Ambiguity, Precedence, Associativity & Top-Down Parsing

Lecture 9-10 (From slides by G. Necula & R. Bodik)

Administrivia

- Please let me know if there are continued problems with being able to see other people's stuff.
- Preliminary run of test data against any projects handed in by midnight Wednesday.
 - Not final data sets, but may give you an indication.
 - You can submit early and often!
 - Will not test again until midnight Friday.

Remaining Issues

- How do we find a derivation of 5?
- Ambiguity: what if there is more than one parse tree (interpretation) for some string s?
- Errors: what if there is no parse tree for some string s?
- Given a derivation, how do we construct an abstract syntax tree from it?

Today, we'll look at the first two.

Ambiguity

· Grammar

$$E \rightarrow E + E \mid E * E \mid (E) \mid int$$

Strings

Ambiguity. Example

The string int + int + int has two parse trees

+ is left-associative

Ambiguity. Example

The string int * int + int has two parse trees

* has higher precedence than +

Ambiguity (Cont.)

- A grammar is ambiguous if it has more than one parse tree for some string
 - Equivalently, there is more than one rightmost or leftmost derivation for some string
- Ambiguity is bad
 - Leaves meaning of some programs ill-defined
- Ambiguity is common in programming languages
 - Arithmetic expressions
 - IF-THEN-ELSE

Dealing with Ambiguity

- · There are several ways to handle ambiguity
- Most direct method is to rewrite the grammar unambiguously

```
E \rightarrow E + T \mid T

T \rightarrow T^* \text{ int } \mid \text{ int } \mid (E)
```

- Enforces precedence of * over +
- Enforces left-associativity of + and *

Ambiguity. Example

The int * int + int has only one parse tree now

Ambiguity: The Dangling Else

Consider the grammar

```
E → if E then E
| if E then E else E
| OTHER
```

This grammar is also ambiguous

The Dangling Else: Example

The expression

if
$$E_1$$
 then if E_2 then E_3 else E_4

has two parse trees

Typically we want the second form

The Dangling Else: A Fix

- else matches the closest unmatched then
- We can describe this in the grammar (distinguish between matched and unmatched "then")

Describes the same set of strings

The Dangling Else: Example Revisited

• The expression if E_1 then if E_2 then E_3 else E_4

 A valid parse tree (for a UIF)

 Not valid because the then expression is not a MIF

Ambiguity

- Impossible to convert automatically an ambiguous grammar to an unambiguous one
- Used with care, ambiguity can simplify the grammar
 - Sometimes allows more natural definitions
 - But we need disambiguation mechanisms
- Instead of rewriting the grammar
 - Use the more natural (ambiguous) grammar
 - Along with disambiguating declarations
- Most tools allow precedence and associativity declarations to disambiguate grammars
- Examples ...

Associativity Declarations

Consider the grammar

- $E \rightarrow E + E \mid int$
- · Ambiguous: two parse trees of int + int + int

· Left-associativity declaration: %left '+'

Precedence Declarations

- Consider the grammar $E \rightarrow E + E \mid E * E \mid int$
 - And the string int + int * int

Precedence declarations: %left '+'

How It's Done I: Intro to Top-Down Parsing

 Terminals are seen in order of appearance in the token stream:

- The parse tree is constructed
 - From the top
 - From left to right
- · ... As for leftmost derivation

Top-down Depth-First Parsing

Consider the grammar

```
E \rightarrow T + E \mid T

T \rightarrow (E) \mid int \mid int * T
```

- Token stream is: int * int
- Start with top-level non-terminal E
- Try the rules for E in order

Depth-First Parsing. Example int * int

- Start with start symbol
- Try $E \rightarrow T + E$
- Then try a rule for $T \rightarrow (E)$
 - But (≠ input int; backtrack to
- Try $T \rightarrow int$. Token matches.
 - But + ≠ input *; back to
- Try T → int * T
 - But (skipping some steps) + can't be matched
- Must backtrack to

E

$$T + E$$

$$(E) + E$$

Depth-First Parsing. Example int * int

- Try E → T
- Follow same steps as before for T
 - And succeed with $T \rightarrow int * T$ and $T \rightarrow int$
 - With the following parse tree

Depth-First Parsing

- Parsing: given a string of tokens $t_1 t_2 ... t_n$, find a leftmost derivation (and thus, parse tree)
- Depth-first parsing: Beginning with start symbol, try each production exhaustively on leftmost non-terminal in current sentential form and recurse.

Depth-First Parsing of $t_1 t_2 \dots t_n$

- At a given moment, have sentential form that looks like this: $t_1 t_2 \dots t_k A \dots$, $0 \le k \le n$
- Initially, k=0 and A... is just start symbol
- Try a production for A: if $A \rightarrow BC$ is a production, the new form is $t_1 t_2 \dots t_k BC \dots$
- Backtrack when leading terminals aren't prefix of $t_1 t_2 ... t_n$ and try another production
- Stop when no more non-terminals and terminals all matched (accept) or no more productions left (reject)

When Depth-First Doesn't Work Well

- Consider productions $5 \rightarrow 5$ a | a:
 - In the process of parsing 5 we try the above rules
 - Applied consistently in this order, get infinite loop
 - Could re-order productions, but search will have lots of backtracking and general rule for ordering is complex
- Problem here is left-recursive grammar: one that has a non-terminal S

 $5 \rightarrow^+ 5\alpha$ for some α

Elimination of Left Recursion

· Consider the left-recursive grammar

$$S \rightarrow S \alpha \mid \beta$$

- 5 generates all strings starting with a β and followed by a number of α
- Can rewrite using right-recursion

$$S \rightarrow \beta S'$$

 $S' \rightarrow \alpha S' \mid \epsilon$

Elimination of left Recursion. Example

Consider the grammar

$$5 \rightarrow 1 \mid 50$$
 ($\beta = 1$ and $\alpha = 0$)

can be rewritten as

$$S \rightarrow 1 S'$$

$$S' \rightarrow 0 S' \mid \epsilon$$

More Elimination of Left Recursion

In general

$$S \rightarrow S \alpha_1 \mid ... \mid S \alpha_n \mid \beta_1 \mid ... \mid \beta_m$$

- All strings derived from 5 start with one of β 1,..., β_m and continue with several instances of α 1,..., α_n
- Rewrite as

$$S \rightarrow \beta_1 S' \mid ... \mid \beta_m S'$$

 $S' \rightarrow \alpha_1 S' \mid ... \mid \alpha_n S' \mid \epsilon$

General Left Recursion

The grammar

$$S \rightarrow A \alpha \mid \delta \qquad (1)$$

$$A \rightarrow S \beta \qquad (2)$$

is also left-recursive because

$$S \rightarrow^+ S \beta \alpha$$

- This left recursion can also be eliminated by first substituting (2) into (1)
- There is a general algorithm (e.g. Aho, Sethi, Ullman §4.3)
- But personally, I'd just do this by hand.

An Alternative Approach

• Instead of reordering or rewriting grammar, can use top-down breadth-first search.

$$5 \rightarrow 5 a \mid a$$
 String: aaa

Summary of Top-Down Parsing So Far

- Simple and general parsing strategy
 - Left recursion must be eliminated first
 - ... but that can be done automatically
 - Or can use breadth-first search
- But backtracking (depth-first) or maintaining list of possible sentential forms (breadthfirst) can make it slow
- Often, though, we can avoid both ...

Predictive Parsers

- Modification of depth-first parsing in which parser "predicts" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

LL(1) Languages

- Previously, for each non-terminal and input token there may be a choice of production
- LL(k) means that for each non-terminal and k
 tokens, there is only one production that could
 lead to success

Recursive Descent: Grammar as Program

- In recursive descent, we think of a grammar as a program.
- Each non-terminal is turned into a procedure
- Each right-hand side transliterated into part of the procedure body for its non-terminal
- · First, define
 - next() current token of input
 - scan(t) check that next()=t (else ERROR), and then read new token.

Recursive Descent: Example

```
P → S $
                     S \rightarrow T S'
                                                 ($ = end marker)
S' \rightarrow + S \mid \varepsilon T \rightarrow int \mid (S)
 def P(): S(); scan($)
 def S(): T(); S'()
 def 5'():
                                             But where do tests
    if next() == '+': scan('+'); S()
                                            come from?
    elif next() in [')', $]: pass
    else: ERROR
 def T():
     if next () == int: scan(int)
     elif next() == '(': scan('('); S(); scan (')')
     else: ERROR
```

Predicting Right-hand Sides

- The if-tests are conditions by which parser predicts which right-hand side to use.
- In our example, used only next symbol (LL(1));
 but could use more.
- Can be specified as a 2D table
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production

But First: Left Factoring

With the grammar

```
E \rightarrow T + E \mid T

T \rightarrow int \mid int * T \mid (E)
```

- Impossible to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- A grammar must be left-factored before use for predictive parsing

Left-Factoring Example

Starting with the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$

· Factor out common prefixes of productions

$$E \rightarrow T X$$

 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$
 $Y \rightarrow * T \mid \varepsilon$

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$

The LL(1) parsing table (\$ is a special end marker):

	int	*	+	()	\$
T	int Y			(E)		
E	ΤX			ΤX		
X			+ E		3	3
У		* T	3		3	3

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production $E \rightarrow T X$
 - This production can generate an int in the first place
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - We'll see later why this is so

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
 - Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
 - For first non-terminal 5
 - We look at the next token a
 - And choose the production shown at [5,a]
- We use a stack to keep track of pending nonterminals
- · We reject when we encounter an error state
- · We accept when we encounter end-of-input

LL(1) Parsing Algorithm

```
initialize stack = \langle S, \$ \rangle

repeat

case stack of

\langle X, rest \rangle: if T[X, next()] == Y_1...Y_n:

stack \leftarrow \langle Y_1... Y_n rest \rangle;

else: error ();

\langle t, rest \rangle: scan (t); stack \leftarrow \langle rest \rangle;

until stack == \langle S, \$ \rangle
```

LL(1) Parsing Example

<u>Stack</u>	Input	Action	
E \$	int * int \$	ΤX	
TX\$	int * int \$	int Y	
int Y X \$	int * int \$	terminal	
Y X \$	* int \$	* T	
* T X \$	* int \$	terminal	
TX\$	int \$	int Y	
int Y X \$	int \$	terminal	
Y X \$	\$	3	
X \$	\$	3	
\$	\$	ACCEPT	

Constructing Parsing Tables

- LL(1) languages are those definable by a parsing table for the LL(1) algorithm
- · No table entry can be multiply defined
- Once we have the table
 - Can create table-driver or recursive-descent parser
 - The parsing algorithms are simple and fast
 - No backtracking is necessary
- We want to generate parsing tables from CFG

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

Constructing Predictive Parsing Tables

- Consider the state $5 \rightarrow {}^*\beta A\gamma$
 - With b the next token
 - Trying to match $\beta b \delta$

There are two possibilities:

- 1. b belongs to an expansion of A
 - Any $A \rightarrow \alpha$ can be used if b can start a string derived from α

In this case we say that $b \in First(\alpha)$

Or...

Constructing Predictive Parsing Tables (Cont.)

- 2. b does not belong to an expansion of A
 - The expansion of A is empty and b belongs to an expansion of γ (e.g., $b\omega$)
 - Means that b can appear after A in a derivation of the form $S \rightarrow {}^*\beta Ab\omega$
 - We say that $b \in Follow(A)$ in this case
 - What productions can we use in this case?
 - Any $A \rightarrow \alpha$ can be used if α can expand to ϵ
 - We say that $\varepsilon \in First(A)$ in this case

Summary of Definitions

- For $b \in T$, the set of terminals; α a sequence of terminal & non-terminal symbols, S the start symbol, $A \in \mathbb{N}$, the set of non-terminals:
- FIRST(α) $\subseteq T \cup \{ \epsilon \}$ $b \in \text{FIRST}(\alpha) \text{ iff } \alpha \rightarrow^* b \dots$ $\epsilon \in \text{FIRST}(\alpha) \text{ iff } \alpha \rightarrow^* \epsilon$
- FOLLOW(A) $\subseteq T$ $b \in FOLLOW(A)$ iff $S \rightarrow^* ... A b ...$

Computing First Sets

Definition First(X) = { b | $X \rightarrow^* b\alpha$ } \cup { ϵ | $X \rightarrow^* \epsilon$ }, X any grammar symbol.

- 1. First(b) = { b }
- 2. For all productions $X \longrightarrow A_1 \dots A_n$
 - Add First(A_1) { ϵ } to First(X). Stop if $\epsilon \notin First(A_1)$
 - Add First(A_2) { ϵ } to First(X). Stop if $\epsilon \notin \text{First}(A_2)$
 - •
 - Add First(A_n) $\{\epsilon\}$ to First(X). Stop if $\epsilon \notin \text{First}(A_n)$
 - Add ε to First(X)

Computing First Sets, Contd.

- That takes care of single-symbol case.
- · In general:

```
FIRST(X_1 X_2...X_k) =

FIRST(X_1)

U FIRST(X_2) if \epsilon \in FIRST(X_1)

U ...

U FIRST(X_2) if \epsilon \in FIRST(X_1 X_2...X_{k-1})

-{ \epsilon } unless \epsilon \in FIRST(X_i) \forall i
```

First Sets. Example

For the grammar

$$E \rightarrow TX$$

 $T \rightarrow (E) \mid int Y$

 $X \rightarrow + E \mid \epsilon$ $Y \rightarrow * T \mid \epsilon$

First sets

```
First(() = {()
First()) = {()}
First(int) = {()
First(int) = {()
First(+) = {+}
First(*) = {*}
```

First(T) = {int, (}
First(E) = {int, (}
First(X) = {+,
$$\epsilon$$
 }
First(Y) = {*, ϵ }

Computing Follow Sets

```
Definition Follow(X) = { b | S \rightarrow^* \beta X b \omega }
```

- 1. Compute the First sets for all non-terminals first
- 2. Add \$ to Follow(5) (if 5 is the start non-terminal)
- 3. For all productions $Y \longrightarrow ... \times A_1 ... A_n$
 - Add First(A_1) { ϵ } to Follow(X). Stop if $\epsilon \notin First(A_1)$
 - Add First(A_2) { ϵ } to Follow(X). Stop if $\epsilon \notin First(A_2)$
 - •
 - Add First(A_n) $\{\epsilon\}$ to Follow(X). Stop if $\epsilon \notin \text{First}(A_n)$
 - Add Follow(Y) to Follow(X)

Follow Sets. Example

For the grammar

$$E \rightarrow T X$$

 $T \rightarrow (E) \mid int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

Follow sets

```
Follow(E) = {), $}
Follow(X) = {$, )}
Follow(Y) = {+, ), $}
Follow(T) = {+, ), $}
```

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $b \in First(\alpha)$ do
 - T[A, b] = α
 - If $\alpha \rightarrow^* \epsilon$, for each $b \in Follow(A)$ do
 - T[A, b] = α

Constructing LL(1) Tables. Example

For the grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$

- Where in the line of Y do we put $Y \rightarrow^* T$?
 - In the lines of First(*T) = { * }
- Where in the line of Y do we put $Y \rightarrow \varepsilon$?
 - In the lines of Follow(Y) = { \$, +,) }

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

Recursive Descent for Real

- So far, have presented a purist view.
- In fact, use of recursive descent makes life simpler in many ways if we "cheat" a bit.
- Here's how you really handle left recursion in recursive descent, for 5 → 5 A | R:
 def S():
 R()
 while next() ∈ FIRST(A):
 A()
- It's a program: all kinds of shortcuts possible.

Review

- For some grammars there is a simple parsing strategy
 - Predictive parsing (LL(1))
 - Once you build the LL(1) table, you can write the parser by hand
- Next: a more powerful parsing strategy for grammars that are not LL(1)