
Lecture 11: Types1

Administrivia

• Reminder: Test #1 in class on Wednesday, 10 Oct.

• The autograder will run a couple of times between now and the dead-
line, and continually thereafter.

1From material by G. Necula and P. Hilfinger

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 1

Type Checking Phase

• Determines the type of each expression in the program, (each node
in the AST that corresponds to an expression)

• Finds type errors.

– Examples?

• The type rules of a language define each expression’s type and the
types required of all expressions and subexpressions.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 2

Types and Type Systems

• A type is a set of values together with a set of operations on those
values.

• E.g., fields and methods of a Java class are meant to correspond to
values and operations.

• A language’s type system specifies which operations are valid for
which types.

• Goal of type checking is to ensure that operations are used with the
correct types, enforcing intended interpretation of values.

• Notion of “correctness” often depends on what programmer has in
mind, rather than what the representation would allow.

• Most operations are legal only for values of some types

– Doesn’t make sense to add a function pointer and an integer in C

– It does make sense to add two integers
– But both have the same assembly language implementation:

movl y, %eax; addl x, %eax

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 3

Uses of Types

• Detect errors:

– Memory errors, such as attempting to use an integer as a pointer.

– Violations of abstraction boundaries, such as using a private field
from outside a class.

• Help compilation:

– When Python sees x+y, its type systems tells it almost nothing
about types of x and y, so code must be general.

– In C, C++, Java, code sequences for x+y are smaller and faster,
because representations are known.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 4

Review: Dynamic vs. Static Types

• A dynamic type attaches to an object reference or other value. It’s
a run-time notion, applicable to any language.

• The static type of an expression or variable is a constraint on the
possible dynamic types of its value, enforced at compile time.

• Language is statically typed if it enforces a “significant” set of
static type constraints.

– A matter of degree: assembly language might enforce constraint
that “all registers contain 32-bit words,” but since this allows
just about any operation, not considered static typing.

– C sort of has static typing, but rather easy to evade in practice.

– Java’s enforcement is pretty strict.

• In early type systems, dynamic type(E) = static type(E) for all ex-
pressions E , so that in all executions, E evaluates to exactly type of
value deduced by the compiler.

• Gets more complex in advanced type systems.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 5

Subtyping

• Define a relation X � Y on classes to say that:

An object (value) of type X could be used when one of type Y is
acceptable

or equivalently

X conforms to Y

• In Java this means that X extends Y .

• Properties:

– X � X

– X � Y if X inherits from Y .

– X � Z if X � Y and Y � Z.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 6

Example

class A { ... }

class B extends A { ... }

class Main {

void f () {

A x; // x has static type A.

x = new A(); // x’s value has dynamic type A.

...

x = new B(); // x’s value has dynamic type B.

...

}

}

Variables, with static type A can hold values with dynamic type � A,
or in general. . .

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 7

Type Soundness

Soundness Theorem on Expressions.

∀E. dynamic type(E) � static type(E)

• Compiler uses static type(E) (call this type C).

• All operations that are valid on C are also valid on values with types
� C (e.g., attribute (field) accesses, method calls).

• Subclasses only add attributes.

• Methods may be overridden, but only with same (or compatible) sig-
nature.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 8

Typing Options

• Statically typed: almost all type checking occurs at compilation time
(C, Java). Static type system is typically rich.

• Dynamically typed: almost all type checking occurs at program exe-
cution (Scheme, Python, Javascript, Ruby). Static type system can
be trivial.

• Untyped: no type checking. What we might think of as type errors
show up either as weird results or as various runtime exceptions.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 9

“Type Wars”

• Dynamic typing proponents say:

– Static type systems are restrictive; can require more work to do
reasonable things.

– Rapid prototyping easier in a dynamic type system.

– Use duck typing: define types of things by what operations they
respond to (“if it walks like a duck and quacks like a duck, it’s a
duck”).

• Static typing proponents say:

– Static checking catches many programming errors at compile time.

– Avoids overhead of runtime type checks.

– Use various devices to recover the flexibility lost by “going static:”
subtyping, coercions, and type parameterization.

– Of course, each such wrinkle introduces its own complications.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 10

Using Subtypes

• In languages such as Java, can define types (classes) either to

– Implement a type, or

– Define the operations on a family of types without (completely)
implementing them.

• Hence, relaxes static typing a bit: we may know that something is a
Y without knowing precisely which subtype it has.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 11

Implicit Coercions

• In Java, can write

int x = ’c’;

float y = x;

• But relationship between char and int, or int and float not usually
called subtyping, but rather conversion (or coercion).

• Such implicit coercions avoid cumbersome casting operations.

• Might cause a change of value or representation,

• But usually, such coercions allowed implicitly only if type coerced to
contains all the values of the that coerced from (a widening coer-
cion).

• Inverses of widening coercions, which typically lose information (e.g.,
int−→char), are known as narrowing coercions. and typically re-
quired to be explicit.

• int−→float a traditional exception (implicit, but can lose informa-
tion and is neither a strict widening nor a strict narrowing.)

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 12

Coercion Examples

Object x = ...; String y = ...;

int a = ...; short b = 42;

x = y; a = b; // OK

y = x; b = a; // ERRORS{ x = (Object) y; // {OK

a = (int) b; // OK

y = (String) x; // OK but may cause exception

b = (short) a; // OK but may lose information

Possibility of implicit coercion complicates type-matching rules (see
C++).

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 13

Type Inference

• Types of expressions and parameters need not be explicit to have
static typing. With the right rules, might infer their types.

• The appropriate formalism for type checking is logical rules of in-
ference having the form

If Hypothesis is true, then Conclusion is true

• For type checking, this might become rules like

If E1 and E2 have types T1 and T2, then E3 has type T3.

• The standard notation used in scholarly work looks like this:
Γ ⊢ E1 : T1, Γ ⊢ E2 : T2

Γ ⊢ E3 : T3

Here, Γ stands for some set of assumptions about the types of free
names, generically known as a type environment and A ⊢ B means
“from A we may infer that B” or “A entails B.”

• Given proper notation, easy to read (with practice), so easy to check
that the rules are accurate.

• Can even be mechanically translated into programs.
Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 14

Prolog: A Declarative Programming Language

• Prolog is the most well-known logic programming language.

• Its statements “declare” facts about the desired solution to a prob-
lem. The system then figures out the solution from these facts.

• You saw this in CS61A.

• General form:

Conclusion :- Hypothesis1, . . . , Hypothesisk.

for k ≥ 0 means Means “may infer Conclusion by first establishing
each Hypothesis.” (when k = 0, we generally leave off the ‘:-’).

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 15

Prolog: Terms

• Each conclusion and hypothesis is a kind of term, represent both
programs and data. A term is:

– A constant, such as a, foo, bar12, =, +, ’(’, 12, ’Foo’.

– A variable, denoted by an unquoted symbol that starts with a
capital letter or underscore: E, Type, foo.

– The nameless variable () stands for a different variable each
time it occurs.

– A structure, denoted in prefix form: symbol(term1, . . . , termk).
Very general: can represent ASTs, expressions, lists, facts.

• Constants and structures can also represent conclusions and hy-
potheses, just as some list structures in Scheme can represent pro-
grams.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 16

Prolog Sugaring

• For convenience, allows structures written in infix notation, such as
a + X rather than +(a,X).

• List structures also have special notation:

– Can write as .(a,.(b,.(c,[]))) or .(a,.(b,.(c,X)))

– But more commonly use [a, b, c] or [a, b, c | X].

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 17

Inference Databases

• Can now express ground facts, such as

likes(brian, potstickers).

• Universally quantified facts, such as

eats(brian, X).

(for all X, brian eats X).

• Rules of inference, such as

eats(brian, X) :- isfood(X), likes(brian, X).

(you may infer that brian eats X if you can establish that X is a food
and brian likes it.)

• A collection (database) of these constitutes a Prolog program.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 18

Examples: From English to an Inference Rule

• “If e1 has type int and e2 has type int, then e1+e2 has type int:”

typeof(E1 + E2, int) :- typeof(E1, int), typeof(E2,int).

• “All integer literals have type int:”

typeof(X, int) :- integer(X).

(integer is a built-in predicate on terms).

• In general, our typeof predicate will take an AST and a type as
arguments.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 19

Soundness

•We’ll say that our definition of typeof is sound if

– Whenever rules show that typeof(e,t), e always evaluates to a
value of type t

•We only want sound rules,

• But some sound rules are better than others; here’s one that’s not
very useful:

typeof(X,any) :- integer(X).

Instead, would be better to be more general, as in

typeof(X,any).

(that is, any expression X is an any.)

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 20

Example: A Few Rules for Java (Classic Notation)

⊢ X : boolean

⊢ !X : boolean

⊢ E : boolean ⊢ S : void

⊢ while(E,S) : void

⊢ X : T

⊢ X : void

⊢ E1 : int ⊢ E2 : int

⊢ E1 + E2 : int

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 21

Example: A Few Rules for Java (Prolog)

• typeof(! X, boolean) :- typeof(X, boolean).

• typeof(while(E, S), void) :- typeof(E, boolean), typeof(S, void).

• typeof(X,void) :- typeof(X,Y)

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 22

The Environment

•What is the type of a variable instance? E.g., how do you show that
typeof(x, int)?

• Ans: You can’t, in general, without more information.

•We need a hypothesis of the form “we are in the scope of a decla-
ration of x with type T.”)

• A type environment gives types for free names:

• a mapping from identifiers to types.

• (A variable is free in an expression if the expression contains an
occurrence of the identifier that refers to a declaration outside
the expression.

– In the expression x, the variable x is free

– In lambda x: x + y only y is free (Python).

– In map(lambda x: g(x,y), x), x, y, map, and g are free.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 23

Defining the Environment in Prolog

• Can define a predicate, say, defn(I,T,E), to mean “I is defined to
have type T in environment E.”

•We can implement such a defn in Prolog like this:

defn(I, T, [def(I,T) | _]).

defn(I, T, [def(I1,_)|R]) :- dif(I,I1), defn(I,T,R).

(dif is built-in, and means that its arguments differ).

• Now we revise typeof to have a 3-argument predicate: typeof(E, T,
Env) means “E is of type T in environment Env,” allowing us to say

typeof(I, T, Env) :- defn(I, T, Env).

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 24

Examples Revisited (Classic)

Γ ⊢ X : boolean

Γ ⊢ !X : boolean

Γ ⊢ E : boolean Γ ⊢ S : void

Γ ⊢ while(E,S) : void

Γ ⊢ X : T

Γ ⊢ X : void

Γ ⊢ E1 : int Γ ⊢ E2 : int

Γ ⊢ E1 + E2 : int

Γ ⊢ I : int
(where I is an integer literal and Γ is a type environment)

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 25

Examples Revisited (Prolog)

typeof(E1 + E2, int, Env)

:- typeof(E1, int, Env), typeof(E2,int, Env).

typeof(X, int, _) :- integer(X).

typeof(!X, boolean, Env) :- typeof(X, boolean, Env).

typeof(while(E,S), void, Env) :-

typeof(E, boolean,Env), typeof(S, boolean, Env).

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 26

Example: lambda (Python)

typeof(lambda(X,E1), any->T, Env) :-

typeof(E1,T, [def(X,any) | Env]).

In effect, [def(X,any) | Env] means “Env modified to map x to any and
behaving like Env on all other arguments.”

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 27

Example: Same Idea for ‘let’ in the Cool Language

• Cool is an object-oriented language sometimes used for the project
in this course.

• The statement let x : T0 in e1 creates a variable x with given type
T0 that is then defined throughout e1. Value is that of e1.

• Rule (assuming that “let(X,T0,E1)” is the AST for let):

typeof(let(X,T0,E1), T1, Env) :-

typeof(E1, T1, [def(X, T0)|Env]).

“type of let X: T0 in E1 is T1, assuming that the type of E1 would be
T1 if free instances of X were defined to have type T0”.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 28

Example of a Rule That’s Too Conservative

• Let with initialization (also from Cool):

let x : T0← e0 in e1

•What’s wrong with this rule?

typeof(let(X, T0, E0, E1), T1, Env) :-

typeof(E0, T0, Env),

typeof(E1, T1, [def(X, T0) | Env]).

(Hint: I said Cool was an object-oriented language).

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 29

Loosening the Rule

• Problem is that we haven’t allowed type of initializer to be subtype
of T0.

• Here’s how to do that:

typeof(let(X, T0, E0, E1), T1, Env) :-

typeof(E0, T2, Env), T2 <= T0,

typeof(E1, T1, [def(X, T0) | Env]).

• Still have to define subtyping (written here as <=), but that depends
on other details of the language.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 30

As Usual, Can Always Screw It Up

typeof(let(X, T0, E0, E1), T1, Env) :-

typeof(E0, T2, Env), T2 <= T0,

typeof(E1, T1, Env).

This allows incorrect programs and disallows legal ones. Examples?

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 31

Function Application

• Consider only the one-argument case (Java).

• AST uses ‘call’, with function and list of argument types.

typeof(call(E1,[E2]), T, Env) :-

typeof(E1, T1->T, Env), typeof(E2, T1a, Env),

T1a <= T1.

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 32

Conditional Expressions

• Consider:

e1 if e0 else e2

or (from C) e0 ? e1 : e2.

• The result can be value of either e1 or e2.

• The dynamic type is either e1’s or e2’s.

• Either constrain these to be equal (as in ML):

typeof(if(E0,E1,E2), T, Env) :-

typeof(E0,bool,Env), typeof(E1,T,Env), typeof(E2,T,Env).

• Or use the smallest supertype at least as large as both of these
types—the least upper bound (lub) (as in Cool):

typeof(if(E0,E1,E2), T, Env) :-

typeof(E0,bool,Env), typeof(E1,T1,Env), typeof(E2,T2,Env),

lub(T,T1,T2).

Last modified: Wed Oct 3 12:15:33 2012 CS164: Lecture #11 33

	Lecture 11: TypesFrom material by G. Necula and P. Hilfinger
	Type Checking Phase
	Types and Type Systems
	Uses of Types
	Review: Dynamic vs. Static Types
	Subtyping
	Example
	Type Soundness
	Typing Options
	``Type Wars''
	Using Subtypes
	Implicit Coercions
	Coercion Examples
	Type Inference
	Prolog: A Declarative Programming Language
	Prolog: Terms
	Prolog Sugaring
	Inference Databases
	Examples: From English to an Inference Rule
	Soundness
	Example: A Few Rules for Java (Classic Notation)
	Example: A Few Rules for Java (Prolog)
	The Environment
	Defining the Environment in Prolog
	Examples Revisited (Classic)
	Examples Revisited (Prolog)
	Example: lambda (Python)
	Example: Same Idea for `let' in the Cool Language
	Example of a Rule That's Too Conservative
	Loosening the Rule
	As Usual, Can Always Screw It Up
	Function Application
	Conditional Expressions

