Prof. Hilfinger CS164 Lecture 8

Derivation Example

• Grammar
 E → E + E | E * E | (E) | int
• String
 int * int + int

9/15/06 Prof. Hilfinger CS164 Lecture 8

Derivation Example (Cont.)

 E
→ E + E
→ E * E + E
→ int * E + E
→ int * int + E
→ int * int + int

9/15/06 Prof. Hilfinger CS164 Lecture 8

Derivation in Detail (1)

E
 E

9/15/06 Prof. Hilfinger CS164 Lecture 8

Derivation in Detail (2)

E

E E+

 E
→ E + E

9/15/06 Prof. Hilfinger CS164 Lecture 8

Derivation in Detail (3)

E

E

E E

E+

*

 E
→ E + E
→ E * E + E

6

9/15/06 Prof. Hilfinger CS164 Lecture 8

Derivation in Detail (4)

E

E

E E

E+

*

int

 E
→ E + E
→ E * E + E
→ int * E + E

9/15/06 Prof. Hilfinger CS164 Lecture 8

Derivation in Detail (5)

E

E

E E

E+

*

intint

 E
→ E + E
→ E * E + E
→ int * E + E
→ int * int + E

9/15/06 Prof. Hilfinger CS164 Lecture 8

Derivation in Detail (6)

E

E

E E

E+

int*

intint

 E
→ E + E
→ E * E + E
→ int * E + E
→ int * int + E
→ int * int + int

9/15/06 Prof. Hilfinger CS164 Lecture 8

Notes on Derivations

• A parse tree has
– Terminals at the leaves
– Non-terminals at the interior nodes

• A left-right traversal of the leaves is the
original input

• The parse tree shows the association of
operations, the input string does not !
– There may be multiple ways to match the input
– Derivations (and parse trees) choose one

9/15/06 Prof. Hilfinger CS164 Lecture 8

leftmost and Right-most Derivations

• The example was a
leftmost derivation
– At each step, replaced

the leftmost non-terminal

• There is an equivalent
notion of a rightmost
derivation, shown here:

 E
→ E + E
→ E + int
→ E * E + int
→ E * int + int
→ int * int + int

9/15/06 Prof. Hilfinger CS164 Lecture 8

rightmost Derivation in Detail (1)

E E

7

9/15/06 Prof. Hilfinger CS164 Lecture 8

rightmost Derivation in Detail (2)

E

E E+

 E
→ E + E

9/15/06 Prof. Hilfinger CS164 Lecture 8

rightmost Derivation in Detail (3)

E

E E+

int

 E
→ E + E
→ E + int

9/15/06 Prof. Hilfinger CS164 Lecture 8

rightmost Derivation in Detail (4)

E

E

E E

E+

int*

 E
→ E + E
→ E + int
→ E * E + int

9/15/06 Prof. Hilfinger CS164 Lecture 8

rightmost Derivation in Detail (5)

E

E

E E

E+

int*

int

 E
→ E + E
→ E + int
→ E * E + int
→ E * int + int

9/15/06 Prof. Hilfinger CS164 Lecture 8

rightmost Derivation in Detail (6)

E

E

E E

E+

int*

intint

 E
→ E + E
→ E + int
→ E * E + int
→ E * int + int
→ int * int + int

9/15/06 Prof. Hilfinger CS164 Lecture 8

Aside: Canonical Derivations

• Take a look at that last derivation in reverse.
• The active part (red) tends to move left to

right.
• We call this a reverse rightmost or canonical

derivation.
• Comes up in bottom-up parsing. We’ll return

to it in a couple of lectures.

8

9/15/06 Prof. Hilfinger CS164 Lecture 8

Derivations and Parse Trees

• For each parse tree there is a leftmost and a
rightmost derivation

• The difference is the order in which branches
are added, not the structure of the tree.

9/15/06 Prof. Hilfinger CS164 Lecture 8

Parse Trees and Abstract Syntax Trees

• The example we saw near the start:
IF-THEN-ELSE

== = =

ID ID ID ID INTINT

 was not a parse tree, but an abstract syntax tree
• Parse trees slavishly reflect the grammar.
• Abstract syntax trees more general, and

abstract away from the grammar, cutting out
detail that interferes with later stages.

9/15/06 Prof. Hilfinger CS164 Lecture 8

Summary of Derivations

• We are not just interested in whether
 s ∈ L(G)

– We need a parse tree for s, and ultimately an
abstract syntax tree.

• A derivation defines a parse tree
– But one parse tree may have many derivations

• leftmost and rightmost derivations are
important in parser implementation

