
1

9/18/06 Prof. Hilfinger CS164 Lecture 9 1

Ambiguity, Precedence, Associativity
& Top-Down Parsing

Lecture 9-10
(From slides by G. Necula & R. Bodik)

9/18/06 Prof. Hilfinger CS164 Lecture 9 2

Administrivia

• Please let me know if there are continued
problems with being able to see other people’s
stuff.

• Preliminary run of test data against any
projects handed in by midnight Wednesday.
– Not final data sets, but may give you an indication.
– You can submit early and often!
– Will not test again until midnight Friday.

9/18/06 Prof. Hilfinger CS164 Lecture 9 3

Remaining Issues

• How do we find a derivation of s ?
• Ambiguity: what if there is more than one

parse tree (interpretation) for some string s ?
• Errors: what if there is no parse tree for

some string s ?
• Given a derivation, how do we construct an

abstract syntax tree from it?

Today, we’ll look at the first two.

9/18/06 Prof. Hilfinger CS164 Lecture 9 4

Ambiguity

• Grammar
 E → E + E | E * E | (E) | int

• Strings
 int + int + int

 int * int + int

9/18/06 Prof. Hilfinger CS164 Lecture 9 5

Ambiguity. Example

The string int + int + int has two parse trees

E

E

E E

E+

int +

intint

E

E

E E

E+

int+

intint

+ is left-associative
9/18/06 Prof. Hilfinger CS164 Lecture 9 6

Ambiguity. Example

The string int * int + int has two parse trees

E

E

E E

E*

int +

intint

E

E

E E

E+

int*

intint

* has higher precedence than +

2

9/18/06 Prof. Hilfinger CS164 Lecture 9 7

Ambiguity (Cont.)

• A grammar is ambiguous if it has more than
one parse tree for some string
– Equivalently, there is more than one rightmost or

leftmost derivation for some string
• Ambiguity is bad

– Leaves meaning of some programs ill-defined
• Ambiguity is common in programming languages

– Arithmetic expressions
– IF-THEN-ELSE

9/18/06 Prof. Hilfinger CS164 Lecture 9 8

Dealing with Ambiguity

• There are several ways to handle ambiguity

• Most direct method is to rewrite the grammar
unambiguously
 E → E + T | T
 T → T * int | int | (E)

• Enforces precedence of * over +
• Enforces left-associativity of + and *

9/18/06 Prof. Hilfinger CS164 Lecture 9 9

Ambiguity. Example

The int * int + int has only one parse tree now

E

E

E E

E*

int +

intint

E

T

T int

T+

int

*

E

int

9/18/06 Prof. Hilfinger CS164 Lecture 9 10

Ambiguity: The Dangling Else

• Consider the grammar
 E → if E then E
 | if E then E else E
 | OTHER

• This grammar is also ambiguous

9/18/06 Prof. Hilfinger CS164 Lecture 9 11

The Dangling Else: Example

• The expression
 if E1 then if E2 then E3 else E4

has two parse trees

if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

• Typically we want the second form
9/18/06 Prof. Hilfinger CS164 Lecture 9 12

The Dangling Else: A Fix

• else matches the closest unmatched then
• We can describe this in the grammar (distinguish

between matched and unmatched “then”)

 E → MIF /* all then are matched */
 | UIF /* some then are unmatched */
MIF → if E then MIF else MIF
 | OTHER
UIF → if E then E
 | if E then MIF else UIF

• Describes the same set of strings

3

9/18/06 Prof. Hilfinger CS164 Lecture 9 13

The Dangling Else: Example Revisited

• The expression if E1 then if E2 then E3 else E4

if

E1 if

E2 E3 E4

if

E1 if

E2 E3

E4

• Not valid because the
then expression is not
a MIF

• A valid parse tree
(for a UIF)

9/18/06 Prof. Hilfinger CS164 Lecture 9 14

Ambiguity

• Impossible to convert automatically an ambiguous
grammar to an unambiguous one

• Used with care, ambiguity can simplify the grammar
– Sometimes allows more natural definitions
– But we need disambiguation mechanisms

• Instead of rewriting the grammar
– Use the more natural (ambiguous) grammar
– Along with disambiguating declarations

• Most tools allow precedence and associativity
declarations to disambiguate grammars

• Examples …

9/18/06 Prof. Hilfinger CS164 Lecture 9 15

Associativity Declarations

• Consider the grammar E → E + E | int
• Ambiguous: two parse trees of int + int + int

E

E

E E

E+

int +

intint

E

E

E E

E+

int+

intint

• Left-associativity declaration: %left ‘+’
9/18/06 Prof. Hilfinger CS164 Lecture 9 16

Precedence Declarations

• Consider the grammar E → E + E | E * E | int
– And the string int + int * int

E

E

E E

E+

int *

intint

E

E

E E

E*

int+

intint
• Precedence declarations: %left ‘+’
 %left ‘*’

9/18/06 Prof. Hilfinger CS164 Lecture 9 17

How It’s Done I: Intro to Top-Down Parsing

• Terminals are seen in order of
appearance in the token
stream:
 t1 t2 t3 t4 t5

• The parse tree is constructed
– From the top
– From left to right

• … As for leftmost derivation

A

t1 B

C

t2

D

t3

t4

t4

9/18/06 Prof. Hilfinger CS164 Lecture 9 18

Top-down Depth-First Parsing

• Consider the grammar
 E → T + E | T
 T → (E) | int | int * T

• Token stream is: int * int
• Start with top-level non-terminal E

• Try the rules for E in order

4

9/18/06 Prof. Hilfinger CS164 Lecture 9 19

Depth-First Parsing. Example int * int

• Start with start symbol E
• Try E → T + E T + E
• Then try a rule for T → (E) (E) + E

– But (≠ input int; backtrack to T + E
• Try T → int . Token matches. int + E

– But + ≠ input *; back to T + E
• Try T → int * T int*T+E

– But (skipping some steps) + can’t be matched
• Must backtrack to E

9/18/06 Prof. Hilfinger CS164 Lecture 9 20

Depth-First Parsing. Example int * int

• Try E → T
• Follow same steps as before for T

– And succeed with T → int * T and T → int
– With the following parse tree

E

T

int * T

int

9/18/06 Prof. Hilfinger CS164 Lecture 9 21

Depth-First Parsing

• Parsing: given a string of tokens t1 t2 ... tn, find
a leftmost derivation (and thus, parse tree)

• Depth-first parsing: Beginning with start
symbol, try each production exhaustively on
leftmost non-terminal in current sentential
form and recurse.

9/18/06 Prof. Hilfinger CS164 Lecture 9 22

Depth-First Parsing of t1
 t2 … tn

• At a given moment, have sentential form that
looks like this: t1 t2 … tk A …, 0≤k≤n

• Initially, k=0 and A… is just start symbol
• Try a production for A: if A → BC is a

production, the new form is t1 t2 … tk B C …
• Backtrack when leading terminals aren’t prefix

of t1
 t2 … tn and try another production

• Stop when no more non-terminals and
terminals all matched (accept) or no more
productions left (reject)

9/18/06 Prof. Hilfinger CS164 Lecture 9 23

When Depth-First Doesn’t Work Well

• Consider productions S → S a | a:
– In the process of parsing S we try the above rules
– Applied consistently in this order, get infinite loop
– Could re-order productions, but search will have

lots of backtracking and general rule for ordering
is complex

• Problem here is left-recursive grammar: one
that has a non-terminal S
 S →+ Sα for some α

9/18/06 Prof. Hilfinger CS164 Lecture 9 24

Elimination of Left Recursion

• Consider the left-recursive grammar
 S → S α | β

• S generates all strings starting with a β and
followed by a number of α

• Can rewrite using right-recursion
 S → β S’
 S’ → α S’ | ε

5

9/18/06 Prof. Hilfinger CS164 Lecture 9 25

Elimination of left Recursion. Example

• Consider the grammar
 S → 1 | S 0 (β = 1 and α = 0)

can be rewritten as
 S → 1 S’

 S’ → 0 S’ | ε

9/18/06 Prof. Hilfinger CS164 Lecture 9 26

More Elimination of Left Recursion

• In general
 S → S α1 | … | S αn | β1 | … | βm

• All strings derived from S start with one of β
1,…,βm and continue with several instances of α
1,…,αn

• Rewrite as
 S → β1 S’ | … | βm S’
 S’ → α1 S’ | … | αn S’ | ε

9/18/06 Prof. Hilfinger CS164 Lecture 9 27

General Left Recursion

• The grammar
 S → A α | δ (1)
 A → S β (2)
 is also left-recursive because

 S →+ S β α
• This left recursion can also be eliminated by

first substituting (2) into (1)
• There is a general algorithm (e.g. Aho, Sethi,

Ullman §4.3)
• But personally, I’d just do this by hand.

9/18/06 Prof. Hilfinger CS164 Lecture 9 28

An Alternative Approach

• Instead of reordering or rewriting grammar,
can use top-down breadth-first search.

 S → S a | a String: aaa

 S
 S a a (string not all matched)

 S a a a a
 S a a a a a a

9/18/06 Prof. Hilfinger CS164 Lecture 9 29

Summary of Top-Down Parsing So Far

• Simple and general parsing strategy
– Left recursion must be eliminated first
– … but that can be done automatically
– Or can use breadth-first search

• But backtracking (depth-first) or maintaining
list of possible sentential forms (breadth-
first) can make it slow

• Often, though, we can avoid both …

9/18/06 Prof. Hilfinger CS164 Lecture 9 30

Predictive Parsers

• Modification of depth-first parsing in which
parser “predicts” which production to use
– By looking at the next few tokens
– No backtracking

• Predictive parsers accept LL(k) grammars
– L means “left-to-right” scan of input
– L means “leftmost derivation”
– k means “predict based on k tokens of lookahead”

• In practice, LL(1) is used

6

9/18/06 Prof. Hilfinger CS164 Lecture 9 31

LL(1) Languages

• Previously, for each non-terminal and input
token there may be a choice of production

• LL(k) means that for each non-terminal and k
tokens, there is only one production that could
lead to success

9/18/06 Prof. Hilfinger CS164 Lecture 9 32

Recursive Descent: Grammar as Program

• In recursive descent, we think of a grammar
as a program.

• Each non-terminal is turned into a procedure
• Each right-hand side transliterated into part

of the procedure body for its non-terminal
• First, define

– next() current token of input
– scan(t) check that next()=t (else ERROR), and then

read new token.

9/18/06 Prof. Hilfinger CS164 Lecture 9 33

Recursive Descent: Example

P → S $ S → T S’
S’ → + S | ε T → int | (S)

def P (): S(); scan($)
def S(): T(); S’()
def S’():
 if next() == ‘+’: scan(‘+’); S()
 elif next() in [‘)’, $]: pass
 else: ERROR
def T():
 if next () == int: scan(int)
 elif next() == ‘(‘: scan(‘(‘); S(); scan (‘)’)
 else: ERROR

But where do tests
come from?

($ = end marker)

9/18/06 Prof. Hilfinger CS164 Lecture 9 34

Predicting Right-hand Sides

• The if-tests are conditions by which parser
predicts which right-hand side to use.

• In our example, used only next symbol (LL(1));
but could use more.

• Can be specified as a 2D table
– One dimension for current non-terminal to expand
– One dimension for next token
– A table entry contains one production

9/18/06 Prof. Hilfinger CS164 Lecture 9 35

But First: Left Factoring

• With the grammar
 E → T + E | T
 T → int | int * T | (E)

• Impossible to predict because
– For T two productions start with int
– For E it is not clear how to predict

• A grammar must be left-factored before use
for predictive parsing

9/18/06 Prof. Hilfinger CS164 Lecture 9 36

Left-Factoring Example

• Starting with the grammar
 E → T + E | T
 T → int | int * T | (E)

• Factor out common prefixes of productions
 E → T X
 X → + E | ε
 T → (E) | int Y
 Y → * T | ε

7

9/18/06 Prof. Hilfinger CS164 Lecture 9 37

LL(1) Parsing Table Example

• Left-factored grammar
E → T X X → + E | ε
T → (E) | int Y Y → * T | ε

• The LL(1) parsing table ($ is a special end marker):

(E)int YT

εεε* TY

εε+ EX

T XT XE

$)(+*int

9/18/06 Prof. Hilfinger CS164 Lecture 9 38

LL(1) Parsing Table Example (Cont.)

• Consider the [E, int] entry
– “When current non-terminal is E and next input is

int, use production E → T X
– This production can generate an int in the first

place
• Consider the [Y,+] entry

– “When current non-terminal is Y and current token
is +, get rid of Y”

– We’ll see later why this is so

9/18/06 Prof. Hilfinger CS164 Lecture 9 39

LL(1) Parsing Tables. Errors

• Blank entries indicate error situations
– Consider the [E,*] entry
– “There is no way to derive a string starting with *

from non-terminal E”

9/18/06 Prof. Hilfinger CS164 Lecture 9 40

Using Parsing Tables

• Method similar to recursive descent, except
– For first non-terminal S
– We look at the next token a
– And choose the production shown at [S,a]

• We use a stack to keep track of pending non-
terminals

• We reject when we encounter an error state
• We accept when we encounter end-of-input

9/18/06 Prof. Hilfinger CS164 Lecture 9 41

LL(1) Parsing Algorithm

initialize stack = <S,$>
repeat
 case stack of
 <X, rest> : if T[X,next()] == Y1…Yn:
 stack ← <Y1… Yn rest>;
 else: error ();
 <t, rest> : scan (t); stack ← <rest>;
until stack == < >

9/18/06 Prof. Hilfinger CS164 Lecture 9 42

LL(1) Parsing Example

Stack Input Action
E $ int * int $ T X
T X $ int * int $ int Y
int Y X $ int * int $ terminal
Y X $ * int $ * T
* T X $ * int $ terminal
T X $ int $ int Y
int Y X $ int $ terminal
Y X $ $ ε
X $ $ ε
$ $ ACCEPT

8

9/18/06 Prof. Hilfinger CS164 Lecture 9 43

Constructing Parsing Tables

• LL(1) languages are those definable by a
parsing table for the LL(1) algorithm

• No table entry can be multiply defined
• Once we have the table

– Can create table-driver or recursive-descent
parser

– The parsing algorithms are simple and fast
– No backtracking is necessary

• We want to generate parsing tables from CFG

9/18/06 Prof. Hilfinger CS164 Lecture 9 44

Top-Down Parsing. Review

• Top-down parsing expands a parse tree from
the start symbol to the leaves
– Always expand the leftmost non-terminal

E

T E
+

int * int + int

9/18/06 Prof. Hilfinger CS164 Lecture 9 45

Top-Down Parsing. Review

• Top-down parsing expands a parse tree from
the start symbol to the leaves
– Always expand the leftmost non-terminal

E

int T
*

T E
+

int * int + int

• The leaves at any point
form a string βAγ
– β contains only terminals
– The input string is βbδ
– The prefix β matches
– The next token is b

9/18/06 Prof. Hilfinger CS164 Lecture 9 46

Top-Down Parsing. Review

• Top-down parsing expands a parse tree from
the start symbol to the leaves
– Always expand the leftmost non-terminal

E

int T
*

int

T E
+

T

int * int + int

• The leaves at any point
form a string βAγ
– β contains only terminals
– The input string is βbδ
– The prefix β matches
– The next token is b

9/18/06 Prof. Hilfinger CS164 Lecture 9 47

Top-Down Parsing. Review

• Top-down parsing expands a parse tree from
the start symbol to the leaves
– Always expand the leftmost non-terminal

E

int T
*

int

T E
+

T

int

int * int + int

• The leaves at any point
form a string βAγ
– β contains only terminals
– The input string is βbδ
– The prefix β matches
– The next token is b

9/18/06 Prof. Hilfinger CS164 Lecture 9 48

Constructing Predictive Parsing Tables

• Consider the state S → * βAγ
– With b the next token
– Trying to match βbδ

There are two possibilities:
1. b belongs to an expansion of A

• Any A → α can be used if b can start a string
derived from α

 In this case we say that b ∈ First(α)

Or…

9

9/18/06 Prof. Hilfinger CS164 Lecture 9 49

Constructing Predictive Parsing Tables (Cont.)

2. b does not belong to an expansion of A
– The expansion of A is empty and b belongs to an

expansion of γ (e.g., bω)
– Means that b can appear after A in a derivation of

the form S → * βAbω
– We say that b ∈ Follow(A) in this case

– What productions can we use in this case?
• Any A → α can be used if α can expand to ε
• We say that ε ∈ First(A) in this case

9/18/06 Prof. Hilfinger CS164 Lecture 9 50

Summary of Definitions

• For b ∈ T, the set of terminals; α a sequence
of terminal & non-terminal symbols, S the
start symbol, A ∈ N, the set of non-terminals:

• FIRST(α) ⊆ T ∪ { ε }
 b ∈ FIRST(α) iff α →* b …
 ε ∈ FIRST(α) iff α →* ε
• FOLLOW(A) ⊆ T
 b ∈ FOLLOW(A) iff S →* … A b …

9/18/06 Prof. Hilfinger CS164 Lecture 9 51

Computing First Sets

Definition First(X) = { b | X →* bα} ∪ {ε | X →* ε},
X any grammar symbol.

1. First(b) = { b }

2. For all productions X → A1 … An
• Add First(A1) – {ε} to First(X). Stop if ε ∉ First(A1)
• Add First(A2) – {ε} to First(X). Stop if ε ∉ First(A2)
• …
• Add First(An) – {ε} to First(X). Stop if ε ∉ First(An)
• Add ε to First(X)

9/18/06 Prof. Hilfinger CS164 Lecture 9 52

Computing First Sets, Contd.

• That takes care of single-symbol case.
• In general:
 FIRST(X1 X2…Xk) =
 FIRST(X1)
 ∪ FIRST(X2) if ε ∈ FIRST(X1)
 ∪ …
 ∪ FIRST(X2) if ε ∈ FIRST(X1X2…Xk-1)
 - { ε } unless ε ∈ FIRST(Xi) ∀ i

9/18/06 Prof. Hilfinger CS164 Lecture 9 53

First Sets. Example

• For the grammar
 E → T X X → + E | ε
 T → (E) | int Y Y → * T | ε

• First sets
 First(() = { (} First(T) = {int, (}
 First()) = {) } First(E) = {int, (}
 First(int) = { int } First(X) = {+, ε }
 First(+) = { + } First(Y) = {*, ε }
 First(*) = { * }

9/18/06 Prof. Hilfinger CS164 Lecture 9 54

Computing Follow Sets

Definition Follow(X) = { b | S →* β X b ω }
1. Compute the First sets for all non-terminals first
2. Add $ to Follow(S) (if S is the start non-terminal)

3. For all productions Y → … X A1 … An
• Add First(A1) – {ε} to Follow(X). Stop if ε ∉ First(A1)
• Add First(A2) – {ε} to Follow(X). Stop if ε ∉ First(A2)
• …
• Add First(An) – {ε} to Follow(X). Stop if ε ∉ First(An)
• Add Follow(Y) to Follow(X)

10

9/18/06 Prof. Hilfinger CS164 Lecture 9 55

Follow Sets. Example

• For the grammar
 E → T X X → + E | ε
 T → (E) | int Y Y → * T | ε

• Follow sets
 Follow(E) = {), $}
 Follow(X) = {$,) }
 Follow(Y) = {+,) , $}

 Follow(T) = {+,) , $}

9/18/06 Prof. Hilfinger CS164 Lecture 9 56

Constructing LL(1) Parsing Tables

• Construct a parsing table T for CFG G

• For each production A → α in G do:
– For each terminal b ∈ First(α) do

• T[A, b] = α
– If α →* ε, for each b ∈ Follow(A) do

• T[A, b] = α

9/18/06 Prof. Hilfinger CS164 Lecture 9 57

Constructing LL(1) Tables. Example

• For the grammar
 E → T X X → + E | ε
 T → (E) | int Y Y → * T | ε

• Where in the line of Y do we put Y →* T ?
– In the lines of First(*T) = { * }

• Where in the line of Y do we put Y → ε ?
– In the lines of Follow(Y) = { $, +,) }

9/18/06 Prof. Hilfinger CS164 Lecture 9 58

Notes on LL(1) Parsing Tables

• If any entry is multiply defined then G is not
LL(1)
– If G is ambiguous
– If G is left recursive
– If G is not left-factored
– And in other cases as well

• Most programming language grammars are not
LL(1)

• There are tools that build LL(1) tables

9/18/06 Prof. Hilfinger CS164 Lecture 9 59

Recursive Descent for Real

• So far, have presented a purist view.
• In fact, use of recursive descent makes life simpler in

many ways if we “cheat” a bit.
• Here’s how you really handle left recursion in

recursive descent, for S → S A | R:
 def S():
 R ()
 while next() ∈ FIRST(A):
 A()
• It’s a program: all kinds of shortcuts possible.

9/18/06 Prof. Hilfinger CS164 Lecture 9 60

Review

• For some grammars there is a simple parsing
strategy
– Predictive parsing (LL(1))
– Once you build the LL(1) table, you can write

the parser by hand

• Next: a more powerful parsing strategy for
grammars that are not LL(1)

