
and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger

Fall 2006

Static Analysis: Scope and Types

1 Terminology

Programs, in general, are simply collections of definitions of terms, which we often call decla-

rations1. Each declaration may use other declarations, referring to them by the names they
introduce. In programming languages, the scope of a declaration that introduces some name
is the portion of the program in which the meaning (or a possible meaning) of that name is
the one given by the declaration. Many authors (from less distinguished institutions) refer
loosely to the scope of a name as opposed to the scope of a declaration. The term “scope
of a name,” however, is clearly an inadequate notion, since the same name may be used in
multiple declarations.

2 Environments and Static Scoping

In CS61A, you saw an abstract model of both scope rules and rules about the extent or
lifetime of variables. In this model, there is, at any given time, an environment consisting of
a linked sequence of frames. Each frame contains bindings of names to slots that can contain
values. The value contained in a slot may be a function; such a value consists of a pair of
values: the body (or code) of the function and the environment that gives the meaning of
names used by the function when it executes.

Figure 1 illustrates the scope of declarations in C (or Java or C++). The sections of text
controlled by the various declarations of variables, parameters, and functions are indicated by
the brackets on the right. Brackets on the left indicate declarative regions—portions of the
text of a program that bound the scopes of the declarations within. Declarations in C obey
the rule that their scope runs from the declaration to the end of the innermost declarative
region that contains them. The declarative regions in C are the boundaries of the source file

1C and C++ distinguish declarations, which introduce (or re-introduce) names and some information about
them from definitions, which provide complete information about names. A declaration of a function tells us
its name, parameter types, and return type. A definition of a function tells us all this and also gives its body.
In these notes, I will use the term declaration to refer to both of these functions.

1

The environment diagram in Figure 1 shows a snapshot of the program during its execu-
tion. To find the current meaning (binding) of any identifier, one traverses the environment
structure from the current environment, following the pointers (links) to enclosing environ-
ments, until one finds the desired identifier. Each frame corresponds to an instance of some
declarative region in the program. When a function is called, a frame is created for that
call that contains the variables declared in that function with a static link that is set from
the environment part of the function (the leftmost “bubbles” in the figure). Inner blocks are
treated like inner functions, and have static links that point to instances of their enclosing
blocks2. Since the language in the example is C, all named functions’ environments are the
global environment, encompassing all declarations in a given source file.

As it was presented in CS61A, these environments are dynamic entities, constructed during
execution time. However, it is a property of most languages—including C, C++, Java, Pascal,
Ada, Scheme, the Algol family, COBOL, PL/1, Fortran, and many others—that at any given
point in a program, the chain of environment frames starting at the current environment is
always the same at that point in the program, except for the actual values in the slots of
environment. That is, the number of frames in the chain and the names in each of these
frames is always the same, and depends only on where in the program we are. We say that
these languages use use static scoping (also known as lexical scoping), meaning that their
scope rules determine static regions of text that are independent of any particular execution
of the program. The links between frames in this case are called static links.

To see why this property holds (the constancy or staticness of the environment chain),
consider how the links get set in the first place. When a function value is created in a statically
scoped language (i.e., as opposed to being called), its value is constructed from a code pointer

and an environment pointer . The environment pointer, furthermore, is always the current
frame, which is a frame containing declarations from the function whose text contains the
definition of the function. The environment pointer, in other words, depends only on where
in the text of the program the function is defined, and points to the same kind of frame
(same names) each time. When a function is called, a new current frame is created to contain
declarations of the function’s parameters and local variables, and its link (in these languages)
is copied from the environment pointer of the function being called. Thus, every time a frame
for a given function is created, its link always points to a frame with the same structure.

3 Dynamic Scoping

An alternative rule (found in Logo, APL, SNOBOL, and early versions of Lisp, APL, among
other languages) defines the scope of a declaration as proceeding from the time at which
the declaration is “executed” (or elaborated, to use Algol 68 terminology) to the time it
terminates. Under dynamic scoping, the link of an environment frame for a function is equal
to the current frame at the time of the call. To see the distinction, consider the following

2WARNING: This is a conceptual description. The actual execution of a program involves different data
structures, as we will see in later lectures

 }
 S2;
 int z=13;
 int x=10;
 if (...) {
 S1;
{
void f (int y)

int x=42;

 S3;

pointers
environment

links (static)

current frame

Block

E3:

E2:

E1:

E0:

env
global

 double x=3.14;

FunctionFile

...

}
 f (3);

{
void g ()

}

y: 3

z: 13
x: 10

g:
f:
x: 42

x: 3.14

 Frames
Environment

code for g

code for f

Figure 1: Scope of declarations in C. The brackets on the right indicate the scope of the declarations in the

program. The dashed portions of the rightmost bracket (for the first declaration of x) indicate the portion of

text in which its declaration is hidden by another declaration. The brackets on the left are declarative regions,

which bound the scopes of items defined inside them. The environment diagram below shows the situation

during execution of the inner block of f, when it has been called from g.

int x = 3; /* (1) */

void f(int x) /* (2) */

{

g ();

}

void g ()

{

print (x);

}

void doit ()

{

int x = 12;

f(42);

g();

}

In normal C (or C++ or Java), this program would print ‘3’ twice. Were these languages to use
dynamic scoping instead, it would print ‘42’, and then ‘12’. Figure 2 shows the environment
structure during the two calls to g under static scoping and under dynamic scoping. There
isn’t one declaration of x in the body of g (hence the term “dynamic”).

4 Compiler Symbol Tables

For languages with lexical scoping, the environment model suggests properties of a data
structure (or symbol table, as it is generally known) whereby a compiler can keep track of
definitions in the program it is processing. It can use the environment structure, but rather
than store values in the slots of the frames, it can store declarations (well, actually, pointers
to things that represent these declarations). This data structure allows the compiler to map
any identifier in the program it is processing to the declaration for that identifier (and thus
to any information contained in that declaration). Figure 3 shows how this would work for
the example in Figure 1.

We can make minor changes to the environment model to accommodate a range of lan-
guage features:

• Java and C++ both allow overloading of functions, based on argument types. We model
this by having the names include argument signatures. For example, the function f in
the figures could appear in its environment frame as

void f(int):

code for g

code for f

code for doit

dyanmic links

x : 42

(c)

(d)

(b)

(a)

g

g

fg

g

f

doit

x : 42

x: 12

doit:

g :

f :

Figure 2: Situation during call to g in four situations: (a) called from f using static scoping, (b) called from

doit using static scoping, (c) called from f using dynamic scoping, and (d) called from doit using dynamic

scoping. Situations (a) and (b) show what happens in languages like C, C++, Scheme, and Java (both print

3). Situations (c) and (d) apply to older Lisps, APL, SNOBOL, and others (case (c) prints 42 and (d) prints

12). The links between environments are static for (a) and (b) and dynamic for (c) and (d). The static and

dynamic links from doit happen to be identical in this case.

x:
f:
g:

y:

x:
z:

Symbol
Table

int x=42;

void f (int y)
{
 S1;
 if (...) {
 int x=10;
 int z=13;
 S2;
 }
 S3;
}

void g ()
{

 f (3);
}

...

 double x=3.14;

Figure 3: Adapting environment diagrams as symbol tables. This shows the compiler’s symbol table (in

the abstract) when processing the inner block of f. Compare this with Figure 1. The values in the previous

diagram become declarations in the symbol table. Each frame corresponds to a declarative region.

x.y, we look up y in starting from the environment that represents x’s type.

• When languages have structure types with inheritance, as do C++ and Java, it can
be represented by having the static link of a frame representing one type point to the
parent or base type of that type. Where multiple inheritance is legal (again as in C++
or Java), we can generalize the static link to be a set of pointers rather than a single
one.

5 Lifetime

Finally, we leave with one important point. The scope of a declaration refers only to those
sections of the program text where that declaration determines the meaning of its name. This
is a distinct concept from that of how long the named entity actually exists. The latter is
what we’ll call the lifetime of the entity. For example, going back to Figure 1, the declaration
of x inside the text of g is out of scope (invisible) during execution of f, but the variable (slot)
created by that declaration does not go away. Nor does variable created by the first (global)
declaration of x go away in the “scope holes” where it is hidden. The situation in the C++
declaration

void f ()

{

Foo* x = new Foo;

g ();

other stuff involving x;

}

is even more complicated. The declaration of x introduces a variable called x and then
stores into it a pointer to an anonymous object (created by new) that is not named by any
declaration. The lifetime of a variable x ends upon return from the call to f that creates
it. The lifetime of the anonymous thing it points to, however, continues until it is explicitly
deleted. Both variable x and the object it points to, of course, continue to exist during the
call to g, even though the declaration of x is not visible in g.

6 Static and Dynamic Typing

In programming languages, a type is a characteristic of an expression, parameter, variable
(or other entity that is, denotes, or holds a value) that characterizes what values the entity
may have (or denote or . . .) and what operations may be applied to it. When, as in Scheme,
the type of a quantity is not determined, in general, until a program is executed, we say the
language is dynamically typed. When—as in C, C++, FORTRAN, COBOL, Algol, Pascal,
PL/1, or Java—the type of an entity in a program is determinable solely from the text of the
program, we say that the language is statically typed.

of two entities to match. For example, consider the following code in C or C++:

struct { int x, y; } A, B;

struct { int x, y; } C;

struct T { int x, y; } D;

struct T E;

int* F;

int* G;

main()

{

A = B; /* OK */

A = C; /* Error: type mismatch */

A = D; /* Error: type mismatch */

D = E; /* OK */

F = G; /* OK */

}

The constructs ‘struct {...}’ and ‘...*’ are type constructors: given a set of type parame-

ters, represented here by ‘...’, they construct a new type.
As the comments show, the rule in C and C++ (also in Pascal, Ada, and many other

languages) is that each distinct occurrence of struct creates a brand new type, differing from
(not equivalent too) all other types, even those with identical declarations. A and B have the
same type, since it is “generated” by the same instance of struct. D and E have the same
type, since the definition of D introduces the name T to stand for the newly-constructed type,
and the declaration of E then refers to that type by name. We call this kind of rule a name

equivalence rule.
On the other hand, the types of F and G are identical, despite the fact that their types

come from two distinct instances of a generator. The two instances of T* define types with
identical structures: identical arguments to the type constructor. The rule in C and C++ is
that structurally identical pointer types are all the same. We call this kind of rule a structural

equivalence rule.
As you can see, Java, C, and C++ mix the two types of rule freely: array types, pointer

types, reference types (C++), and function types obey structural equivalence rules, while
class (struct) and union types obey name equivalence rules. The languages Pascal and Ada,
on the other hand, adhere more consistently to the name equivalence model (array types, for
example, are different if produced from two separate constructors). The language Algol 68
adheres consistently to structural equivalence (all the struct types in the example above are
identical in Algol 68).

usually prove to be unduly burdensome to programmers. Most languages therefore provide
some set of implicit coercions that automatically convert one type of value to another. In
Java, C, and C++, for example, we have the standard numeric promotions, which convert,
e.g., short and char values to int or long. We also have the standard pointer conversions,
which translate any pointer to an object to a void*, and convert B* to A* if A is a base class
of B.

6.3 Overloading

The purpose of name resolution (scope rule checking), is to associate declarations with in-
stances of names. Java and C++ introduces a new wrinkle—the possibility of having several
declarations referred to by the same name. For example,

int f(int x) { ... } /* (1) */

int f(A y) { ... } /* (2) */

In the presence of these declarations, scope rule checking will tell us that f in

f(3)

can mean either declaration (1) or (2). Until we analyze the type of the expression, however,
we can’t tell which of the two it is.

C++ requires that the decision between declarations (1) and (2) must depend entirely on
the types of the arguments to the function call. The following is illegal:

int f2(int x) { ... } /* (3) */

A f2(int x) { ... } /* (4) */

int x;

...

x = f2(3)

On the other hand, the language Ada allows these declarations (well, in its own syntax), and
is able to determine that since f2 must return an int for the assignment to be legal, one
declaration (3) can apply. That is, Ada uses the result types of the overloaded declarations
as well as their argument types.

Both C++ and Ada provide for default parameters:

int g(int x, int y = 0) { ... } /* (5) */

This doesn’t really introduce anything new, however; we can treat it as

int g(int x, int y) { ... } /* (5a) */

int g(int x) { return g(x, 0); } /* (5b) */

C++ does not resolve function calls based on return types, but it does allow user-defined
conversions that may be chosen according to the required type of an expression. For example,

...

operator int() const { ... }

...

}

defines an operator (which is, after all, just a function with an attitude) that will convert an
object of type A into an int, if one is needed in a given context. That makes it legal to write,
e.g.,

int h(int x) { ... }

A z;

...

h(z);

Any system of coercions as complex as that of C++ tends to give rise to unwanted
ambiguities (several different ways of coercing the arguments of to a function that match
several different possible overloadings of the function). To counter this, C++ has a complex
set of rules that place a preference order on implicit coercions. For example, given the
definitions of f and A above, it is acceptable (unambiguous) to write

A z;

... f(z)...

despite the fact that declaration (2) matches the call and declaration (1) matches it after
an application of the conversion defined from A to int. This is because the rules indicate a
preference for calls that do not need user-defined conversion.

Of all the features in this section, Java uses only overloading on the argument type.

7 Unification (aka Pattern-Matching)

In C++, one can define template functions, such as

/* sort A[0..n-1] so that le(A[i], A[i+1]) for 0 <= i < n-1 */

template <class T>

void sort(T* A, int n, bool le(const T&, const T&))

{

...

}

which will work for any type T:

bool double_le(const double& x, const double& y)

{

return x <= y;

double V[100];

... sort(V, 100, double_le) ...

For each distinct T that is used in a call to sort, the compiler creates a new overloading of
sort, by filling in the ‘T’ slot of the template with the appropriate type. This feature of C++
therefore raises the questions of how one matches a call against a rule like this and how one
determines what type to plug into T.

Given a call, such as sort(V, 100, double le), we can determine the types of all the
arguments, and represent them as a list of trees, such as the following (to use Lisp notation).

(list

(ArrayType (DoubleType))

(IntType)

(FunctionType

((RefToConstant (DoubleType))

(RefToConstant (DoubleType)))

(BoolType)))

Likewise, we can do the same for the formal parameter list of sort:

(list

(ArrayType T)

(IntType)

(FunctionType

((RefToConstant T)

(RefToConstant T))

(BoolType)))

Each S-expression (AY1 · · ·Yn) denotes a tree node with operator (label) A and n children Yi.
I’ve put in a dummy operator, list, in order to make the algorithm below easier to write.

The task of seeing whether these two types match is one of pattern matching, or to use the
fancy phrase, unification: that is, finding a substitution for all the type variables (here, the
single template parameter T) that makes the list of argument types and the formal parameter
list match.

The algorithm finds out whether a pattern matches an argument list, and finds a binding

of each type variable to a type. Initially, each type variable is unbound. The construct
binding(x) denotes the thing that type variable x is currently bound to. The construct
oper(t) gives the operator of tree node t, and children(t) gives its children. The following
algorithm is a version of the one in §6.7 of the book.

/* Return true iff the pattern P matches the pattern A, and binds */

/* type variables in A and P so as to make the two match. */

match(P, A) {

}

while (A is a bound type variable) { /* X */

A = binding(A);

}

if (P is an unbound type variable) {

binding(P) = A;

return true;

}

if (A is an unbound type variable) { /* X */

binding(A) = P;

return true;

}

if (oper(P) != oper(A)

|| length(children(P)) != length(children(A)))

return false;

for each child cp in children(P)

and corresponding child ca in children(A) {

if (! match (cp, ca))

return false;

}

return true;

}

For use with C++, A never contains type variables, so we can eliminate the two statements
marked /* X */.

7.1 Type inference

Languages such as ML make interesting use of unification to get static typing without hav-
ing to mention the types of things explicitly. For example, consider the following function
definition (the syntax is fictional):

sum(L) = if null(L) then 0 else head(L) + sum(tail(L)) fi;

Here, if...then...else...fi is a conditional expression, as for ‘if’ in Scheme or ‘?’ and
‘:’ in C. The rules for this fictional language say that

• null is a family of functions (what is called a polymorphic function) whose argument
types are list of T for all types T , and whose return type is bool.

• head is a family of functions whose argument types are list of T and whose return
type is T for all types T .

• tail is a family of functions whose argument and return types are list of T for all
types T .

• The ‘then’ and ‘else’ clauses of an ‘if’ have to have the same type. That is also the type
of the ‘if’ as a whole.

• A (one-argument) function has a type T0 → T1 for some types T0 and T1. Its arguments
must have type T0 and its return value is type T1.

To begin with, we don’t know the types of L or sum. So, we initially say that their types
are the type variables T0 and T1, respectively. Now we apply the rules using the matching
procedure described above.

• sum is a function, so its type (T1) must be T2 → T3 for some types T2 and T3; that is
match(T1, T2 → T3) must be true.

• x is an argument to sum so match(T0, T2).

• The argument type of null is list of T4 for some type T4, so match(T0, list of

T4).

• If the argument type to head is list of T4, the the return type is T4.

• Since the operand types of ‘+’ must be int, match(T4,int).

• The return type of sum is the type returned by the ‘if’. That, in turn, must be the same
as the type of 0 (its ‘then’ clause). So, match(T3,int).

Work this all through (executing all the ‘match’ operations) and you will see that we end up
with the type of x (T0) being list of int and that of sum being list of int → int.

7.2 Overload resolution in Ada

As indicated in the last lecture, C++ disallows

int f2(int x) { ... } /* (3) */

A f2(int x) { ... } /* (4) */

int x;

...

x = f2(3);

because the the call on f2 cannot be resolved on the basis of the argument type alone. Ada,
on the other hand, does allow this situation (well, with a different syntax, of course).

To make the problem uniform, first of all, we can treat all operators as functions. Thus,
we rewrite

x = f2(3);

as

operator=(x, f2(3));

• Find the types of the arguments (recursively resolving overloading of nested calls).

• Look at all definitions of the function in question for one whose formal parameters
match the resulting list of argument types (as for the match procedure above).

When the return type of a function matters, however, things get complicated.
The naive approach is to try all combinations of definitions of all functions mentioned in

an expression (for the example above, all possible definitions of operator= with all possible
definitions of f2). If the average number of overloadings for any function definition is k (the
geometric mean, to be precise), and the number of function calls in an expression is N , then
this naive procedure requires Ω(Nk) time, which is definitely bad.

A much better procedure is the following. We operate on an abstract syntax tree repre-
senting an expression.

• Perform a post-order traversal of the tree determining a list of possible types for the
expression:

– If the expression is a literal or variable, return its (single) possible type.

– If the expressions is a function call,

∗ recursively determine the possible types for each operand;

∗ look at all overloadings of the function and find which of them match one of
the possible types in each argument position.

∗ return the list of return types for each of the overloadings that match.

• If this procedure results in more than one possible type for the expression as a whole,
the expression is ambiguous and there is an error.

• Otherwise, perform a pre-order traversal of the tree, passing down the (single) type, R

that the expression must have:

– If the expression is a literal or variable, nothing needs to be done on this pass.

– For a function call, check that only one of the possible overloaded definitions for
the called function (determined on the post-order pass) returns the given type, R.
If not, there is an error.

– Otherwise, the single definition selected in the preceding step determines the types
of the arguments. Recursively resolve the argument expressions, passing down
these argument types as R.

	Terminology
	Environments and Static Scoping
	Dynamic Scoping
	Compiler Symbol Tables
	Lifetime
	Static and Dynamic Typing
	Type Equivalence
	Coercion
	Overloading

	Unification (aka Pattern-Matching)
	Type inference
	Overload resolution in Ada

