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Ambiguity, Precedence, Associativity
& Top-Down Parsing

Lecture 9-10
(From slides by G. Necula & R. Bodik)
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Administrivia

• Please let me know if there are continued
problems with being able to see other people’s
stuff.

• Preliminary run of test data against any
projects handed in by midnight Wednesday.
– Not final data sets, but may give you an indication.
– You can submit early and often!
– Will not test again until midnight Friday.
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Remaining Issues

• How do we find a derivation of s ?
• Ambiguity: what if there is more than one

parse tree (interpretation) for some string s ?
• Errors: what if there is no parse tree for

some string s ?
• Given a derivation, how do we construct an

abstract syntax tree from it?

Today, we’ll look at the first two.
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Ambiguity

• Grammar
         E → E + E | E * E |  ( E ) | int

• Strings
       int + int + int

          int * int + int
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Ambiguity. Example

The string int + int + int has two parse trees

E

E

E E

E+

int +

intint

E

E

E E

E+

int+

intint

+ is left-associative
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Ambiguity. Example

The string int * int + int has two parse trees

E

E

E E

E*

int +

intint

E

E

E E

E+

int*

intint

* has higher precedence than +
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Ambiguity (Cont.)

• A grammar is ambiguous if it has more than
one parse tree for some string
– Equivalently, there is more than one rightmost or

leftmost derivation for some string
• Ambiguity is bad

– Leaves meaning of some programs ill-defined
• Ambiguity is common in programming languages

– Arithmetic expressions
– IF-THEN-ELSE
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Dealing with Ambiguity

• There are several ways to handle ambiguity

• Most direct method is to rewrite the grammar
unambiguously
    E → E + T | T
    T → T * int | int | ( E )

• Enforces precedence of * over +
• Enforces left-associativity of + and *
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Ambiguity. Example

The int * int + int has only one parse tree now

E

E

E E

E*

int +

intint

E

T

T int

T+

int

*

E

int
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Ambiguity: The Dangling Else

• Consider the grammar
       E → if E then E
            | if E then E else E
            | OTHER

• This grammar is also ambiguous
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The Dangling Else: Example

• The expression
               if E1 then if E2 then E3 else E4

has two parse trees

if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

• Typically we want the second form
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The Dangling Else: A Fix

• else matches the closest unmatched then
• We can describe this in the grammar (distinguish

between matched and unmatched “then”)

    E →   MIF                   /* all then are matched */
     |  UIF                   /* some then are unmatched */
MIF → if E then MIF else MIF
        |   OTHER
UIF → if E then E
        |   if E then MIF else UIF

• Describes the same set of strings
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The Dangling Else: Example Revisited

• The expression if E1 then if E2 then E3 else E4

if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

• Not valid because the
then expression is not
a MIF

• A valid parse tree
(for a UIF)
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Ambiguity

• Impossible to convert automatically an ambiguous
grammar to an unambiguous one

• Used with care, ambiguity can simplify the grammar
– Sometimes allows more natural definitions
– But we need disambiguation mechanisms

• Instead of rewriting the grammar
– Use the more natural (ambiguous) grammar
– Along with disambiguating declarations

• Most tools allow precedence and associativity
declarations to disambiguate grammars

• Examples …

9/18/06 Prof. Hilfinger CS164 Lecture 9 15

Associativity Declarations

• Consider the grammar            E → E + E | int
• Ambiguous: two parse trees of int + int + int

E

E

E E

E+

int +

intint

E

E

E E

E+

int+

intint

• Left-associativity declaration:   %left  ‘+’
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Precedence Declarations

• Consider the grammar  E → E + E | E  * E | int
– And the string int + int * int

E

E

E E

E+

int *

intint

E

E

E E

E*

int+

intint
• Precedence declarations:  %left  ‘+’
                                            %left  ‘*’
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How It’s Done I: Intro to Top-Down Parsing

• Terminals are seen in order of
appearance in the token
stream:
           t1  t2  t3  t4  t5

• The parse tree is constructed
– From the top
– From left to right

• … As for leftmost derivation

A

t1 B

C

t2

D

t3

t4

t4
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Top-down Depth-First Parsing

• Consider the grammar
      E → T + E | T
      T → ( E ) | int  | int * T

• Token stream is:   int * int
• Start with top-level non-terminal E

• Try the rules for E in order
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Depth-First Parsing. Example int * int

• Start with start symbol                 E
• Try E → T + E                                T + E
• Then try a rule for T → ( E )          (E) + E

– But ( ≠ input int; backtrack to            T + E
• Try T → int . Token matches.          int + E

– But + ≠ input  *; back to                       T + E
• Try T → int * T                                              int*T+E

– But (skipping some steps) + can’t be matched
• Must backtrack to                          E
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Depth-First Parsing. Example int * int

• Try E → T
• Follow same steps as before for T

– And succeed with T → int * T and T → int
– With the following parse tree

E

T

int * T

int
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Depth-First Parsing

• Parsing: given a string of tokens t1 t2 ... tn, find
a leftmost derivation (and thus, parse tree)

• Depth-first parsing: Beginning with start
symbol, try each production exhaustively on
leftmost non-terminal in current sentential
form and recurse.
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Depth-First Parsing of t1
 t2 … tn

• At a given moment, have sentential form that
looks like this: t1 t2 … tk A …,  0≤k≤n

• Initially, k=0 and A… is just start symbol
• Try a production for A: if A → BC is a

production, the new form is t1 t2 … tk B C …
• Backtrack when leading terminals aren’t prefix

of t1
 t2 … tn and try another production

• Stop when no more non-terminals and
terminals all matched (accept) or no more
productions left (reject)
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When Depth-First Doesn’t Work Well

• Consider productions S → S a | a:
– In the process of parsing S we try the above rules
– Applied consistently in this order, get infinite loop
– Could re-order productions, but search will have

lots of backtracking and general rule for ordering
is complex

• Problem here is left-recursive grammar: one
that has a non-terminal S
           S →+ Sα   for some α
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Elimination of Left Recursion

• Consider the left-recursive grammar
                       S → S α | β

• S generates all strings starting with a β and
followed by a number of α

• Can rewrite using right-recursion
                 S → β S’
                 S’ → α S’ | ε
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Elimination of left Recursion. Example

• Consider the grammar
    S → 1 | S 0     ( β = 1 and α = 0 )

can be rewritten as
  S → 1 S’

     S’ → 0 S’ | ε
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More Elimination of Left Recursion

• In general
                  S → S α1 | … | S αn | β1 | … | βm

• All strings derived from S start with one of β
1,…,βm and continue with several instances of α
1,…,αn

• Rewrite as
             S → β1 S’ | … | βm S’
             S’ → α1 S’ | … | αn S’ | ε
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General Left Recursion

• The grammar
         S → A α | δ            (1)
         A → S β                  (2)
 is also left-recursive because

            S →+ S β α
• This left recursion can also be eliminated by

first substituting (2) into (1)
• There is a general algorithm (e.g. Aho, Sethi,

Ullman §4.3)
• But personally, I’d just do this by hand.
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An Alternative Approach

• Instead of reordering or rewriting grammar,
can use top-down breadth-first search.

         S → S a | a         String: aaa

      S
      S a       a          (string not all matched)

      S a a    a a
      S a a a   a a a
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Summary of Top-Down Parsing So Far

• Simple and general parsing strategy
– Left recursion must be eliminated first
– … but that can be done automatically
– Or can use breadth-first search

• But backtracking (depth-first) or maintaining
list of possible sentential forms (breadth-
first)  can make it slow

• Often, though, we can avoid both …
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Predictive Parsers

• Modification of depth-first parsing in which
parser “predicts” which production to use
– By looking at the next few tokens
– No backtracking

• Predictive parsers accept LL(k) grammars
– L means “left-to-right” scan of input
– L means “leftmost derivation”
– k means “predict based on k tokens of lookahead”

• In practice, LL(1) is used
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LL(1) Languages

• Previously, for each non-terminal and input
token there may be a choice of production

• LL(k) means that for each non-terminal and k
tokens, there is only one production that could
lead to success
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Recursive Descent: Grammar as Program

• In recursive descent, we think of a grammar
as a program.

• Each non-terminal is turned into a procedure
• Each right-hand side transliterated into part

of the procedure body for its non-terminal
• First, define

– next() current token of input
– scan(t) check that next()=t (else ERROR), and then

read new token.
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Recursive Descent: Example

P → S $               S → T  S’
S’ → + S | ε         T → int | ( S )

def P ():  S(); scan($)
def S():   T(); S’()
def S’():
    if next() == ‘+’: scan(‘+’); S()
    elif next() in [‘)’, $]: pass
    else:  ERROR
def T():
     if next () == int: scan(int)
     elif next() == ‘(‘: scan(‘(‘); S(); scan (‘)’)
     else: ERROR

But where do tests
come from?

($ = end marker)
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Predicting Right-hand Sides

• The if-tests are conditions by which parser
predicts which right-hand side to use.

• In our example, used only next symbol (LL(1));
but could use more.

• Can be specified as a 2D table
– One dimension for current non-terminal to expand
– One dimension for next token
– A table entry contains  one production
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But First: Left Factoring

• With the grammar
      E → T + E | T
      T → int  | int * T | ( E )

• Impossible to predict because
– For T two productions start with int
– For E it is not clear how to predict

• A grammar must be left-factored before use
for predictive parsing
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Left-Factoring Example

• Starting with the grammar
      E → T + E | T
      T → int  | int * T | ( E )

• Factor out common prefixes of productions
     E → T X
     X → + E | ε
     T → ( E ) | int Y
     Y → * T | ε
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LL(1) Parsing Table Example

• Left-factored grammar
E → T X                               X → + E | ε
T → ( E ) | int Y                   Y → * T | ε

• The LL(1) parsing table ($ is a special end marker):

( E )int YT

εεε* TY

εε+ EX

T XT XE

$)(+*int
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LL(1) Parsing Table Example (Cont.)

• Consider the [E, int] entry
– “When current non-terminal is E and next input is

int, use production  E →  T X
– This production can generate an int in the first

place
• Consider the [Y,+] entry

– “When current non-terminal is Y and current token
is +, get rid of Y”

– We’ll see later why this is so
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LL(1) Parsing Tables. Errors

• Blank entries indicate error situations
– Consider the [E,*] entry
– “There is no way to derive a string starting with *

from non-terminal E”
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Using Parsing Tables

• Method similar to recursive descent, except
– For first non-terminal S
– We look at the next token a
– And choose the production shown at [S,a]

• We use a stack to keep track of pending non-
terminals

• We reject when we encounter an error state
• We accept when we encounter end-of-input
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LL(1) Parsing Algorithm

initialize stack = <S,$>
repeat
   case stack of
      <X, rest>  : if T[X,next()] == Y1…Yn:
                           stack ← <Y1… Yn rest>;
                         else:  error ();
      <t, rest>   : scan (t); stack ← <rest>;
until stack == < >
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LL(1) Parsing Example

Stack                        Input                            Action
E $                            int * int $                     T X
T X $                        int * int $                      int Y
int Y X $                   int * int $                      terminal
Y X $                        * int $                            * T
* T X $                     * int $                            terminal
T X $                        int $                               int Y
int Y X $                   int $                               terminal
Y X $                        $                                     ε
X $                           $                                     ε
$                              $                                     ACCEPT



8

9/18/06 Prof. Hilfinger CS164 Lecture 9 43

Constructing Parsing Tables

• LL(1) languages are those definable by a
parsing table for the LL(1) algorithm

• No table entry can be multiply defined
• Once we have the table

– Can create table-driver or recursive-descent
parser

– The parsing algorithms are simple and fast
– No backtracking is necessary

• We want to generate parsing tables from CFG

9/18/06 Prof. Hilfinger CS164 Lecture 9 44

Top-Down Parsing. Review

• Top-down parsing expands a parse tree from
the start symbol to the leaves
– Always expand the leftmost non-terminal

E

T E
+

int   *    int  +   int
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Top-Down Parsing. Review

• Top-down parsing expands a parse tree from
the start symbol to the leaves
– Always expand the leftmost non-terminal

E

int T
*

T E
+

int   *    int  +   int

• The leaves at any point
form a string βAγ
–  β contains only terminals
– The input string is βbδ
– The prefix β matches
– The next token is b
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Top-Down Parsing. Review

• Top-down parsing expands a parse tree from
the start symbol to the leaves
– Always expand the leftmost non-terminal

E

int T
*

int

T E
+

T

int   *    int  +   int

• The leaves at any point
form a string βAγ
–  β contains only terminals
– The input string is βbδ
– The prefix β matches
– The next token is b
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Top-Down Parsing. Review

• Top-down parsing expands a parse tree from
the start symbol to the leaves
– Always expand the leftmost non-terminal

E

int T
*

int

T E
+

T

int

int   *    int  +   int

• The leaves at any point
form a string βAγ
–  β contains only terminals
– The input string is βbδ
– The prefix β matches
– The next token is b
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Constructing Predictive Parsing Tables

• Consider the state S → * βAγ
– With b the next token
– Trying to match βbδ

There are two possibilities:
1.  b belongs to an expansion of A

• Any A → α can be used if b can start a string
derived from α

     In this case we say that b ∈ First(α)

Or…
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Constructing Predictive Parsing Tables (Cont.)

2.  b does not belong to an expansion of A
– The expansion of A is empty and b belongs to an

expansion of γ (e.g., bω)
– Means that b can appear after A in a derivation of

the form S → * βAbω
– We say that b ∈ Follow(A) in this case

– What productions can we use in this case?
• Any A → α can be used if α can expand to ε
• We say that ε ∈ First(A) in this case
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Summary of Definitions

• For b ∈ T, the set of terminals; α a sequence
of terminal & non-terminal symbols, S the
start symbol, A ∈ N, the set of non-terminals:

• FIRST(α) ⊆ T ∪ { ε }
        b ∈ FIRST(α) iff  α →* b …
     ε ∈ FIRST(α)  iff α →* ε
• FOLLOW(A) ⊆ T
        b ∈ FOLLOW(A) iff S →* … A b …
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Computing First Sets

Definition      First(X) = { b | X →* bα} ∪ {ε | X →* ε},
X any grammar symbol.

1. First(b) = { b }

2. For all productions X → A1 … An
• Add First(A1) – {ε} to First(X). Stop if  ε ∉ First(A1)
• Add First(A2) – {ε} to First(X). Stop if  ε ∉ First(A2)
• …
• Add First(An) – {ε} to First(X). Stop if  ε ∉ First(An)
• Add ε to First(X)

9/18/06 Prof. Hilfinger CS164 Lecture 9 52

Computing First Sets, Contd.

• That takes care of single-symbol case.
• In general:
         FIRST(X1 X2…Xk) =
                   FIRST(X1)
               ∪ FIRST(X2)  if ε ∈ FIRST(X1)
               ∪  …
               ∪ FIRST(X2)  if ε ∈ FIRST(X1X2…Xk-1)
               - { ε } unless ε ∈ FIRST(Xi)   ∀ i
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First Sets. Example

• For the grammar
    E → T X                               X → + E | ε
    T → ( E ) | int Y                   Y → * T | ε

• First sets
       First( ( ) = { ( }            First( T ) = {int, ( }
       First( ) ) = { ) }            First( E ) = {int, ( }
       First( int) = { int }       First( X ) = {+, ε }
       First( + ) = { + }            First( Y ) = {*, ε }
       First( * ) = { * }
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Computing Follow Sets

Definition      Follow(X) = { b | S →* β X b ω }
1. Compute the First sets for all non-terminals first
2. Add $ to Follow(S) (if S is the start non-terminal)

3. For all productions Y →  … X A1 … An
• Add First(A1) – {ε} to Follow(X). Stop if  ε ∉ First(A1)
• Add First(A2) – {ε} to Follow(X). Stop if  ε ∉ First(A2)
• …
• Add First(An) – {ε} to Follow(X). Stop if  ε ∉ First(An)
• Add Follow(Y) to Follow(X)
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Follow Sets. Example

• For the grammar
    E → T X                               X → + E | ε
    T → ( E ) | int Y                   Y → * T | ε

• Follow sets
    Follow( E ) = {), $}
    Follow( X ) = {$, ) }
    Follow( Y ) = {+, ) , $}

 Follow( T ) = {+, ) , $}
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Constructing LL(1) Parsing Tables

• Construct a parsing table T for CFG G

• For each production  A → α in G do:
– For each terminal b ∈ First(α) do

• T[A, b] = α
– If α →* ε, for each b ∈ Follow(A) do

• T[A, b] = α
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Constructing LL(1) Tables. Example

• For the grammar
    E → T X                               X → + E | ε
    T → ( E ) | int Y                   Y → * T | ε

• Where in the line of Y do we put Y →* T ?
– In the lines of First( *T) = { * }

• Where in the line of Y do we put Y → ε   ?
– In the lines of Follow(Y) = { $, +, ) }
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Notes on LL(1) Parsing Tables

• If any entry is multiply defined then G is not
LL(1)
– If G is ambiguous
– If G is left recursive
– If G is not left-factored
– And in other cases as well

• Most programming language grammars are not
LL(1)

• There are tools that build LL(1) tables
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Recursive Descent for Real

• So far, have presented a purist view.
• In fact, use of recursive descent makes life simpler in

many ways if we “cheat” a bit.
• Here’s how you really handle left recursion in

recursive descent, for S → S A | R:
      def S():
          R ()
          while next() ∈ FIRST(A):
               A()
• It’s a program: all kinds of shortcuts possible.
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Review

• For some grammars there is a simple parsing
strategy
– Predictive parsing (LL(1))
– Once you build the LL(1) table, you can write

the parser by hand

• Next: a more powerful parsing strategy for
grammars that are not LL(1)


